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1. THE ORIGIN OF THE PROBLEM

On my recent visit to Chicago, John Hunter [Hun95] showed me his results
obtained from a study of the trajectory auto-correlation of the solution of
the stochastic differential delay equation

dx(t)
dt

where the additive “noise” 7 is filtered white noise—i.e., coloured noise-given
by the solution of the equation

dn(t) = —an(t)dt + adw(t) (1.2)

=az(t) + bz(t — 1) + on(t), (1.1)

and w(t) is the white noise term.
Briefly, as I understand the results, at fixed values of a, b, 0 and « he
finds that the limiting autocorrelation, defined as

_ 1 [T
ﬂley—/:ﬁmﬁ, (13)
T 0

as a function of increasing 7 is initially increasing, reaching a maximum
at some value of 7, and then decreasing thereafter to finally approach an
apparently constant and positive value at large values of 7.

This I find quite interesting, since [MN95] found that the ensemble sec-
ond moment of precisely the same system had a steady state value given by
[cf. their equation (4.22)]
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that is manifestly independent of the delay in the system. My “hand wav-

ing” explanation of the differences in the results between the two approaches
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is that the delay acts like a phase shift in a linear filter, and that in exam-
ining trajectories these “phase shifts” are preserved while in the ensemble
approach the phase shift information is wiped out. BUT IS THIS REALLY
TRUE?

However, if this is true then the important implication is that the
trajectory and ensemble statistical quantities are not necessarily
the same. Now for systems working in finite dimensional phase spaces er-
godicity is a necessary and sufficient condition for the equality of trajectory
and ensemble averages, but this necessary and sufficient condition may well
fail in the current circumstance since differential delay equations (even sto-
chastic ones) are definitely not operating in finite dimensional phase space.

2. AN APPROXIMATION TO LOOK AT THE ENSEMBLE APPROACH WITH
ADDITIVE WHITE NOISE

Given the interesting differences between what [Hun95] and [MN95] found
for the trajectory and ensemble second moments with additive colored noise,
I thought that it might be interesting to go back to an examination of the
additive white noise case and utilize an approximation to see what kind
of dependences on 7, if any, might surface. The rather surprising, and
disturbing, result is that the result one obtains depends on the order in
which the computations are carried out. These are detailed below in the
following two subsections. Since the two computations are apparently the
same but involve doing procedures in a different order, I have tried to be as
precise as possible. In both cases, I am considering the stochastic differential
delay equation

dz(t) = [az(t) + bx(t — 7)]dt + odw(t) (2.1)

so it is clear that this is a case in which we are looking at additive white
noise.

2.1. Ensemble Approximation Approach 1.
1. Our first step is to approximate the delayed term in (2.1) through the
expansion

ot — 1) = o(t) + [(t — 1) — a(t) = x(t) — Ti. (2.2)

Substituting this approximation (2.2) into equation (2.1) and collecting
terms, we end up with the approximate stochastic ordinary differential
equation

dz(t) = —Bz(t)dt + odw(t), (2.3)
wherein the constants B and ¢ are related to the original parameters
of the problem by

a+b o

d &= .
1+or M T 1T br

B= (2.4)
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2. Having obtained the ordinary stochastic differential equation (2.3) we
next write down the Ito formula for z? using standard techniques
[Gar94]| [see, in particular, his (4.3.14)]:

dz?(t) = —2Ba2?(t)dt + 52dt + 25x(t)dw(t). (2.5)

3. We next integrate equation (2.5) from 0 to ¢ to obtain
t t
() — 2%(0) = —2B/ 2% (s)ds + ot + 20/ z(s)dw(s). (2.6)
0 0

4. The next step in our procedure is to take the expectation of equation
(2.6) to obtain

z2(t) — Ex? = — tx2ss 52 o tacs w(s). .
Ea?(t) — FBa?(0) QB/OE (s)ds + t+2E/0 (s)dw(s). (2.7)

Realizing, however, that the expectation in the last integral of equa-
tion (2.7) is identically zero [LM94], equation (11.4.2), this equation
becomes

Ez*(t) — Ex*(0) = —2B /t Ex*(s)ds + o°t. (2.8)
0

5. Next, we take the time derivative of (2.8 ) to obtain an ordinary dif-
ferential equation for the ensemble second moment Fz?:

dEz?(t)
dt
6. This equation (2.9) is easily solved, but the important result for us is
that it predicts that there should be a steady state second moment
given by

— —2BEZ*(t) + 5°. (2.9)

