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8.1 Introduction

Though all blood cells are derived from hematopoietic stem cells, the reg-
ulation of this production system is only partially understood. Negative
feedback control mediated by erythropoietin and thrombopoietin regulates
erythrocyte and platelet production, respectively, and colony stimulating
factor regulates leukocyte levels. The local regulatory mechanisms within
the hematopoietic stem cells are also not well characterized at this point.
Due to their dynamic character, cyclical neutropenia and other periodic
hematological disorders offer a rare opportunity to more fully understand
the nature of these regulatory processes. We review here the salient clinical
and laboratory features of a number of periodic hematological disorders,
and show through a detailed example (cyclical neutropenia) how mathe-
matical modeling can be used to quantify and test hypotheses about the
origin of these interesting and unusual dynamics. The emphasis is on the
development and analysis of a physiologically realistic mathematical model
including estimation of the relevant parameters from biological and clini-
cal data, and numerical exploration of the model behavior and comparison
with clinical data.

Hobart Reimann was an enthusiastic proponent of the concept of periodic
diseases (Reimann 1963). None of these conditions has been as intensively
studied as cyclical neutropenia, in which circulating neutrophil levels spon-
taneously oscillate from normal to virtually zero. This chapter reviews
current knowledge about periodic hematological disorders, the hypothe-
ses that have been put forward for their origin, and the analysis of these
hypotheses through mathematical models. Some illustrative examples of
these disorders are shown in Figure 8.1.
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Figure 8.1. Representative patterns of circulating cell levels in four periodic
hematological disorders considered in this chapter. Part (a) illustrates cyclical
neutropenia (CN) (Guerry et al. 1973), (b) oscillations in polycythemia vera (PV)
(Morley 1969), (c) oscillations in aplastic anemia (AA) (Morley 1979), and (d) pe-
riodic chronic myelogenous leukemia (CML) (Chikkappa et al. 1976). The density
scales are: Neutrophils, 103 cells/mm3; white blood cells, 104 cells/mm3; platelets,
105 cells/mm3; reticulocytes, 104 cells/mm3; and Hb, g/dl. From Haurie, Mackey,
and Dale (1998).
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Figure 8.2. The architecture and control of hematopoiesis. This figure gives a
schematic representation of the architecture and control of platelet (P), red
blood cell (RBC), monocyte (M), and granulocyte (G) (including neutrophil,
basophil, and eosinophil) production. Various presumptive control loops medi-
ated by thrombopoietin, erythropoietin, and the granulocyte colony stimulating
factor (G-CSF) are indicated, as well as a local regulatory (LR) loop within the
totipotent hematopoietic stem cell population. CFU (BFU) refers to the various
colony (burst) forming units (Meg = megakaryocyte, Mix = mixed, E = ery-
throid, and G/M = granulocyte/monocyte) which are the in vitro analogue of
the in vivo committed stem cells. Adapted from Mackey (1996).

8.2 Regulation of Hematopoiesis

Although the regulation of blood cell production is complicated (Haurie
et al. 1998), and its understanding constantly evolving, the broad outlines
are clear.

Mature blood cells and recognizable precursors in the bone marrow ulti-
mately derive from a small population of morphologically undifferentiated
cells, the hemopoietic stem cells, which have a high proliferative poten-
tial and sustain hematopoiesis throughout life (Figure 8.2). The earliest
hematopoietic stem cells are totipotent and have a high self-renewal ca-
pacity (Abramson et al. 1977; Becker et al. 1963; Lemischka et al. 1986),
qualities that are progressively lost as the stem cells differentiate. Their
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progeny, the progenitor cells, or colony forming units (CFU), are commit-
ted to one cell lineage. They proliferate and mature to form large colonies of
erythrocytes, granulocytes, monocytes, or megakaryocytes. The growth of
colony forming units in vitro depends on lineage-specific growth factors,
such as erythropoietin,thrombopoietin, and the granulocyte, monocyte,
and granulocyte/monocyte colony stimulating factors (G-CSF, M-CSF, and
GM-CSF).

Erythropoietin adjusts erythropoiesis to the demand for O2 in the body.
A fall in tissue pO2 levels leads to an increase in the renal production of
erythropoietin. This in turn leads to an increased cellular production by
the primitive erythroid precursors (CFU-E) and, ultimately, to an increase
in the erythrocyte mass and hence the tissue pO2 levels. This increased
cellular production triggered by erythropoietin is due, at least in part, to
an inhibition of programmed cell death (apoptosis) (Silva et al. 1996) in
the CFU-E and their immediate progeny. Thus, erythropoietin mediates a
negative feedback such that an increase (decrease) in the erythrocyte mass
leads to a decrease (increase) in erythrocyte production. The regulation
of thrombopoiesis involves similar negative feedback loops mediated by
thrombopoietin.

The mechanisms regulating granulopoiesis are not as well understood.
The granulocyte colony stimulating factor, G-CSF, the primary control-
ling agent of granulopoiesis, is known to be essential for the growth of the
granulocytic progenitor cells CFU-G in vitro (Williams et al. 1990). The
colony growth of CFU-G is a sigmoidally increasing function of the gran-
ulocyte colony stimulating factor, G-CSF (Avalos et al. 1994; Hammond
et al. 1992). One of the modes of action of the granulocyte colony stimu-
lating factor, along with several other cytokines, is to decrease apoptosis
(Koury 1992; Park 1996; Williams et al. 1990; Williams and Smith 1993).
Neutrophil maturation time also clearly shortens under the action of the
granulocyte colony stimulating factor (Price et al. 1996). Several studies
have shown an inverse relation between circulating neutrophil density and
serum levels of granulocyte colony stimulating factor (Kearns et al. 1993;
Mempel et al. 1991; Takatani et al. 1996; Watari et al. 1989). Coupled
with the in vivo dependency of granulopoiesis on the granulocyte colony
stimulating factor, this inverse relationship suggests that the neutrophils
regulate their own production through a negative feedback, as is the case
of erythrocytes: An increase (decrease) in the number of circulating neu-
trophils would induce a decrease (increase) in the production of neutrophils
through the adjustment of the granulocyte colony stimulating factor levels.
Although mature neutrophils bear receptors for the granulocyte (G-CSF)
and for the granulocyte/monocyte (GM-CSF) colony stimulating factors,
the role of these receptors in governing neutrophil production is not yet
known.

Little is known about how the self-maintenance of the hematopoietic
stem cell population is achieved, this self-maintenance of hematopoietic
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stem cells depending on the balance between self-renewal and differenti-
ation. Hematopoietic stem cells are usually in a dormant state but are
triggered to proliferate after transplantation into irradiated hosts (Necas
1992), and the specific mechanisms regulating the differentiation commit-
ment of hematopoietic stem cells are poorly understood (Ogawa 1993).
However, mechanisms that could support autoregulatory feedback con-
trol loops controlling hematopoietic stem cell kinetics are starting to be
investigated (Necas et al. 1988).

The selective responses of the erythrocytic, granulocytic, and megakary-
ocytic systems to increased demand of cell production indicate a relative
autonomy of the peripheral control loops regulating these three cell lin-
eages. The mechanisms regulating early hematopoiesis are, on the other
hand, poorly understood, and strong connections may exist at this level
between the regulation of the different blood lineages. In some of the peri-
odic hematological disorders discussed here, such relations become visible
though the occurrence of particular dynamical features common to all the
blood lineages.

8.3 Periodic Hematological Disorders

We first introduce the main mathematical analysis technique we use to
quantitatively assess the periodicity of clinical data.

8.3.1 Uncovering Oscillations

Fourier, or power spectrum, techniques are widely applicable when the
data under study are evenly sampled but can give erroneous results when
the data are unevenly sampled. While studying celestial phenomena, as-
trophysicists also encountered the problem of unevenly sampled data, and
they developed an extension of the Fourier power spectrum, the Lomb peri-
odogram, for evenly or unevenly sampled data (Lomb 1976). The statistical
significance (p value) of any peak can also be determined (Scargle 1982).
Thus the Lomb technique is ideally suited to the detection of periodicity
in hematological time series, since serial blood counts are usually sam-
pled at irregular intervals. Appendix C contains more details on the Lomb
periodogram, P (T ), including its definition in equation (C.5).

