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ABSTRACT

The statistical properties of a 2-D
network of neural elements coupled
diffusively is examined. Computer
simulations indicate that if each netwoark
alament in the absence of coupling
generates an asymptotically stable
limiting deneity (ASLD), then in the
presence of coupling the network generates
an ASLD provided that it is sufficiently
large.

INTRODUCTICN

The measurement of the statistical
proparties of neurcnal spike traina is an
important toplec in neurc-physiological
investigatione [l=-2]. Although most
authors have emphasized the variety of
spike train patterns that can be observed,
it is equally true that many neurons in a
given region of cortex produce very
similar apike train patterns [1]. The
traditional approach has been tc model the
input-output relations of a neuron in
terms of atochastic point processes and
then determine the inter-spikes probability
density function of the output which arise
from a superposition of randcm apike
trains which may or may not be interact
{for review sea [2]).

An alternate poasibility is that
neural splke train patterns are generated
through nonllnear chaotic dynamics [3-4].
Then tha distincticon between atochaatic
and deterministic processes is blurred
bacausa, for example, given any one-
dimensional probability denaity it is
pessible to construct an infinite number
of deterministlc processes whoaa iteratas
are chacotic and which generate the
prescribed density [5-6]. Indeed, non-
linear chaotic deterministic processes
have recently baen used to interpret the
stactistics of patlent survival time data
{6) and lon channel kinetics [7].

Here we stugy the statistical
properties of N” neural elements coupled :
in a KxN network with dynamica given by 3

.. € .
v =(1-Fl)) -0 o) A
wherea . y:

Ce = Fly:(i — 1,5)) + Flyeli +1,5))
+F(ye(i,5 — 1)) + Flyeli, 7 + 1))

where y_, ¥ 1 is the inter-spike interval
of the E,jwiﬁ element at times t, t+l,

€ € [0,1} is the coupling constant,
i,3 = 1,...,N and the boundary conditiona
ara periodic. The function P is non-
linear and describes the dynamics of a
neural element. it is chosen such that

Tey1 = F(z,) (2)

generates an ASLD {5-6]. This ASLD
corrresponde to the distribution of inter-
spike intervals that would be measured
exparimentally.
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METHODS

Two forma of P were studied: 1) the
quadratic map

Tyl = 4::‘(1 - Zg] (3)

for which it is possible to derive the *
limiting density analytically {([5]; shown E
in Fig. 1lA); and 2) the recurrent
inhibitory loop map

¢n

—F (%) |
zr + 9"

Xyl = A~ Bzg

Egq. (4) is derived as the asingular limit
of a delay-differantial equation model for
recurrant inhibition [B8] which reproducea
the statistics of CAl hippocampal neuron
apike traina [%]. Computar simulations
suggest that (4] produces an ASLD when
A=1, B=5, n=3, ¢ =,35 (Fig. 1B}. Computer
gimulations were used to calculate the
inter-spilke probability densities as a
function of n and { for F given by (3)
and {4). All programs were written in C.
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RESULTS

Figure } compares the interspike
histograme generated from eg. (1) with
£ = 0.25 for N=1 (A,B) and N=10 (C,D).
Identical interspike histograms were
obtained for different initial conditions
and for different initial densitiea. In
the case of N=10, each element of the
network reproduced the identical
interspike histogram. Moreover, the
identical interspike histogram wae
generated by measuring all NxN network
elements. Thaese observations suggest that
the network of neural elements described
by (1} produces an ASLD. identical
ASLD's were obtained for N » 10 (range
studied 10-1000). Qualitatively similar
results were obtained for othar values of
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Figure l: Inter-spike histogramse (ASLD’s)

computed from eg. (1) when
N x (# iterations) = 30,000.
See text for details.

CONCLUSIONRS

Our results suggest that if F
generates an ASLD then a network of such
elemente with diffusive coupling also
generates an ASLD provided that the
network is sufficiently large.
Verification of this conjecture requiresa
analytical study. The ASLD in the
presence of coupling differe from that in
the absence of coupling. Coupled lattice
networks such as eq. {l1) have been etudied
extensively in a physice context as models
of spatiotemporal cocmplexity [10]. The
present study is the first to study these
networks from a statistical point of view.
The possibility that networks can generate
ASLD’s may explain the observation that
the statistical properties of neurons in
the cortex can be sc similar. Moreover
our observations lend support to the
concept of distribution coding in the
nervous system [2].

ACENOWLEDGEMENTS

We acknowledge support from the Brain
Research Foundatjon (JM), the Natural
Science and Engineering Research Council
of Canada (MM) and the North Atlantic
Treaty Organization (JM, MM).

REFERENCES

1, G. P. Moora, D. H. Perkel and J. P.
Segundo, “Statistical analysia and
functional interpretation of neuronal
spike data," ANN. REV. PHYSIOL. Vol.
28, pp. 493-522 1 1966.

2. A. C. Sanderson, W. M. Korxak and T. W.
Calvert, “Distribution coding in the
visual pathway,” BICPHYS. J. Vol. 13,
pp. 218-244 : 1973.

3. P. E. Rapp, 1. D. Zimmerman, A. K.
Albano, G. C. DeGuzman and N. N.
Greaenbaum, “Dynamics of spontaneocus
neural activity in the simian motor
cortex: The dimension of chaotic
neurcns, " PHYSICS LETT. Vol. 110A, pp-
335-338B 3 1985.

4., G. J. Mpitsos, R. M. Burton, H. (.
Craach and §. Q. Soinila, *"Evidence
for chaoe in spike trains cf neurcns
that generate rhythmic motor
patterns, " BRAIN RES. BULL. Vol. 21,
pp. 529-538 : 1988.

5. A. Lasota and M. C. Mackey.

deterministic gvotopg. Cambridge
University Press, Cambridge: 19853.

6. M. C. Mackey and J. G. Milton, "A
deterministic approach to survival
statisticse,” J. MATH. BIOL. Veol. 2B,
pp. 33-48 : 1990.

7. L. 8. Liebovitch and T. I. Toth, "A
model of ion channel kinetics using
deterministic chaotic rather than
stochastic processes, " J. THEORET.
BIOL. Vol. 148, pp. 243-268 : 1991.

B. M. C. Mackey and U. an der Heiden,
"The dynamice of recurrent
inhibition,* J. MATH. BIOL. Vol. 19,
pp. 211-225 : 1984.

9. J. G. Milton, U. an der Heiden, A.
Longtin and M. C. Mackey,*Complex
dynamice and noise in simple neural
networks with delayed mixed feedback,"
BIOMED. BIOCHIM. ACTA Vol. 49, pp.
697-707 : 1990.

10. K. Kaneko, "Pattern Dynamics in
spatio-temporal chaos,” PHYSICA D Vol.
34, pp. 1-41 : 19869.

Address inguiries to: Dr. John G. Milten,
Dept. Neurology, Box 425, The University

of Chicago Hospitals, 5841 South Maryland
Ave., Chicago, Il1l. 60636 (Tel: (312)-702-
1780, e-mail: splaceface.bsd.uchicago.edu.

Annual international Conference of the [EEE Enginecring in Medicine and Biology boc.lclv.-)lol 13, No. 5, 19891

CH306H4-4/91/0000-2195 S01.00 © 1991 [EEE

2195




