# CORRELATION FUNCTIONS AND DENSITIES 

## 13 NOVEMBER, 1992 <br> FILE: CORREL.TEX

Michael C. Mackey<br>Centre for Nonlinear Dynamics in Physiology and Medicine<br>and<br>Departments of Physiology, Physics and Mathematics<br>McGill University<br>Montreal, Quebec, Canada

We first express correlations for ergodic transformations in terms of phase space averages. Let $S:[0,1] \rightarrow[0,1]$ be an ergodic transformation with unique stationary density $f_{*}$, and $F, G:[0,1] \rightarrow R$ be integrable functions. Then the correlation of $F$ with $G$ is given by

$$
\begin{aligned}
C_{F, G}(\tau) & \equiv \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{t=1}^{N} F\left(x_{t+\tau}\right) G\left(x_{t}\right) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{t=1}^{N} F\left(S^{t+\tau}(x) G\left(S^{t}(x)\right)\right. \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{t=1}^{N} F\left(S^{\tau} \circ S^{t}(x)\right) G\left(S^{t}(x)\right) \\
& =\int_{0}^{1} F\left(S^{\tau}(x)\right) G(x) f_{*}(x) d x
\end{aligned}
$$

where the last line follows by the assumed ergodicity and the Birkhoff individual ergodic theorem.
If we identify $F=G=x$ so $C_{x x}(\tau)$ is the autocorrelation of $x$, and assume $S^{\tau}(x)$ and $f_{*}(x)$ are even functions about the point $x=\frac{1}{2}$ for $\tau \geq 1$, then

$$
\begin{aligned}
C_{x x}(\tau) & =\int_{0}^{1} x S^{\tau}(x) f_{*}(x) d x \\
& =\int_{0}^{1}\left(x-\frac{1}{2}\right) S^{\tau}(x) f_{*}(x) d x+\frac{1}{2} \int_{0}^{1} S^{\tau}(x) f_{*}(x) d x \\
& = \begin{cases}<x^{2}> & \tau=0 \\
\frac{1}{2}<x> & \tau \geq 1\end{cases}
\end{aligned}
$$

Since $f_{*}$ was assumed to be even about $x=\frac{1}{2}$, we have $<x>=\frac{1}{2}$ so $\frac{1}{2}<x>\equiv<x>^{2}$. Now let $\rho_{x x}(\tau)$ be the covariance of $x: \rho_{x x}(\tau) \equiv C_{x x}(\tau)-<x>^{2}$. Then

$$
\rho_{x x}(\tau)= \begin{cases}<x^{2}>-<x>^{2} & \tau=0 \\ 0 & \tau \geq 1\end{cases}
$$

Independence of $\eta$. The auto-correlation of $\eta_{t}^{i}$ defined by (19) is

$$
\begin{equation*}
C_{\eta^{2}}^{i}(\tau)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{t=1}^{N} \eta_{t}^{i} \eta_{t+\tau}^{i} \quad \tau=0,1, \cdots \tag{20}
\end{equation*}
$$

If it is the case that the covariance $\rho_{\eta^{2}}^{i} \equiv 0$ for all $\tau \geq 1$, then the $\eta_{t}^{i}$ can be treated as independent variables. If further for $t$ sufficiently large the $\eta_{t}^{i}$ have achieved a stationary density $g$, then we can consider the $\eta_{t}^{i}$ to be not only independent but also identically distributed (i.i.d.) random variables.

Inserting $\eta$ from (19) we may write (20) explicitly as

$$
\begin{align*}
C_{\eta^{2}}^{i}(\tau)=\frac{\epsilon^{2}}{4} \lim _{N \rightarrow \infty} & \frac{1}{N} \sum_{t=1}^{N}\left\{S\left(x_{t}^{i-1}\right) S\left(x_{t+\tau}^{i-1}\right)+S\left(x_{t}^{i+1}\right) S\left(x_{t+\tau}^{i+1}\right)\right. \\
& \left.+S\left(x_{t}^{i-1}\right) S\left(x_{t+\tau}^{i+1}\right)+S\left(x_{t}^{i+1}\right) S\left(x_{t+\tau}^{i-1}\right)\right\} \tag{21}
\end{align*}
$$