8.3.2 Cyclical Neutropenia

General Features

Cyclical neutropenia has been the most extensively studied periodic hema-
tological disorder. Its hallmark is a periodic fall in the circulating neutrophil
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Figure 8.3. Lomb periodogram P (T ) [power P versus period T in days] of the
blood cell counts of five cyclical neutropenia, three congenital neutropenic and
two idiopathic neutropenic patients. The dotted lines in the Lomb periodogram
give the p = 0.10 (lower dash–dot line) and p = 0.05 significance levels (upper
dotted line); * indicates periodicity with significance p ≤ 0.10. ‘Neu’: neutrophils,
‘Lym’: lymphocytes, ‘Mon’: monocytes, ‘Pla’: platelets. From Haurie, Mackey,
and Dale (1999).

numbers from normal values to very low values. In humans it occurs spo-
radically or as an autosomal dominantly inherited disorder, and the period
is typically reported to fall in the range of 19–21 days (Dale and Hammond
1988), though recent data indicate that the period may be as long as 46
days in some patients (Haurie et al. 1999) (see Figure 8.3).

Our understanding of cyclical neutropenia has been greatly aided by
the discovery of an animal model, the grey collie (Figure 8.4). The canine
disorder closely resembles human cyclical neutropenia with the exception of
the period, which ranges from 11 to 15 days (Figure 8.5) (Haurie et al. 1999)
and the maximum neutrophil counts, which are higher than for humans.
For a review see Haurie, Mackey, and Dale (1998).

It is now clear that in both human cyclical neutropenia (Dale et al. 1972;
Dale et al. 1972; Haurie et al. 1999; Hoffman et al. 1974) and the grey col-
lie (Guerry et al. 1973; Haurie et al. 1999) there is not only a periodic
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Figure 8.4. Differential blood counts in nine grey collies and one normal dog.
Units: Cells × 10−5 per mm3 for the platelets and Cells × 10−3 per mm3 for
the other cell types. ‘Neu’: neutrophils, ‘Pla’: platelets, ‘Mon’: monocytes, ‘Lym’:
lymphocytes, ‘Eos’: eosinophils. From Haurie, Person, Mackey, and Dale (1999).
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Figure 8.5. Lomb periodogram, equation (C.5), of the differential blood counts
in nine grey collies. From Haurie, Person, Mackey, and Dale (1999).

fall in the circulating neutrophil levels, but also a corresponding oscilla-
tion of platelets, often the monocytes and eosinophils, and occasionally the
reticulocytes and lymphocytes (see Figures 8.1A, 8.3, and 8.4). The mono-
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cyte, eosinophil, platelet, and reticulocyte oscillations are generally from
normal to high levels, in contrast to the neutrophils, which oscillate from
near normal to extremely low levels. Often (but not always), the period
of the oscillation in these other cell lines is the same as the period in the
neutrophils.

The clinical criteria for a diagnosis of cyclical neutropenia have var-
ied widely. Using periodogram analysis, some patients classified as having
cyclical neutropenia do not, in fact, display any significant periodicity, while
other patients classified with either congenital or idiopathic neutropenia do
display significant cycling (Haurie et al. 1999) as shown in Figure 8.3. More-
over the period of the oscillations detected through periodogram analysis
in neutropenic patients may be as long as 46 days (Haurie et al. 1999).

Origin

Transplantation studies show that the origin of the defect in cyclical neu-
tropenia is resident in one of the stem cell populations of the bone marrow
(Dale and Graw 1974; Jones et al. 1975; Jones et al. 1975; Weiden et al.
1974; Krance et al. 1982; Patt et al. 1973). Studies of bone marrow cellular-
ity throughout a complete cycle in humans with cyclical neutropenia show
that there is an orderly cell density wave that proceeds successively through
the myeloblasts, promyelocytes, and myelocytes and then enters the mat-
uration compartment before being manifested in the circulation (Brandt
et al. 1975; Guerry et al. 1973). Further studies have shown that this wave
extends back into the granulocytic progenitor cells (Jacobsen and Brox-
meyer 1979) and erythrocytic progenitor cells (Dunn et al. 1977; Dunn
et al. 1978; Hammond and Dale 1982; Jones and Jolly 1982), as well as
in the erythrocytic burst forming units and granulocyte/monocyte colony
forming units (Abkowitz et al. 1988; Hammond and Dale 1982), suggesting
that it may originate in the totipotent hematopoietic stem cell populations.

Fluctuations in Putative Regulators

In cyclical neutropenia, the levels of colony stimulating activity (related to
the granulocyte colony stimulating factor) fluctuate inversely with the cir-
culating neutrophil levels and in phase with the peak in monocyte numbers
(Dale et al. 1971; Guerry et al. 1974; Moore et al. 1974). Erythropoi-
etin levels oscillate approximately in phase with the reticulocyte oscillation
(Guerry et al. 1974). It is unclear whether these correlations and inverse
correlations between levels of circulating cells and putative humoral reg-
ulators are related to the cause of cyclical neutropenia, or are simply a
secondary manifestation of some other defect.

Effect of Phlebotomy and Hypertransfusion

The effect of bleeding and/or hypertransfusion on the hematological sta-
tus of grey collies gives interesting results (Adamson et al. 1974). In the
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untreated grey collie erythropoietin levels cycle out of phase with the reticu-
locytes and virtually in phase with the neutrophil counts. After phlebotomy
(bleeding of between 10% and 20% of the blood volume), the cycles in the
neutrophils and reticulocytes continue as before the procedure, and there
is no change in the relative phase between the cycles of the two cell types.
Hypertransfusion (with homologous red cells) completely eliminates the
reticulocyte cycling (as long as the hematocrit remains elevated), but has
no discernible effect on the neutrophil cycle. Most significantly, when the
hematocrit falls back to normal levels and the reticulocyte cycle returns,
the phase relation between the neutrophils and the reticulocytes is the
same as before the hypertransfusion. These observations suggest that the
source of the oscillations in cyclical neutropenia is relatively insensitive to
any feedback regulators involved in peripheral neutrophil and erythrocyte
control, whose levels would be modified with the alteration of the density of
circulating cells; and is consistent with a relatively autonomous oscillation
in the hematopoietic stem cells (cf. Section 8.5).

Effect of Cytokine Therapy

In both the grey collie (Hammond et al. 1990; Lothrop et al. 1988) and
in humans with cyclical neutropenia (Hammond et al. 1989; Migliaccio
et al. 1990; Wright et al. 1994) administration of the granulocyte colony
stimulating factor leads to an increase in the mean value of the peripheral
neutrophil counts by a factor of as much as 10 to 20, associated with a clear
improvement of the clinical symptoms. However, the granulocyte colony
stimulating factor does not obliterate the cycling in humans, but rather
induces an increase in the amplitude of the oscillations and a decrease in
the period of the oscillations in all the cell lineages, from 21 to 14 days
(Hammond et al. 1989; Haurie et al. 1999).

8.3.3 Other Periodic Hematological Disorders Associated with
Bone Marrow Defects

Periodic Chronic Myelogenous Leukemia

Chronic myelogenous leukemia is a hematopoietic stem cell disease charac-
terized by granulocytosis and splenomegaly (Grignani 1985). In 90% of the
cases, the hematopoietic cells contain a translocation between chromosomes
9 and 22, which leads to the shortening of chromosome 22, referred to as
the Philadelphia (Ph) chromosome. In most cases, the disease eventually
develops into acute leukemia.

In 1967, Morley was the first to describe oscillations in the leukocyte
count of patients with chronic myelogenous leukemia (Morley et al. 1967).
Several other cases of cyclic leukocytosis in chronic myelogenous leukemia
have now been reported, and these have been reviewed in Fortin and
Mackey (1999). In the cases of periodic chronic myelogenous leukemia, the
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leukocyte count usually cycles with an amplitude of 30 to 200×109 cells/L
and with periods ranging from approximately 30 to 100 days. The platelets
and sometimes the reticulocytes also oscillate with the same period as the
leukocytes, around normal or elevated numbers (Figure 8.1d). There have
been no specific studies of hematopoiesis in patients with periodic chronic
myelogenous leukemia.

Polycythemia Vera and Aplastic Anemia

Polycythemia vera is characterized by an increased and uncontrolled pro-
liferation of all the hematopoietic progenitors, and it involves, like chronic
myelogenous leukemia, the transformation of a single hematopoietic stem
cell. Two patients with polycythemia vera were reported with cycling of
the reticulocyte, platelet, and neutrophil counts in one case (Figure 8.1b),
and cycling only of the reticulocyte count in the other. The period of the
oscillations was 27 days in the platelets, 15 days in the neutrophils, and 17
days in the reticulocytes (Morley 1969).

Finally, clear oscillations in the platelet, reticulocyte, and neutrophil
counts (Figure 8.1c) were reported in a patient diagnosed with aplastic
anemia (Morley 1979) and in a patient with pancytopenia (Birgens and
Karl 1993), with periods of 40 and 100 days, respectively.

