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ABSTRACT 

The statistical properties of a 2-D 
network of neural elements coupled 
diffusively is examined. Computer 
simulations indicate that if each network 
element in the absence of coupling 
generates an asymptotically stable 
limiting density (ASLD), then in the 
presence of coupling the network generates 
an ASLD provided that it is sufficiently 
large. 

INTRODUCTION 

The measurement of the statistical 
properties of neuronal spike trains is an 
important topic in neuro-physiological 
investigations [l-2]. Although most 
authors have emphasized the variety of 
spike train patterns that can be observed, 
it is equally true that many neurons in a 
given region of cortex produce very 
similar spike train patterns (l]. The 
traditional approach has been to model the 
input-output relations of a neuron in 
terms of stochastic point processes and 
then determine the inter-spike probability 
density function of the output which arise 
from a superposition of random spike 
trains which may or may not be interact 
(for review see [2]). 

An alternate possibility is that 
neural spike train patterns are generated 
through nonlinear chaotic dynamics [3-4], 
Then the distinction between stochastic 
and deterministic processes is blurred 
because, for example, given any one­
dimensional probability density it is 
possible to construct an infinite number 
of deterministic processes whose iterates 
are chaotic and which generate the 
prescribed density [5-6]. Indeed, non-
linear chaotic deterministic processes 
have recently been used to interpret the 
statistics of patient survival time data 
(6) and ion channel kinetics [7]. 

Here we stu1y the statistical 
properties of N neural elements coupled 
in a Nx.N network with dynamics given by 

Yt+!: (I - ,)F(y,(i,j}) - iC, I 11 

where 

C,: F(y,(i - l,j}) + F(y,(i + l,jl) 

+F(y,(i,j - I})+ F(y,(i,j + !)) 

where Yt, Yt~l is the inter-spike interval 
of the I,j-~n element at ti.mes t, t+l, 

f i [0,1] is the coupling constant, 
i,j ~ 1, ..• ,N and the boundary conditions 
are periodic. The function Fis non­
linear and describes the dynamics of a 
neural element. It is chosen such that 

z,+1: F(z,) I 2) 

generates an ASLD (5-6]. This ASLD 
corrresponds to the distribution of inter­
spike intervals that would be measured 
experimentally. 

METHODS 

Two forms of P were studied1 1) the 
quadratic map 

z,+1 : 4z,(l - z,) I 31 
for which it is possible to derive the 
limiting density analytically ([SJ; shown 
in Pig. lA); and 2) the recurrent 
inhibitory loop map 

I 4) 

Eq. (4) is derived as the singular limit 
of a delay-differential equation model for 
recurrent inhibition [BJ which reproduces 
the statistics of CAl hippocampal neuron 
spike trains [9), Computer simulations 
suggest that (4) produces an ASLD when 
A .. l, B•S, n•J, ¢,•,JS (Fig. 1B). Computer 
simulations were used to calculate the 
inter-spike probability densities as a 
function of n and £ for F given by ( 3) 
and (4). All programs were written in C. 
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RESULTS 

Figure l compares the interspike 
histograms generated from eq. (l) with 
E • 0.25 for N•l (A,B) and N•lO (C,D). 

Identical interspike histograms were 
obtained for different initial conditions 
and for different initial densities. In 
the case of N•lO, each element of the 
network reproduced the identical 
interspike histogram. Moreover, the 
identical interspike histogram was 
generated by measuring all NxN network 
elements. These observations suggest that 
the network of neural elements described 
by (l) produces an ASLO. Identical 
ASLD's were obtained for N > 10 (range 
studied 10-1000). Qualitatively similar 
results were obtained for other values of 
f • 
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Figure li Inter-spike histograms (ASLD's) 

computed from eq. (l) when 
N x (I iterations) • 30,000. 
See text for details. 

CONCLUSIONS 

Our results suggest that if F 
generates an ASLD then a network of such 
elements with diffusive coupling also 
generates an ASLD provided that the 
network is sufficiently large. 
Verification of this conjecture requires 
analytical study. The ASLD in the 
presence of coupling differs from that in 
the absence of coupling. Coupled lattice 
networks such as eq. (1) have been studied 
extensively in a physics context as models 
of spatiotemporal complexity [10], The 
present study is the first to study these 
networks from a statistical point of view. 
The possibility that networks can generate 
ASLD's may explain the observation that 
the statistical properties of neurons in 
the cortex can be so similar. Moreover 
our observations lend support ta the 
concept of distribution coding in the 
nervous system [2]. 
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