(E22(t))* = o L . (1—br). (2.10)
2B 2(a+0b) (1 +b7) 2(a+0b)

2.2. Ensemble Approximation Approach 2.

1. Our first step in this approach is to write down the Ito formula for z2(t)
when the dynamics are described by equation (2.1) using standard
techniques [Gar94]:

dz?(t) = 2x(t)[az(t) + b (t — 7)]dt + o?dt + 20x(t)dw(t). (2.11)

2. We next integrate equation (2.11) from 0 to ¢ to obtain

2(t) — 2%(0) = 2a t$2s s t:vsws—T s+ o2 o tws w(s).
x“(t) (0) 2/0 ()d+2b/0()( )ds + t+2/()d()

0
(2.12)

3. The next step in our procedure is to take the expectation of equation
(2.12) to obtain

t t t
1'2 — 1'2 = ZQ I2S S T\S)T\S — T S 0'2 g S wi(s).
Ex?(t) — Bz2(0) = 2 /OE (s)d +2b/0E[()( Jlds + t+(§§)/0 (s)dw(s)
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Realizing, however, that again the expectation in the last integral of
equation (2.13) is 1dent1cally zero [LM94], this equation becomes

Ex?(t) — / Ex*(s)ds + 26/ Elz(s)z(s — 1)]ds + o°t.
(2.14)

4. Next, we take the time derivative of (2.14 ) to obtain a differential
delay equation for the ensemble second moment Ez?:
dEx?(t)
dt
5. Our next step is to once again approximate the delayed term in (2.15)
through the expansion

ot — 1) = o(t) + [(t — 1) — i(t) = z(t) — T, (2.16)

= 2aEz?(t) + 2bE[z(t)z(t — 7)] + 0. (2.15)

so we have

T dz?(t)
2 dt
Substituting this result back into equation (2.15) and collecting terms,
we end up with the approximating ordinary differential equation

dEz?(t
%() = 2(a + b)Ex2(t) + 02, (2.18)
6. This equation (2.18 ) is also easily solved, but once again the important
result that we want is that it predicts that there should be a steady
state second moment given by
o

(B0 = ~50 75

which is not only absolutely independent of the delay 7, but which
is also identically equal to the result that [MN95] obtained for the
additive white noise case [cf. their equation (3.6)].

c(t)x(t — 1) ~ 22(t) — ()2 (t) = 2%(t) — (2.17)

(1+b7)

2
(2.19)

2.3. What is the Problem? Well, now the problem becomes obvious. In
Approach 1, we conclude that the second moment (ensemble) is dependent
on the delay 7 while Approach 2 (using exactly the same set of steps, but
in different order) yields a result that has no dependence on the delay .

3. MORE CONFUSION ON THE TRAJECTORY SCENE

If the above discrepancies between:

1. the computed second moments from a trajectory point of view (Section
1) and the ensemble point of view [MN95];

2. The Section 2, Approach 1 approximation to the ensemble point of
view and [MN95]; and

3. The two different approximation approaches of Section 2
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were not enough, there seems to be yet another from the trajectory stand-
point.

Namely, I found a paper [KM92] that claims to have done exactly the same
trajectory calculation as done by [Hun95], but for the case of additive white
noise. Though for obvious personal reasons the past few days I haven’t been
able to check in detail, it seems that the essence of what we are interested
in is contained in equation (2.28) of [KM92], though I freely confess that I
may have misread their results.

Nevertheless, it seems that using the same notation as has been used
throughout this note they have

bsinh(q7) — ¢

ifb< —
2¢(a + bcosh(gr)) ifb < —lal
- br —1
2 = if b = 1
T 4b ifb=ua (3.1)
bsin(qr) — q

if [b] < —all
2¢{a + bcos(q7)} if [b] < —allea]

where
q=+/|a?® —b?|. (3.2)

Now this is supposed to be the exact analytic result corresponding to
what was carried out in [Hun95], and when I used the results that John

was using, namely a = —1 and b = —5 and graphed the result of [KM92]

versus the delay 7 I got a curve that was a monotone increasing function
of increasing 7—but not a single humped function of 7 as John had showed
me.
SO—YET ANOTHER MYSTERY THAT I DON'T UNDERSTAND.
HOWEVER, IT IS LATE ON MONDAY EVENING AND I'M GOING
TO SEND THIS OFF TO ALL OF YOU SO THAT YOU HAVE SOME-
THING TO CHEW ON. LETS TRY TO GET THIS CRAZY BUSINESS
RESOLVED!
MCM
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