Cytokine-Induced Cycling

The granulocyte colony stimulating factor, G-CSF, is routinely used in
a variety of clinical settings, for example to treat chronic neutropenia or
to accelerate recovery from bone marrow transplant and/or chemotherapy
(Dale et al. 1993). The granulocyte colony stimulating factor may induce
oscillations in the level of circulating neutrophils of neutropenic individuals
(Haurie et al. 1999), and as will be seen later, in Section 8.5, this is of great
significance in understanding cyclical neutropenia.

Induction of Cycling by Chemotherapy or Radiation

Several reports describe induction of a cyclical neutropenia-like condition
by the chemotherapeutic agent cyclophosphamide. In mongrel dogs on cy-
clophosphamide the observed period was on the order of 11 to 17 days,
depending on the dose of cyclophosphamide (Morley et al. 1969; Morley
and Stohlman 1970). In a human undergoing cyclophosphamide treatment,
cycling with a period of 5.7 days was reported (Dale et al. 1973). Also,
Gidáli, István, and Fehér (1985) observed oscillations in the granulocyte
and iculocyte counts with three weeks periodicity in mice after mild irradi-
ation. They observed an overshooting regeneration in the reticulocytes and
the thrombocytes but not in the granulocytes. While the CFU-S returned
to normal levels rapidly, the proliferation rate of CFU-S stayed abnormally
elevated.
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Five patients with chronic myelogenous leukemia receiving hydroxyurea
showed oscillations in their neutrophils, monocytes, platelets, and reticu-
locytes with periods in the range of 30 to 50 days (Kennedy 1970). In one
patient an increase of the hydroxurea dose led to a cessation of the oscilla-
tions. Chikkappa et al. (1980) report a cyclical neutropenia-like condition
(period between 15 and 25 days) in a patient with multiple myeloma after
three years of chemotherapy.

A 89Sr-induced cyclic erythropoiesis has been described in two congen-
itally anemic strains of mice, W/Wv and S1/S1d (Gibson et al. 1984;
Gibson et al. 1985; Gurney et al. 1981). W/Wv mice suffer from a de-
fect in the hematopoietic stem cells, and in S1/S1d mice the hematopoietic
micro-environment is defective. The induction of cycling by 89Sr can be
understood as a response to elevated cell death (Milton and Mackey 1989),
as can the dynamic effects of chemotherapy.

8.3.4 Periodic Hematological Disorders of Peripheral Origin

Periodic autoimmune hemolytic anemia is a rare form of hemolytic anemia
in humans (Ranlov and Videbaek 1963). Periodic autoimmune hemolytic
anemia, with a period of 16 to 17 days in hemoglobin and reticulocyte
counts, has been induced in rabbits by using red blood cell autoantibodies
(Orr et al. 1968).

Cyclic thrombocytopenia, in which platelet counts oscillate from normal
to very low values, has been observed with periods between 20 and 40 days
and reviewed in Swinburne and Mackey (2000). The cases in which there
was an implication of an autoimmune source for the disease had periods
between 13 and 27 days, while patients with the amegakaryocytic version
have longer periods. From the modeling work of Santillan et al. (2000)
it seems clear that the periodicity of the autoimmune version is probably
induced through a supercritical Hopf bifurcation.

8.4 Peripheral Control of Neutrophil Production
and Cyclical Neutropenia

8.4.1 Hypotheses for the Origin of Cyclical Neutropenia

Given the interesting dynamical presentation of cyclical neutropenia in
both its clinical and laboratory manifestations, it is not surprising that
there have been a number of attempts to model this disorder mathemati-
cally. In this section we briefly review these attempts, since they focus the
work of this section and simultaneously motivate the extensions that we
have made.
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The mathematical models that have been put forward for the origin of
cyclical neutropenia fall into two major categories. Reference to Figure 8.2
will help place these in perspective. (See Dunn 1983; Fisher 1993 for other
reviews.)

The first group of models builds upon the existence of oscillations in
many of the peripheral cellular elements (neutrophils, platelets, and ery-
throid precursors, see Figure 8.2) and postulates that the origin of cyclical
neutropenia is in the common hematopoietic stem cell population feeding
progeny into all of these differentiated cell lines. A loss of stability in the
stem cell population is hypothesized to be independent of feedback from
peripheral circulating cell types (see below) and would thus represent a rela-
tively autonomous oscillation driving the three major lines of differentiated
hematopoietic cells.

Mackey (1978) analyzed a model for the dynamics of a stem cell popu-
lation and concluded that one way the dynamic characteristics of cyclical
neutropenia could emerge from such a formulation was via an abnormally
large cell death rate within the proliferating compartment. This hypothe-
sis allowed the quantitative calculation of the period of the oscillation that
would ensue when stability was lost. This hypothesis has been expanded
elsewhere (Mackey 1979; Milton and Mackey 1989) and allows a qualita-
tive understanding of the observed laboratory and clinical effects of the
granulocyte colony stimulating factor and chemotherapy discussed above
(Mackey 1996). In spite of the resonance of this stem cell origin hypothesis
in the clinical and experimental communities (Quesenberry 1983; Ogawa
1993) there has been little extension of this hypothesis in the modeling
literature related to cyclical neutropenia.

The second broad group of these models identifies the origin of cyclical
neutropenia with a loss of stability in the peripheral control loop, operating
as a sensor between the number of mature neutrophils and the control of the
production rate of neutrophil precursors within the bone marrow (Figure
8.2). This control has been uniformly assumed to be of a negative feed-
back type, whereby an increase in the number of mature neutrophils leads
to a decrease in the production rate of immature precursors. The other
facet of this hypothesis is a significant delay due to the maturation times
required between the signal to alter immature precursor production and
the actual alteration of the mature population numbers. Typical examples
of models of this type that have specifically considered cyclical neutrope-
nia are Kazarinoff and van den Driessche (1979); King-Smith and Morley
(1970); MacDonald (1978); Morley, King-Smith, and Stohlman (1969);
Morley and Stohlman (1970); Morley (1979); Reeve (1973); von Schulthess
and Mazer (1982); Shvitra, Laugalys, and Kolesov (1983); Schmitz (1988);
Wichmann, Loeffler, and Schmitz (1988); Schmitz, Loeffler, Jones, Lange,
and Wichmann (1990); Schmitz, Franke, Brusis, and Wichmann (1993);
Schmitz, Franke, Loeffler, Wichmann, and Diehl (1994); Schmitz, Franke,
Wichmann, and Diehl (1995); all of which have postulated an alteration
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in the feedback on immature precursor production from the mature cell
population numbers.

In the next section we show that it is highly unlikely that cyclical
neutropenia is due to a loss of peripheral stability.

8.4.2 Cyclical Neutropenia Is Not Due to Peripheral
Destabilization

Development. In the model development that follows, reference to the
lower part of Figure 8.2, where the control of white blood cell production
is outlined, will be helpful.

We let x(t) be the density of white blood cells in the circulation (units of
cells/µL blood), α be the random disappearance rate of circulating white
blood cells (days−1), and Mo be the production rate (cells/µL-day) of
white blood cell precursors in the bone marrow.

The rate of change of the peripheral (circulating) white blood cell density
is made up of a balance between the loss of white blood cells (−αx) and
their production (Mo(x̃)), or

dx

dt
= −αx+Mo(x̃), (8.1)

wherein x̃(t) is x(t − τ) weighted by a distribution of maturation delays,
x̃(t) is given explicitly by

x̃(t) =

∫ ∞

τm

x(t− u)g(u)du ≡
∫ t−τm

−∞

x(u)g(t− u)du, (8.2)

τm is the minimal maturation delay; and g(τ) is the density of the distri-
bution of maturation delays as specified below in Section 8.4.2. Since g(τ)
is a density, it is normalized by definition:

∫ ∞

0

g(u)du = 1. (8.3)

To completely specify the semidynamical system described by equations
(8.1) and (8.2), we must additionally give an initial function

x(t′) ≡ ϕ(t′) for t′ ∈ (−∞, 0). (8.4)

Distribution of Maturation Times. A wide variety of analytic forms
could be used for the density of the distribution of the maturation times
in the bone marrow. We have chosen to use the density of the gamma
distribution

g(τ) =

{

0, τ ≤ τm,
am+1

Γ(m+1) (τ − τm)me−a(τ−τm), τm < τ,
(8.5)

with a,m ≥ 0, considered before (Blythe et al. 1984; Cooke and Grossman
1982; Gatica and Waltman 1988; Gatica and Waltman 1982) in a different
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context. This choice was predicated on two issues. First, we have found (see
Section 8.4.2) that we can achieve a good fit of the existing data on cellular
maturation times using equation (8.5). Secondly, the density of the gamma
distribution has been used a number of times in the past (Kendall 1948;
Powell 1955; Powell 1958) to fit distributions of cell cycle times. When the
parameter m in equation (8.5) is a nonnegative integer, then the corre-
sponding equations (8.1) and (8.2) reduce to a system of linear ordinary
differential equations coupled to a single nonlinear delayed equation with
a discrete (not continuously distributed) delay (Fargue 1973; Fargue 1974;
MacDonald 1989). This leads to analytic simplifications, though we do not
use them here, since we have typically found noninteger values for the pa-
rameter m. We did, however, use this reduction to test the accuracy of our
numerical simulations of the full model.