Note that the first two terms of $C_{\eta^{2}}^{i}$ are the auto-correlation functions of the map $S$ at lattice sites $(i-1)$ and $(i+1)$ respectively, $C_{S^{2}}^{i-1}$ and $C_{S^{2}}^{i+1}$. This and the symmetry in the lattice allows us to write (21) in the form

$$
\begin{aligned}
C_{\eta^{2}}^{i}(\tau) & =\frac{\epsilon^{2}}{2} \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{t=1}^{N} S\left(x_{t}^{i-1}\right) S\left(x_{t+\tau}^{i+1}\right)+\frac{\epsilon^{2}}{2} \begin{cases}<x^{2}> & \tau=0 \\
\frac{1}{2}<x> & \tau \geq 1\end{cases} \\
& =\frac{\epsilon^{2}}{2} \int_{0}^{1} \int_{0}^{1} x^{i-1} S^{\tau}\left(x^{i+1}\right) f_{*}\left(x^{i-1}, x^{i+1}\right) d x^{i-1} d x^{i+1}+\frac{\epsilon^{2}}{2} \begin{cases}<x^{2}> & \tau=0 \\
\frac{1}{2}<x> & \tau \geq 1\end{cases}
\end{aligned}
$$

For $\epsilon$ small we expect that $x^{i-1}$ and $x^{i+1}$ should be approximately independent so the integral may be evaluated to give

$$
C_{\eta^{2}}^{i}=\frac{\epsilon^{2}}{2} \begin{cases}<x^{2}>+<x>^{2} & \tau=0 \\ \frac{1}{2}<x>+<x>^{2} & \tau \geq 1\end{cases}
$$

and thus $\rho_{\eta^{2}}(\tau)$ takes the form

$$
\rho_{\eta^{2}}(\tau) \simeq \frac{\epsilon^{2}}{2} \begin{cases}<x^{2}>-<x>^{2} & \tau=0 \\ 0 & \tau \geq 1\end{cases}
$$

Thus for small $\epsilon$ the covariance of $\eta$ is of $\mathcal{O}\left(\epsilon^{2}\right)$ for $\tau=0$ and approximately 0 for $\tau \geq 1$, and we can take the $\eta_{t}$ to be independent of one another. Numerical calculations indicate that for $\epsilon \leq 10^{-1}$ our estimate of $\rho_{\eta^{2}}(\tau)$ is accurate.
Density of the Distribution of $\eta$. For small $\epsilon$ we expect that $g$ should be given by the convolution of the stationary density of each of the terms making up $\eta$ :

$$
g(z)=\int_{0}^{\epsilon} f_{*}(z-y) f_{*}(y) d y
$$

If supp $f_{*}=[0,1]$ then supp $g=[0, \epsilon]$.
Cross Correlation of $T$ with $\eta$. The nearest neighbor spatial-averaged cross-correlation of $T$ with $\eta$ is defined by

$$
\begin{equation*}
C_{T \eta}(t)=\frac{1}{L} \sum_{i=1}^{L} T\left(x_{t}^{i}\right) \eta_{t}^{i} \tag{22}
\end{equation*}
$$

If it can be shown that $C_{T \eta}(t)$ is negligible for large $t$, then $T$ and $\eta$ can be taken as approximately independent as was assumed in the derivation of (18).

To estimate the cross-correlation $C_{T \eta}(t)$ between $T$ and $\eta$, we insert the expressions for $T$ and $\eta$, so equation (22) can be written in the explicit form

$$
\begin{equation*}
C_{T \eta}(t)=\epsilon(1-\epsilon)\left\{\frac{1}{L} \sum_{i=1}^{L} S\left(x_{t}^{i}\right) S\left(x_{t}^{i+1}\right)\right\} \tag{23}
\end{equation*}
$$

because of the cyclicity of the lattice. If the lattice is large so $1 \ll L$, then the bracketed term in (23) should approximate $<x^{2}>$. Therefore

$$
\begin{equation*}
C_{T \eta}(t) \simeq<x^{2}>\epsilon(1-\epsilon) \tag{24}
\end{equation*}
$$

Numerical computations of $C_{T \eta}(t)$ indicate that (24) accurately predicts its value.

