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We first express correlations for ergodic transformations in terms of phase space averages. Let S: [O, 1] -+ [O, 1] 
be an ergodic transformation with unique stationary density f*, and F, G : [O, 1] -+ R be integrable functions. Then 
the correlation of F with G is given by 

1 N 

CF,G(T) = lim N '°' F(Xt+r)G(xt) 
N-+oo L 

t=l 

N 

= lim Nl '°' F(st+r(x)G(St(x)) 
N-+oo L 

t=l 

1 N 
= lim N "F(ST O st(x))G(St(x)) 

N-+oo L 
t=l 

= 11 
F(Sr(x))G(x)f*(x)dx, 

where the last line follows by the assumed ergodicity and the Birkhoff individual ergodic theorem. 
If we identify F = G = x so Cxx(T) is the autocorrelation of x, and assume sr(x) and f*(x) are even functions 

about the point x = ½ for T 2'. 1, then 

Cxx(T) = 11 
xSr(x)f*(x)dx 

= 11 
(x - ~) sr(x)f*(x)dx + ~ 11 

sr(x)f*(x)dx 

= { 1 x2 > 
-<x> 
2 

T=O 

T2'.l. 

Since f* was assumed to be even about x = ½, we have < x >= ½ so ½ < x >=< x >2 • Now let Pxx(T) be the 
covariance of x: Pxx(T) = Cxx(T)- < x > 2 • Then 

{ < X2 > - < X >2 
Pxx(T) = 

0 

T=O 
T2'.l. 
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Independence of 7/. The auto-correlation of 11! defined by (19) is 

N 

c:72 ( T) = J~~ ~ L 17:r,:+T 
t=l 

T = 0, 1, · · ·. (20) 

If it is the case that the covariance p~72 = 0 for all T :::0: 1, then the 7)~ can be treated as independent variables. If 

further for t sufficiently large the 7)~ have achieved a stationary density g, then we can consider the 7); to be not only 
independent but also identically distributed (i.i.d.) random variables. 

Inserting 7/ from (19) we may write (20) explicitly as 

(21) 

Note that the first two terms of c;2 are the auto-correlation functions of the map S at lattice sites ( i - 1) and ( i + 1) 

respectively, C1-; 1 and C}t" 1 . This and the symmetry in the lattice allows us to write (21) in the form 

2 N 2 { < x 2 > T = 0 
c;12(T) = ~ lim Nl L S(x~- 1 )S(x~t~) + ~ 1 

2 N----+oo 2 - < X > T :::0: 1. 
t=l 2 

T=0 
= E21•1 [1 xi-lST(xi+l)f,(xi-1,xi+l)dxi-ldxi+l + E2 { 1 x2 > 

2 o lo 2 - < x > T :::0: 1. 
2 

For E small we expect that xi-l and xi+ 1 should be approximately independent so the integral may be evaluated to 
give 

2 { < x 2 > + < X >2 
. E 

C'2 = - 1 
77 2 - < X > + < C >2 2 . 

and thus p,12 ( T) takes the form 

T=0 

T :::0: 1, 

T=0 
T :::0: 1. 

Thus for small Ethe covariance of 7) is of 0(E2 ) for T = 0 and approximately O for T :::0: 1, and we can take the 7)t 

to be independent of one another. Numerical calculations indicate that for E::; 10-1 our estimate of p112(T) is accurate. 

Density of the Distribution of 7/. For small E we expect that g should be given by the convolution of the stationary 
density of each of the terms making up ri: 

g(z) = fof J,(z - y)J,(y)dy. 

If supp f, = [O, l] then supp g = [O, E]. 

Cross Correlation of T with 7/· The nearest neighbor spatial-averaged cross-correlation of T with 7) is defined by 

1 L . . 

Cr71 (t) = L LT(xD 7);, (22) 
i=l 

If it can be shown that Cr71 (t) is negligible for large t, then T and 7) can be taken as approximately independent as 
was assumed in the derivation of (18). 

To estimate the cross-correlation Cr,1(t) between T and r7, we insert the expressions for T and 7/, so equation (22) 
can be written in the explicit form 

Cr,,(t) = E(l - E) { ½ t, S(xl)S(x:+ 1 )} (23) 

because of the cyclicity of the lattice. If the lattice is large so 1 « L, then the bracketed term in (23) should 
approximate < .r2 >. Therefore 

Cr,7(t) ':':'< x2 > E(l - E) (24) 

Numerical computations of Cr,1(t) indicate that (24) accurately predicts its value. 