The parameters m, a, and τm in the density of the gamma distribu-
tion can be related to certain easily determined statistical quantities. The
average of the unshifted density is given by

τ2 =

∫ ∞

τm

τg(τ)dτ =
m+ 1

a
, (8.6)

and thus the average maturation delay as calculated from equation (8.5) is
given by

〈τ〉 = τm + τ2 = τm +
m+ 1

a
. (8.7)

The variance (denoted by σ2) is given by

σ2 =
m+ 1

a2
. (8.8)

Given the expressions (8.6), (8.7), and (8.8) in terms of the gamma distri-
bution parameters m and a, we may easily solve for these parameters in
terms of τ2 and σ2 to give

a =
τ2
σ2

(8.9)

and

m+ 1 =
τ2
2

σ2
. (8.10)

Parameter Estimation. Several studies have shown that labeled neu-
trophils disappear from the circulation with a half-life t1/2 of about 7.6
hours in humans (Dancey et al. 1976) and dogs (Deubelbeiss et al. 1975)
with a range of 7 to 10 hours. Furthermore, this disappearance rate is un-
affected in human (Guerry et al. 1973) and canine cyclical neutropenia
(Dale et al. 1972) and is not altered by the administration of exogenous
granulocyte colony stimulating factor (Price et al. 1996). Since the decay
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coefficient α of equation (8.1) is related to t1/2 through the relation

α =
ln 2

t1/2
, (8.11)

we have taken values of α ∈ [1.7, 2.4] (days−1) in all of the numerical work
reported here.

Distributions of maturation times were determined from published data
on the emergence of the number of labeled circulating neutrophils following
pulse labeling by tritiated thymidine. The published graphed data were
scanned and the postscript file viewed with Ghostview. Ghostview gives
coordinates for the position of the points, which, using position of the axes,
can be easily transformed to give the actual data points. The data were
adjusted for the random death occurring at a rate α by using the method
of Dancey, Deubelbeiss, Harker, and Finch (1976).

Assume that the neutrophils spend a period of time u in the bone mar-
row, and y in the blood. Then the fraction, N(t), of labeled cells in the
blood at time t is the probability that the time in the marrow is less than
t and that the total time in the marrow and blood before death is greater
than t. Let g(u) be the density of the distribution of the maturation times
in the marrow, and remember that g(u) is the quantity that we wish to
determine. Further note that because of the experimentally observed ran-
dom destruction of neutrophils in the circulation, if the rate of random
destruction is α, then the density of the distribution of destruction rates is
given by αe−αy. With these observations, for N(t) we finally have

N(t) =

∫ t

0

∫ ∞

t−u

αe−αyg(u)dy du =

∫ t

0

e−α(t−u)g(u)du. (8.12)

Thus,

eαtN(t) =

∫ t

0

eαug(u)du, (8.13)

and differentiating both sides with respect to t gives

αeαtN(t) + eαtN ′(t) = eαtg(t). (8.14)

The final result for the density of marrow transit times is

g(t) = αN(t) +N ′(t). (8.15)

Since we had discrete data points from the labeling data, we used the mid-
point of two data points and the slope of the joining line in equation (8.15),
and determined g(t) at the midpoint. The mean and variance were calcu-
lated from the new density, and the corresponding m and a determined
from equations (8.9) and (8.10) were used as the initial values in a non-
linear least squares fit to the data. The results of these determinations for
a number of published data sets are summarized in Table 8.1. Figure 8.6
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Condition 〈τ〉 σ2 τm Ref a m

Normal Human 9.70 16.20 3.8 ∗ 0.36 1.15
CN Human 7.57 12.01 1.2 ♣ 0.53 2.38
30 µg G-CSF Human 6.27 4.60 2.4 ♦ 0.84 2.26
300 µg GCSF Human 4.86 2.30 2.0 ♦ 1.24 2.56
Normal Dog 3.68 .198 3.0 ♥ 3.43 1.34
Gray Collie Apogee 3.21 0.042 2.6 ♠ 14.52 7.86
Gray Collie Nadir 3.42 0.157 2.6 ♠ 5.22 3.28

Table 8.1. Distribution of maturation time parameters deduced from published
data. The units of 〈τ 〉 and τm are in days, σ2 is in days 2, and a is in days−1. For
the references, ∗ = Perry et al. (1966), ♣ =Guerry et al. (1973), ♦ = Price et al.
(1996), ♥ = Deubelbeiss et al. (1975), and ♠ = Patt et al. (1973). See the text
for details.

shows the raw data as well as the fits to the data using the density of the
gamma distribution.

The Steady State and Stability

The Steady State. The equilibrium solution for the functional differential
equation (8.1)–(8.2) occurs when

dx

dt
= 0 = −αx+Mo(x̃), (8.16)

so the steady state x∗ is defined implicitly by the solution of the equation

αx∗ =Mo(x
∗). (8.17)

Given the presumptive monotone decreasing nature of the negative feed-
back production rate inferred from the biology, there can be but a unique
value for the steady-state white blood cell density x∗. It is important to
note that x∗ is independent of the distribution of the maturation times.
However, the stability of x∗ is dependent on the density g(τ), as we now
show.
Stability. One of the primary considerations of this section has to do
with the stability of the unique steady state, defined implicitly by equation
(8.17), and how that stability may be lost. We examine the stability of x∗

in the face of very small deviations away from the steady state. Though
the mathematical development may seem much different in this model, it
is fundamentally the same as the procedure for examining the stability of
steady states in ordinary differential equations.

Throughout this analysis, an important parameter that will appear is the
slope of the production functionMo evaluated at the steady state, denoted
byM′

o∗. Because of our arguments concerning the negative feedback nature
of the peripheral control mechanisms acting on neutrophil production, we
know that this slope must be nonpositive (i.e., negative or zero).
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Figure 8.6. Densities of distributions of maturation times and the least square
fits to the data achieved using the density of the gamma distribution. The three
left-hand panels are for humans and show, from top to bottom, a normal human,
data from a cyclical neutropenia patient, and a normal human receiving 300 µg
granulocyte colony stimulating factor. The three right-hand panels are for dogs
and correspond to (top to bottom) a normal dog, a grey collie at the apogee of the
cycle, and a grey collie at the nadir of the cycle. See Table 8.1 for the parameters
used to fit the data and the references for the source of the data. From Hearn,
Haurie, and Mackey (1998).

To examine the local stability, we write out equation (8.1) for small
deviations of x from x∗. In the first (linear) approximation this gives

dx

dt
≈ −αx+Mo∗ + (x̃ − x∗)M′

o∗, (8.18)

wherein

Mo∗ ≡Mo(x̃ = x∗) (8.19)

and

M′
o∗ ≡

dMo(x̃)

dx̃
|x̃=x∗ . (8.20)
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Utilizing equation (8.17) and defining the deviation from equilibrium as
z(t) = x(t) − x∗, we can rewrite equation (8.18) in the form

dz

dt
= −αz +M′

o∗

∫ t−τm

−∞

z(u)g(t− u)du. (8.21)

As before, we assume that the deviation z from the steady state has the
form z(t) ./ exp(λt), substitute this into equation (8.21), carry out the
indicated integrations, and finally obtain

λ+ α =M′
o∗

(

a

λ+ a

)m+1

e−λτm . (8.22)

Equation (8.22) for the eigenvalues λ may have a variety of solutions. If
an eigenvalue λ is real, then a simple graphical argument shows that the
eigenvalue will be negative and contained in the open interval (−α,−a).

Alternatively, the eigenvalue solutions of equation (8.22) may be complex
conjugate numbers, in which case, as seen before, the most interesting thing
to know is when the real part of the eigenvalue is identically zero. This will
define the boundary between a locally stable steady state when Re λ < 0
and a locally unstable steady state with Re λ > 0.

