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Outline

Background: Trajectories and densities in dynamical systems

Q1: Can dynamical systems display a ’chaotic’ evolution of
densities?

Q2: Asymptotic periodicity in delay equations?

In deterministic DDE’s?

In stochastic DDE’s?

Q3: Can we produce deterministic Brownian motion?

In an ODE perturbed by a ’chaotic’ map?: Yes

In a DDE with a piecewise linear non-linearity?

In a ODE perturbed by a ’random telegraph signal’?

Q4: How to formulate density evolution in delayed dynamics?
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Background: Trajectories and densities in dynamical
systems

We are used to thinking about the trajectories of dynamical
systems and the possible bifurcations:

stable steady state → simple limit cycle → complicated limit
cycle → ‘chaotic’ solutions

I want to flip this around a bit and think about the evolution
of densities

This is akin to the Gibbs’ notion of looking at an ensemble of
dynamical systems, and this ensemble is described by the
corresponding density of states.

Which means that I’m thinking about looking at a very large
number of copies of my dynamical system, under the
assumption that each copy is not interacting with any others.
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Density evolution in dynamical systems

The Frobenius-Perron (FP) operator Pt : L1 → L1∫
A
Pt f (x)µ(dx) =

∫
S−1
t (A)

f (x)µ(dx)

maps densities to densities

See: Lasota & MCM (1994) for details
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Density evolution: Continuous time systems

ODE
dxi
dt

= Fi (x), i = 1, . . . , d

Evolution equation for f (t, x) = Pt f (x):

∂f

∂t
= −

d∑
i=1

∂(f Fi )

∂xi
AKA the generalized Liouville equation

Stochastic DE
dx = F(x)dt + σdw(t)

Evolution equation for density f (t, x) ≡ Pt f0(x) is

∂f

∂t
= −

d∑
i=1

∂(f Fi )

∂xi
+
σ2

2

d∑
i=1

∂2(f )

∂x2i
Fokker-Planck equation
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Density evolution: Maps (discrete time)

FP operator if A = [a, x ] becomes∫ x

a
Pt f (s) ds =

∫
S−1
t ([a,x])

f (s) ds

so

Pt f (x) =
d

dx

∫
S−1
t ([a,x])

f (s) ds.

Example: Tent (hat) map

S(x) =

{
ax for x ∈

[
0, 12
)

a(1− x) for x ∈
[
1
2 , 1
]
.

with FP operator

Pf (x) =
1

a

[
f
(x
a

)
+ f

(
1− x

a

)]
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Important types of dynamics of density evolution

Ergodic: There is a unique stationary density f∗ so Pf∗ ≡ f∗

Asymptotic periodicity: There is a set of basis densities and
for all initial densities f0(x)

Pf0(x) =
r∑

i=1

λi (f0)gi (x) + Qf0(x)

Densities gj have disjoint supports and Pgj = gα(j), where α is
a permutation of (1, . . . , r). The invariant density is given by

g∗ =
1

r

r∑
j=1

gj

Exact: f (t, x) ≡ Pt f0(x)→ f∗(x) for all initial densities
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Asymptotic periodicity in maps: Hat (tent) map

S(x) =

{
ax for x ∈

[
0, 12
)

a(1− x) for x ∈
[
1
2 , 1
]
.

Is ergodic for a > 1 (Ito, 1979) and we have an analytic form
for f∗ (Yoshida, 1983).

Is also asymptotically periodic (Provatas & MCM, 1991)
with period r = 2n, n = 0, 1, · · · for

21/2
n+1

< a ≤ 21/2
n

Thus, e.g., {Pt f } has period 1 for 21/2 < a ≤ 2, period 2 for
21/4 < a ≤ 21/2, period 4 for 21/8 < a ≤ 21/4, etc.

Is exact for a = 2.
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Q1: Chaotic density evolution: Is it possible?

Nobody knows–it’s an open problem!
The trajectory sequence of potential solution behaviors
through bifurcations in dynamical or semi-dynamical systems
is:

stable steady state → simple limit cycle → complicated limit
cycle → ‘chaotic’ solutions

The bifurcation structure in the evolution of sequences of
densities under the action of a FP (or Markov) operator is:

stable stationary density → simple asymptotic periodicity →
complicated asymptotic periodicity

Question: “How could (can) one construct an evolution
operator for densities that would display a ‘chaotic’ evolution
of densities?” Is it even possible?
Markov and Frobenius-Perron operators are linear, so (my)
suspicion is that in order to have a chaotic density evolution it
would be necessary to have a non-linear evolution operator.
Density dependent?
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A toy example: Density dependent hat map

Consider a density dependent hat map

xn+1 =

{
a[fn]xn xn ∈ [0, 12 ]
a[fn](1− xn) xn ∈ (12 , ],

Functional a[f ] is defined by

a[f ] = 1 +

∫ A+δ

A
f (x)dx a ∈ [1, 2]

Nonlinear evolution (pseudo-Frobenius-Perron) operator is

Pf (x) =
1[0,a[f ]/2](x)

a[f ]

{
f

(
x

a[f ]

)
+ f

(
1− x

a[f ]

)}
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Numerical: 104 iterations, f0(x) = 1[0,1](x), A = 0, δ = 0.5
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Numerical: 104 iterations, f0(x) = 1[0,1](x), A = 0, δ = 0.6
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Numerical: 104 iterations, f0(x) = 1[0,1](x), A = 0, δ = 0.7
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Numerical: 104 iterations, f0(x) = 1[0,1](x), A = 0, δ = 0.8
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Numerical: 104 iterations, f0(x) = 1[0,1](x), A = 0, δ = 0.9
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Q2: Asymptotic periodicity in delay equations?