To investigate this possibility, we take λ = µ + iω and substitute this
into equation (8.22) to give, with µ = 0,

iω + α =M′
o∗

(

a

iω + a

)m+1

e−iωτm , (8.23)

or rewriting,
[

(iω + α)
(

1 + i
ω

a

)m+1
]

=M′
o∗e

−iωτm . (8.24)

This equation can be manipulated to give a set of parametric equations
in α andM′

o∗. We start by setting

tan θ =
ω

a
. (8.25)

Using de Moivre’s formula in equation (8.24) gives

(α+ iω)(cos[(m+ 1)θ]) + i sin[(m+ 1)θ]) =

M′
o∗ cosm+1 θ(cosωτm − i sinωτm). (8.26)

Equating the real and imaginary parts of equation (8.26) gives the coupled
equations

α−M′
o∗R cosωτm = ω tan[(m+ 1)θ] (8.27)

and

α tan[(m+ 1)θ] +M′
o∗R sinωτm = −ω, (8.28)
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where

R =
cosm+1 θ

cos[(m+ 1)θ]
. (8.29)

Equations (8.27) and (8.28) are easily solved for α andM′
o∗ as parametric

functions of ω to give

α(ω) = − ω

tan[ωτm + (m+ 1) tan−1(ω/a)]
(8.30)

and

M′
o∗(ω) = − ω

cosm+1[tan−1(ω/a)] sin[ωτm + (m+ 1) tan−1(ω/a)]
. (8.31)

To show that the stability boundary defined implicitly by equa-
tions (8.30) and (8.31) delimits a transition from a locally stable steady
state to a locally unstable steady state as M′

o∗ decreases, we must show
that the real part of the eigenvalue is negative on one side of the boundary
and positive on the other. Thus, the real part of dλ/dM′

o∗, or equivalently
of (dλ/dM′

o∗)
−1, must be negative when λ = iω.

Implicit differentiation of equation (8.22) yields
(

dλ

dM′
o∗

)−1

=

(

λ+ a

a

)m+1

eλτm +M′
o∗

m+ 1

λ+ a
+M′

o∗τm, (8.32)

and the use of equation (8.22) in (8.32) gives
(

dλ

dM′
o∗

)−1

=M′
o∗

(

1

λ+ α
+
m+ 1

λ+ a
+ τm

)

. (8.33)

Evaluating (8.33) at λ = iω and eliminating complex numbers in the
denominators, we have

(

dλ

dM′
o∗

)−1

=M′
o∗

(

α− iω
α2 + ω2

+
(m+ 1)(a− iω)

a2 + ω2
+ τm

)

, (8.34)

with

Re

((

dλ

dM′
o∗

)−1)

=M′
o∗

(

α

α2 + ω2
+

(m+ 1)a

a2 + ω2
+ τm

)

. (8.35)

If M′
o∗ is negative (as in our case), then the right-hand side of equation

(8.35) is negative, indicating that for increases in M′
o∗ to more positive

values at the boundary where µ ≡ 0, the real part of the eigenvalue λ is
crossing from positive to negative.

Thus, we conclude that the locus of points defined by equations (8.30)
and (8.31) defines the location in (α,M′

o∗) parameter space where a
supercritical Hopf bifurcation takes place and a periodic solution of period

THopf =
2π

ω
(8.36)

occurs.
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Implications of the Local Stability Analysis

In Figure 8.7 we have parametrically plottedM′
o∗(ω) versus α(ω) (ω is the

parameter) [equations (8.30) and (8.31)] to give the stability boundaries
for a normal human and a human with cyclical neutropenia using the data
of Table 8.1. (Ignore the lines corresponding to G-CSF for the time being).
The two vertical dashed lines correspond to the normal range of α values as
discussed in Section 8.4.2; the lower dashed line is the stability boundary for
the cyclical neutropenia case, and the solid line is for the normal human.
Regions above a given stability boundary in (α,M′

o∗) parameter space
correspond to a locally stable steady-state neutrophil level, while regions
below are unstable. For values of (α,M′

o∗) exactly on a given line there is
a bifurcation to a periodic solution with Hopf period THopf as discussed
above.
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Figure 8.7. A parametric plot of the regions of linear stability and instability based
on data for normal humans (solid line) (Perry et al. 1966), humans with cyclical
neutropenia (CN) (lower dashed line) (Guerry et al. 1973), and normal humans
administered granulocyte colony stimulating factor (G-CSF) (upper dashed line
is for 30 µg, and the dash–dot line is for 300 µg) (Price et al. 1996). In this and
all subsequent stability diagrams, points (α,M′

o∗) above a given stability line
correspond to linear stability of the steady state, and those below correspond
to an unstable steady state. See the text for details. From Hearn, Haurie, and
Mackey (1998).

Implications for the Origin of Cyclical Neutropenia. The first point
to be noted is the following: If the model for granulopoiesis is stable for a
normal human, then a simple alteration of the characteristics of the matu-
ration time distribution to correspond to the value for cyclical neutropenia
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(Table 8.1) is incapable of singlehandedly inducing an instability. Further-
more, note that the unique steady state of the model as given implicitly
by equation (8.17) is independent of any alterations in the distribution
of maturation times. However, the dynamically varying neutrophil levels
in cyclical neutropenia are often depressed relative to the normal state
(Section 8.3.2), thus implying that a simple alteration of the distribution
of maturation times could not be the sole source of cyclical neutropenia
dynamics alone.

Examination of Figure 8.7 shows that if the dynamic behavior of cyclical
neutropenia is to be a result of an instability in this model, then in addition
to the known alterations in the distribution of maturation times, there
must be a concomitant decrease inM′

o∗ to more negative values such that
(α,M′

o∗) falls in the zone of parameter space where x∗ is unstable. Since one
of the hallmarks of cyclical neutropenia is an oscillation about a reduced
average neutrophil count, this decrease in M′

o∗ must also be accompanied
by a decrease in Mo∗ to account for the decrease in x∗. (Remember that
α is not altered in cyclical neutropenia, so an increase in α cannot be the
source of these depressed levels.)

Suppose that in humans such a decrease in M′
o∗ has taken place, i.e.,

that M′
o∗ has become sufficiently negative for an unstable situation to

occur. We can calculate exactly the period of the solution when the Hopf
bifurcation to unstable behavior occurs. In the case of the g parameters
for the normal human, we have THopf ∈ [18.2, 17.8] days for α ∈ [1.7, 2.4].
The corresponding range for the cyclical neutropenia boundary is THopf ∈
[14.2, 13.8] days. These values are lower than the smallest observed periods
in clinical cyclical neutropenia as reviewed in Section 8.3.2 and as found in
the analysis of Haurie, Mackey, and Dale (1999).

Turning to the case of canine cyclical neutropenia, we have plotted sta-
bility boundaries for a normal dog and grey collies at the peak and nadir
of their cycle in Figure 8.8. The stability boundaries for all three situations
(using the appropriate parameters from Table 8.1) fall virtually on top of
one another. As with human cyclical neutropenia, the local stability analy-
sis suggests that in contrast with the hypothesis of Schmitz, Loeffler, Jones,
Lange, and Wichmann (1990), the origin of canine cyclical neutropenia is
not a consequence of alterations in the distribution of marrow maturation
times for neutrophil precursors alone. Rather, as in the human case, a shift
in M′

o∗ to more negative values would be required to effect the requisite
instability.

Assume for the grey collie that such a shift inM′
o∗ to values sufficiently

negative to destabilize the system has taken place. What, then, are the
predicted Hopf periods at the onset of the ensuing oscillation? Based on
the data for normal dogs presented in Table 8.1, for α ∈ [1.7, 2.4] the local
stability analysis of Section 8.4.2 predicts that THopf ∈ [8.5, 8.2] days. For
the grey collie maturation distribution data taken at the nadir of the cycle
this range is reduced to THopf ∈ [8.0, 7.6] days, while the collie data from
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Figure 8.8. A parametric plot of the regions of linear stability and instability
based on data for normal dogs taken from Deubelbeiss, Dancey, Harker, and Finch
(1975) and from grey collies at the apogee and nadir of their oscillation as taken
from Patt, Lund, and Maloney (1973). Note that the three stability boundaries
are virtually indistinguishable from one another. CN = cyclical neutropenia. From
Hearn, Haurie, and Mackey (1998).

the apogee predicts THopf ∈ [7.4, 7.1] days. All of these estimates are below
the reported ranges for the period of canine cyclical neutropenia discussed
in Section 8.3.2 and in Haurie, Person, Mackey, and Dale (1999).

Thus, for both human and grey collie cyclical neutropenia we conclude
that there is no evidence from the linear stability analysis that the dynamics
of cyclical neutropenia are due to an instability in the peripheral control
of granulopoiesis caused by a change in the distribution of cell maturation
times.
Assessing the Effects of Granulocyte Colony Stimulating Factor.
The second point that we can address with the aid of the local stability
analysis of Section 8.4.2 is the effect of granulocyte colony stimulating fac-
tor on the stability of the system in normal humans. In Figure 8.7 we have
plotted the stability boundaries for the data of Table 8.1 corresponding to
the alterations in normal humans induced by 30 µg and 300 µg granulocyte
colony stimulating factor reported by Price, Chatta, and Dale (1996). (Note
that if the individuals in this study weighed 70 kg, then the dosage was ei-
ther 0.43 µg/kg–day or 4.3 µg/kg–day, respectively.) It is clear from Figure
8.7 that the region of parameter space in which the normal human control
system is stable is actually decreased by the administration of granulocyte
colony stimulating factor, since the stability boundaries for both dosages of
granulocyte colony stimulating factor lie above the stability boundary for
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a normal human. Unfortunately, we have been unable to locate any data
for the effects of granulocyte colony stimulating factor on the density g of
the distribution of maturation times in dogs, but based on the comparable
data for humans we would not expect large quantitative differences.

If data were available for the effects of the granulocyte colony stimulat-
ing factor on the density of the distribution of maturation times in humans
with cyclical neutropenia, we could assess the potential role of the granulo-
cyte colony stimulating factor in altering the period as noted in the clinical
literature. However, we must note that if the changes induced by the gran-
ulocyte colony stimulating factor in cyclical neutropenia are comparatively
similar to those in normals, then it is unlikely that the granulocyte colony
stimulating factor could ever act to stabilize a peripheral instability in
neutrophil numbers, since its role seems to be a destabilizing one.

Discussion and Conclusions

Our original motivation in carrying out the analysis presented here was
to examine the hypothesis that cyclical neutropenia was due to a loss of
stability in the peripheral control of neutrophil production. Based on the
considerations of Section 8.4.2 that are independent of the precise nature of
the control function assumed, we conclude that any alterations of parame-
ters in this peripheral control system consistent with the extant laboratory
and clinical data on cyclical neutropenia are unable to reproduce either
the characteristics of clinical cyclical neutropenia or its laboratory coun-
terpart in the grey collie. Further, we conclude that the dynamic effects
of granulocyte colony stimulating factor treatment of cyclical neutropenia
are probably not primarily due to the alterations of the peripheral control
dynamics.

Rather, we conclude that the dynamics of cyclical neutropenia are due
to a destabilization of the hematopoietic stem cell population as originally
proposed by Mackey (1978) and Mackey (1979).

8.5 Stem Cell Dynamics and Cyclical Neutropenia

In trying to understand and model the properties of cyclical neutropenia as
discussed in Section 8.3.2, one of the most crucial clues is the observation
of the effect of continuous cyclophosphamide and busulfan administration
in normal dogs (Morley and Stohlman 1970; Morley et al. 1970). Though in
most animals these drugs led to a pancytopenia whose severity was propor-
tional to the drug dose, in some dogs low doses led to a mild pancytopenia,
intermediate doses gave a cyclical neutropenia-like behavior with a period
between 11 and 17 days, and high drug levels led either to death or gross
pancytopenia. When the cyclical neutropenia-like behavior occurred it was
at circulating white blood cell levels of one-half to one-third normal. To this
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we must add the observation that patients undergoing hydroxurea therapy
sometimes develop cyclical neutropenia-like symptoms (Kennedy 1970), as
do patients receiving cyclophosphamide (Dale et al. 1973).

Both cyclophosphamide and busulfan selectively kill cells within the
DNA synthetic phase of the cell cycle, and the fact that both drugs are ca-
pable of inducing cyclical neutropenia-like behavior strongly suggest that
the origin of cyclical neutropenia as a disease is due to an abnormally
large death rate (apoptosis) in the proliferative phase of the cell cycle of
a population of cells – the hematopoietic stem cells – more primitive than
the granulocyte/monocyte colony forming units, CFU-GM, and the ery-
throcytic burst forming units, BFU-E. Here we interpret the effects of an
increase in the rate of irreversible apoptotic loss from the proliferating phase
of the hematopoietic stem cells (γ in Figure 8.9) on blood cell production
(Mackey 1978).

γ P

Proliferating Phase Cells

Cell reentry into proliferation (SCF etc. control) = β N

Resting Phase

Cells

G0G1

Cellular Death (Apoptosis) Cellular Differentiation

δ N

S G2 M

Figure 8.9. A schematic representation of the control of hematopoietic stem cell
regeneration. Proliferating phase cells (P ) include those cells in G1, S (DNA
synthesis), G2, and M (mitosis), while the resting phase (N) cells are in the
G0 phase. Local regulatory influences are exerted via a cell-number-dependent
variation in the fraction of circulating cells, δ is the normal rate of differentiation
into all of the committed stem cell populations, while γ represents a loss of
proliferating phase cells due to apoptosis. See Mackey (1978), Mackey (1979) for
further details.

The dynamics of this hematopoietic stem cell population are governed
(Mackey 1978; Mackey 1979) by the pair of coupled differential delay
equations

dP

dt
= −γP + β(N)N − e−γτβ(Nτ )Nτ (8.37)
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and

dN

dt
= −[β(N) + δ]N + 2e−γτβ(Nτ )Nτ , (8.38)

where τ is the time required for a cell to traverse the proliferative phase,
and the resting to proliferative phase feedback rate β is taken to be

β(N) =
β0θ

n

θn +Nn
. (8.39)

An examination of equation (8.38) shows that this equation could be
interpreted as describing the control of a population with a delayed mixed
feedback-type production term [2e−γτβ(Nτ )Nτ ] and a destruction rate
[β(N) + δ] that is a decreasing function of N .

This model has two possible steady states. There is a steady state cor-
responding to no cells, (P ∗

1 , N
∗
1 ) = (0, 0), which is stable if it is the only

steady state and which becomes unstable whenever the second positive
steady state (P ∗

2 , N
∗
2 ) exists.

The stability of the nonzero steady state depends on the value of γ. When
γ = 0, this steady state cannot be destabilized to produce dynamics char-
acteristic of cyclical neutropenia. On the other hand, for γ > 0, increases
in γ lead to a decrease in the hematopoietic stem cell numbers and a con-
sequent decrease in the cellular efflux (given by δN) into the differentiated
cell lines. This diminished efflux becomes unstable when a critical value of
γ is reached, γ = γcrit,1, at which a supercritical Hopf bifurcation occurs.
For all values of γ satisfying γcrit,1 < γ < γcrit,2, there is a periodic solu-

tion of equation (8.38) whose period is in good agreement with that seen
in cyclical neutropenia. At γ = γcrit,2, a reverse bifurcation occurs and
the greatly diminished hematopoietic stem cell numbers as well as cellular
efflux again becomes stable. All of these properties are illustrated in Figure
8.10.

Separate estimations of the parameter sets for human and grey collie
hematopoietic stem cell populations give predictions of the period of the
oscillation at the Hopf bifurcation that are consistent with those observed
clinically and in the laboratory.

Numerical simulations, shown in Figures 8.11 and 8.12, of equa-
tions (8.37) and (8.38) bear out the results of the above local stability
analyses. As expected, an increase in γ is accompanied by a decrease in
the average number of circulating cells. For certain values of γ an oscil-
lation appears. Over the range of γ in which an oscillation occurs, the
period increases as γ increases. However, the amplitude of the oscillation
first increases and then decreases. (Similar observations hold for the model
of autoimmune hemolytic anemia as the control parameter γ is increased.)
When all the parameters in the model are set to the values estimated from
laboratory and clinical data, no other types of bifurcations are found. Al-
though these simulations also indicate the existence of multiple bifurcations
and chaotic behaviors, these more complex dynamics are observed only for
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Figure 8.10. Schematic representation of the combined analytic and numerically
determined stability properties of the hematopoietic stem cell model. See the text
for details. From Mackey (1996).

nonphysiological choices of the parameters. Thus the observed irregularities
in the fluctuations in blood cell numbers in cyclical neutropenia cannot be
related to chaotic solutions of equation (8.38). These results suggest that
cyclical neutropenia is likely related to defects, possibly genetic, within
the hematopoietic stem cell population that lead to an abnormal (γ > 0)
apoptotic loss of cells from the proliferative phase of the cell cycle.

8.5.1 Understanding Effects of Granulocyte Colony
Stimulating Factor in Cyclical Neutropenia

Recent clinical and experimental work has focused on the modification of
the symptoms of hematological disorders, including periodic hematopoiesis,
by the use of various synthetically produced cytokines (Sachs 1993; Sachs
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Figure 8.11. Variation of the total cellular differentiation efflux (δN) as a function
of the apoptotic death rate γ from the proliferating cell population in humans
(n = 3). Parameters in the model were estimated assuming a proliferating fraction
of 0.1, and an amplification of 16 in the recognizable erythroid, myeloid, and
megakaryocytic precursors populations. See Mackey (1978), Mackey (1979) for
details. The hematopoietic stem cell parameters corresponding to each curve
from the top down are (δ, β0, τ, θ × 10−8) = (0.09, 1.58, 1.23, 2.52), (0.08, 1.62,
1.39, 2.40), (0.07, 1.66, 1.59, 2.27), (0.06, 1.71, 1.85, 2.13), (0.05, 1.77, 2.22, 1.98),
(0.04, 1.84, 2.78, 1.81), and (0.03, 1.91, 3.70, 1.62) in units (days−1, days−1, days,
cells/kg). The dashed solid lines indicate the boundaries along which stability is
lost in the linearized analysis, and the numbers indicate the predicted (Hopf)
period (in days) of the oscillation at the Hopf bifurcation. From Mackey (1978).

and Lotem 1994; Cebon and Layton 1984), e.g., the recombinant colony
stimulating factors rG-CSF and rGM-CSF, whose receptor biology is re-
viewed in (Rapoport et al. 1992), and Interlukin-3. These cytokines are now
known to interfere with the process of apoptosis or to lead to a decrease in
γ within the context of the hematopoietic stem cell model of Section 8.5.

Human colony stimulating factors increase both the numbers and pro-
liferation rate of white blood cell precursors in a variety of situations
(Bronchud et al. 1987; Lord et al. 1989; Lord et al. 1991). Furthermore,
colony stimulating factor in mice is able to stimulate replication in both
stem cells and early erythroid cells (Metcalf et al. 1980).

It is known that in aplastic anemia and cyclical neutropenia there is an
inverse relationship between plasma levels of granulocyte colony stimulating
factor and white blood cell numbers (Watari et al. 1989). Further, it has
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Figure 8.12. As in Figure 8.11, but all calculations done with parameters
appropriate for dogs. Reproduced from Mackey (1978).

been shown (Layton et al. 1989) that the t1/2 of the granulocyte colony
stimulating factor in the circulation is short, on the order of 1.3 to 4.2 hours,
so the dynamics of the destruction of the granulocyte colony stimulating
factor are unlikely to have a major role in the genesis of the dynamics of
cyclical neutropenia.

In the grey collie it has been shown that at relatively low doses of the
granulocyte colony stimulating factor the mean white blood cell count is
elevated (from 10 to 20 times), as is the amplitude of the oscillations (Ham-
mond et al. 1990), while higher dosages (Lothrop et al. 1988; Hammond
et al. 1990) lead to even higher mean white blood cell numbers but eliminate
the cycling. Another interesting observation is that in the collie, granulo-
cyte colony stimulating factor administration results in a decrease in the
period of the peripheral oscillation. The elevation of the mean white blood
cell levels and the amplitude of the oscillations, as well as an enhancement
of the oscillations of platelets and reticulocytes, at low levels of the granulo-
cyte colony stimulating factor has also been reported in humans (Hammond
et al. 1990; Migliaccio et al. 1990; Wright et al. 1994), and it has been also
noted that the fall in period observed in the collie after granulocyte colony
stimulating factor administration occurs in humans with a fall in period
from 21 to about 14 days. Finally, it should be mentioned that treatment
with granulocyte colony stimulating factor in patients with agranulocytosis
has also lead to a significant increase in the mean white blood cell counts
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and, in some patients, to the induction of white blood cell oscillations with
periods ranging from 7 to 16 days.

Our major clue to the nature of the effects of the granulocyte colony
stimulating factor comes from its prevention of apoptosis, and the work
of Avalos et al. (1994), who have shown in dogs that there is no demon-
strable alteration in the number, binding affinity, or size of the granulocyte
colony stimulating factor receptor on cyclical neutropenia dogs as compared
to normal dogs. They thus conclude that cyclical neutropenia “is caused
by a defect in the granulocyte colony stimulating factor signal transduc-
tion pathway at a point distal to the granulocyte colony stimulating factor
binding ... .” The data of Avalos et al. (1994) can be used to estimate that

γCN
max ≈ 7× γnorm

max . (8.40)

The results of Hammond, Chatta, Andrews, and Dale (1992) in humans
are consistent with these results in dogs.

Less is known about the effect of the granulocyte/monocyte colony stim-
uling factor, GM-CSF, but it is known that administration of GM-CSF in
humans gives an elevation of the mean white blood cell level but only by
relatively modest amounts, 1.5 to 3.9 times (Wright et al. 1994), but either
dampens the oscillations of cyclical neutropenia or eliminates them entirely.
The same effect has been shown (Hammond et al. 1990) in the grey collie.
It is unclear whether the period of the peripheral cell oscillations has a
concomitant decrease, as is found with the granulocyte colony stimulating
factor. The abnormal responsiveness of precursors to granulocyte colony
stimulating factor in grey collies and humans with cyclical neutropenia
(Hammond et al. 1992; Avalos et al. 1994) is mirrored in the human re-
sponse to the granulocyte/monocyte colony stimulating factor (Hammond
et al. 1992).

Thus, the available laboratory and clinical data on the effects of colony
stimulating factors in periodic hematopoiesis indicate that (1) there is ex-
tensive intercommunication between all levels of stem cells; and (2) within
the language of nonlinear dynamics, colony stimulating factors may be used
to titrate the dynamics of periodic hematopoiesis to the point of inducing
a reverse Hopf bifurcation (disappearance of the oscillations). In the course
of this titration, there may also be a shift in the period.

The behavior in periodic hematopoiesis when colony stimulating factor
is administered is qualitatively consistent with the hematopoietic stem cell
model discussed in Section 8.5, since it is known that colony stimulating fac-
tor interferes with apoptosis, and thus administration of colony stimulating
factor is equivalent to a decrease in the apoptotic death rate γ.



8. Cell Replication and Control 263

8.6 Conclusions

Delayed feedback mechanisms constitute a core element in the regulation
of blood cell populations. These delayed feedback mechanisms can produce
oscillations whose period typically ranges from 2 to 4 times the delay, but
which may be even longer. Thus it is not necessary to search for illusive and
mystical entities (Beresford 1988), such as ultradian rhythms, to explain
the periodicity of these disorders.

The observations in this chapter emphasize that an intact control mech-
anism for the regulation of blood cell numbers is capable of producing
behaviors ranging from no oscillation to periodic oscillations to more com-
plex irregular fluctuations, i.e., chaos. The type of behavior produced
depends on the nature of the feedback, i.e., negative or mixed, and on the
value of certain underlying control parameters, e.g., peripheral destruction
rates or maturation times. Pathological alterations in these parameters can
lead to periodic hematological disorders.

8.7 Computer Exercises: Delay Differential
Equations, Erythrocyte Production and
Control

Objectives

The purpose of these exercises is to gain some familiarity with the behavior
of the solutions of differential delay equations by using both analytical and
numerical approaches. We are going to do this within the context of a
simple model for erythrocyte production and control. For the numerical
work, you will use XPP∗ for these exercises.

A Simple Model for the Regulation of Red Blood Cell
Production

Consider the control of erythrocyte, or red blood cell, production as
represented schematically in Figure 8.13.

A fall in circulating erythrocyte numbers leads to a decrease in
hemoglobin levels and thus in arterial oxygen tension. This decrease in
turn triggers the production of renal erythropoietin, which increases the
cellular production within the early committed erythrocyte series cells, and
thus the cellular efflux from the erythrocytic colony forming unit, CFU-E,
into the identifiable proliferating and nonproliferating erythroid precursors,

∗See Introduction to XPP in Appendix A.
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Figure 8.13. A schematic representation of the regulation of red blood cell pro-
duction. Here the major features and parameters are defined for the simple model
that leads to equation (8.41). From Mackey (1996).

and ultimately augments circulating erythrocyte numbers (i.e., negative
feedback).

To formulate this sequence of physiological processes in a mathematical
model, we let E(t) (cells/kg) be the circulating density of red blood cells as
a function of time, β (cells/kg-day) be the stem cell influx under erythro-
poietin control, τ (days) be the time required to pass through recognizable
precursors, and γ (days−1) be the loss rate of red blood cells in the circu-
lation. We can then write the rate of change of erythrocyte numbers as a
balance between their production and their destruction:

dE(t)

dt
= β(E(t− τ)) − γE(t). (8.41)

Once a cell from the hematopoietic stem cell compartment is committed
to the erythroid series, it undergoes a series of nuclear divisions and enters
a maturational phase for a period of time (τ ' 5.7 days) before release into
the circulation, and the argument in the production function is therefore
E(t − τ), and not E(t). Thus, changes that occur at time t were actually
initiated at a time t − τ in the past. We adopt the usual convention of
Eτ (t) = E(t− τ), and also do not explicitly denote the time unless neces-
sary. Then the simple model (8.41) for red blood cell dynamics takes the
alternative form

dE

dt
= β(Eτ )− γE. (8.42)

To define an appropriate form for the production function β, we use in
vivo measurements of erythrocyte production rates in rats and other mam-
mals including humans. The feedback function saturates at low erythrocyte
numbers, and is a decreasing function of increasing red blood cell levels. A
convenient function that captures this behavior, has sufficient flexibility to
be able to fit the data, and is easily handled analytically is given by

β(Eτ ) = β0
θn

En
τ + θn

, (8.43)
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where β0 (units of cells/kg-day) is the maximal red blood cell production
rate that the body can approach at very low circulating red blood cell
numbers, n is a positive exponent, and θ (units of cells/kg) is a parameter.
These three parameters have to be determined from experimental data
related to red blood cell production rates.

Combining equations (8.42) and (8.43), we have the final form for our
model of red blood cell control given as

dE

dt
= β0

θn

En
τ + θn

− γE. (8.44)

As discussed in Chapter 9, we have to specify an initial condition in the
form of a function defined for a period of time equal to the duration of the
time delay. Thus we will select

E(t′) = φ(t′), −τ ≤ t′ ≤ 0. (8.45)

Usually we consider only initial functions that are constant, but it must
be noted that some differential delay equations can display multistable
behavior in which there are two or more coexisting locally stable solutions,
depending on the initial function.

Ex. 8.7-1. A steady state (or stationary) solution for the model (8.44) is
defined by the requirement that the red blood cell number not be
changing with time. This means that

E(t) = E(t− τ) = Eτ (t) = a constant, the steady state = E∗,
(8.46)

and

dE

dt
= 0 so β(E∗) = β0

θn

E∗n + θn
= γE∗. (8.47)

We cannot solve (8.47) to get an analytic form for E∗, but a simple
graphical argument shows that there is only one value of E∗ satisfying
(8.47). This value of the steady state occurs at the intersection of the
graph of γE∗ with the graph of β(E∗).
In this first problem, you must determine the stability of E∗ using a
linear expansion in (8.44).
a. Expand the function β around E∗ to obtain, with z(t) = E(t)−E∗,
the linear differential delay equation

dz

dt
= β′(E∗)zτ − γz. (8.48)

b. Assuming that z(t) ' eλt in equation (8.48), derive the equation

λ = β′(E∗)e−λτ − γ (8.49)

that λ must satisfy.
Letting λ = iω, show that the relation connecting τ , β′(E∗), and γ
that must be satisfied in order for the eigenvalues to have real part



266 Mackey, Caroline Haurie, and Jacques Bélair

identically zero is given by

τ =

cos−1

(

γ

β′(E∗)

)

√

β′(E∗)2 − γ2
. (8.50)

Ex. 8.7-2. In this exercise, you will numerically integrate equation (8.44).
In the code written to simulate equation (8.44), the erythrocyte num-
bers E have been scaled by the numerical value of the parameter θ
in the erythropoietin feedback function (8.43), since XPP gets very
cranky whenever dependent variables exceed 100 in absolute value.

(a) Rewrite equation (8.44) in the dependent variable, and define a
new variable x = E/θ to transform equation (8.44) into

dx

dt
=
β0

θ

1

xn
τ + 1

− γx. (8.51)

The code for equation (8.44) is written in aiha1.ode.
(b) Open up XPP with the code for equation (8.44) by typing xppaut

aiha1.ode, and turn off the bell.
The choice of Method, which determines the numerical algorithm
used to integrate the differential delay equation, is essential. Dif-
ferential delay equations can be pretty tricky to deal with, and
many people have come to grief by using an adaptive step size
method to integrate them. (Can you think of why this might
happen?) So, we want to make sure that the one that is being
used is not adaptive. Check that (R)unge-Kutta x method is
selected.
Having gotten through the above, you are ready to try a numer-
ical simulation.
You should see a periodic variation in the scaled erythrocyte
numbers (x) versus time, and this is because γ was picked to be
inside the zone of instability of x∗ ≡ E∗/θ.
What is the period and amplitude of this periodic variation?

(c) Now you can compare the predictions, from the linear analy-
sis, of the stability boundaries, and at the same time determine
qualitatively how the period and amplitude of the oscillatory
erythrocyte numbers within the unstable range of γ change as
γ is increased.

Use a (R)ange of gamma, with Steps: 5 to begin with and the
starting and ending values slightly below and above the values
of γ1 and γ2, respectively, employing different values in an ex-
ploratory mode.
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Next you can try to change some of the other parameters in the
equation to see how they affect the solution behavior, as well
as its stability, and see how your intuition matches with what
you see numerically. Can you find any values of parameters such
that numerically there seems to be a secondary bifurcation?

Ex. 8.7-3. The analysis of equation (8.44) can be continued by using an
approximation yielding an analytic solution.
As in Chapter 9, we let n→∞ in the nonlinear Hill function (8.43),
so the nonlinearity becomes progressively closer to a step function
nonlinearity. Equation (8.44) then becomes

dE(t)

dt
= −γE(t) +

{

F0, 0 ≤ Eτ < θ,
0, θ ≤ Eτ .

(8.52)

The nonlinear differential delay equation (8.52) can be alternatively
viewed as a pair of ordinary differential delay equations, and which
one we have to solve at any given time depends on the value of the
retarded variable Eτ with respect to the parameter θ. (This method
of solution is usually called the method of steps.)
As initial function for equation (8.52) of the type in (8.45), pick one
that satisfies φ(t′) > θ for −τ ≤ t′ ≤ 0 and specify that φ(0) ≡ E0, a
constant.

(a) Solve the equation

dE

dt
= −γE θ < Eτ , E(t = 0) ≡ E0, (8.53)

to obtain

E(t) = E0e
−γt, (8.54)

valid until a time t1 determined by the condition θ = E(t1− τ).
Show that the value of t1 is given by

t1 =
1

γ
ln

{

E0e
γτ

θ

}

. (8.55)

From this value of t1, show that the value of E at t = t1 can be
calculated as

E(t = t1) ≡ E1 = θe−γτ . (8.56)

(b) To proceed for times greater that t1, solve the other differential
equation given in (8.52), namely,

dE

dt
= −γE + F0 Eτ ≤ θ, E(t1) = E1, (8.57)

to get

E(t) = E1e
−γ(t−t1) +

F0

γ

[

1− e−γ(t−t1)
]

, (8.58)
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which is a solution valid until a time t2 defined by θ = E(t2−τ).
Compute the value of t2 as

t2 =
1

γ
ln

{(

E0

θ

)[

E1 − (F0/γ)

θ − (F0/γ)

]

e2γτ

}

, (8.59)

and the value of the solution at time t2, (E(t = t2) ≡ E2) to
obtain

E2 =
F0

γ
+

(

θ − F0

γ

)

e−γτ . (8.60)

(c) In the computation of the third portion of the solution, you
must once again solve equation (8.53) subject to the endpoint
conditions determined in the last calculation. Show that

E(t) = E2e
−γ(t−t2) (8.61)

is the expression to use, and determine that

t3 =
1

γ
ln

{(

E0E2

θ2

)[

E1 − (F0/γ)

θ − (F0/γ)

]

e3γτ

}

, (8.62)

so that E(t3) ≡ E3 is given by

E3 = θe−γτ . (8.63)

What can you conclude by comparing equations (8.56) and
(8.63)? Calculate the period of the periodic solution just derived
and show that it is given by

T = 2τ +
1

γ
ln

{[

F0

γθ

F0

γθ − 1
− e−γτ

]

[

F0

γθ
− e−γτ

]

}

. (8.64)

Ex. 8.7-4. From the previous exercises it seems that first-order differential
delay equations with negative feedback have only one bifurcation be-
tween a stable steady state and a stable limit cycle when looked at
numerically.
However, the situation is quite different if one looks at a system with
a mixed feedback replacing the negative feedback. Mixed feedback is
a term that has been coined to indicate that the feedback function
has the characteristics of positive feedback over some range of the
state variable, and negative feedback for other ranges.
These systems have a host of bifurcations, and you can explore these
numerically by using XPP to study the prototype equation

dx

dt
= −γx+ β

xτ

1 + xn
τ

, (8.65)

a variant of which was originally proposed as a model for the regula-
tion of white blood cell production (Mackey and Glass 1977).
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(a) How many steady states does equation (8.65) have?
(b) Compute analytically when the steady state becomes unstable

in equation (8.65). What is the Hopf period at that point?
(c) Explore the range of behavior that the numerical solutions can

take as one changes various parameters. (Note that you can elim-
inate one of the parameters by, for example, scaling the time by
γ so there is only the three–parameter set (β, τ, n) to deal with.)