Since asymptotic periodicity is a known property of discrete time
maps it raises the question of whether or not it might also arise in
differential delay equations.

The two sub-questions are:

In deterministic DDE’s?

In stochastic DDE’s?

Here all I have is numerical evidence.
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Asymptotic periodicity in DDE’s: Losson & MCM (1995)

Analytic & numerical results for the ‘hat’ DDE

dx

dt
= −αx +

{
axτ if xτ < 1/2
a(1− xτ ) if xτ ≥ 1/2

a

α
∈ (1, 2],
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Asymptotic periodicity in stochastic delay equations

‘Keener’ map DDE with noise ξ (Losson & MCM, 1995): Analytic
& numerical results

dx

dt
= −αx + [(axτ + b + ξ) mod 1] 0 < a, b < 1
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Q3: A deterministic Brownian motion?

We are accustomed to ‘noise’ in our world

Mathematicians have abstracted this into elaborate and
beautifully developed mathematics dealing with ‘random’
events

While is clear that the assumption of ‘random’ events is
sufficient to explain aspects of data

It is by no means clear that it is necessary

Question: “Can one produce completely deterministic theories
that have the character of randomness that we see in the real
world?”
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Usual Brownian motion (BM)

dx

dt
= v

m
dv

dt
= −γv + f (t)

f is a fluctuating “force” given by

f (t) = σξ(t)

ξ =
dw

dt
: a ‘white noise’ (delta correlated) which is the

‘derivative’ of a Wiener process w(t)

ξ(t): normally distributed with µ = 0, σ = 1

23 / 40



BM: ODE perturbed by a chaotic map

dx

dt
= v

m
dv

dt
= −γv + f (t)

f (t) = mκ
∑∞

n=0 ξ(t)δ(t − nτ),

ξ: a “highly chaotic” deterministic variable generated by

ξ(t) = T (ξ(t − τ)),

where T is an exact map or semi-dynamical system, e.g. the
tent map on [−1, 1]

c.f. MCM & Tyran-Kamińska (2006): Here we have rigorous
results, and it really does produce a Brownian motion

24 / 40



BM: From a piecewise linear differential delay equation

dx

dt
= v

dv

dt
= −γv + sin(2πβv(t − 1))

v(t) = φ(t), −1 ≤ t ≤ 0

or
dv

dt
= −γv + 2

[
H(sin(2πβv(t − 1))− 1

2
)

]

H is the Heavyside step function

The ‘random’ force is discontinuous

Solutions are piecewise exponentials, increasing and decreasing

Lei & MCM (2011): Mostly numerical results (and
conjectures)
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BM: Piecewise linear delay equation simulations, velocity
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BM: Piecewise linear delay equation simulations, position
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BM: ODE perturbed by a random telegraph signal (RTS)

dx

dt
= v

m
dv

dt
= −γv + ξ

Consider a signal ξ(t) that switches between +1 and −1
’randomly’

+1 −→ −1 with transition probability kd∆t + o(∆t)

−1 −→ +1 with transition probability ku∆t + o(∆t)

This is the random telegraph signal (RTS)

Fully characterized analytically
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BM: ODE perturbed by a random telegraph signal cont.

dv

dt
= −γv + ξ

The ‘random’ force ξ is the random telegraph signal

Pick kd = ku ≡ α
Solutions are continuous and consist of segments that are
piecewise exponentials, increasing and decreasing

State space is V

(
−1

γ
,

1

γ

)
Stationary density is

p∗(x) =
γ

B
(
1
2 ,

α
γ

) (1− γ2x2)α/γ−1
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BM: DDE versus RTS results

Compare numerical DDE results with the RTS results

Quantity DDE (numerical) RTS (exact)

Bound ∼ ±(
√
βγ + γ)−1 ±γ−1

Correlation ∼ e−γt e−γt

Mean µ ∼ 0 0

SD σ ∼ (βγ)−1/2 (αγ)−1/2

Kurtosis γ2 ∼ −γ/β −γ/α
I think the result in red for the DDE is due to numerics

If β ≡ α then the exact results for the random telegraph
signal match the numerical results from the differential delay
equation

Lei, MCM, & Tyran-Kamińska (2012) (unpublished, 26 pages)
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Q4: How to formulate density evolution under delayed
dynamics?

We are looking at a snapshot of the evolution of all of these
trajectories emanating from a whole bunch of initial functions.
But how is this related to the density evolving under the
delayed dynamics? 31 / 40



Density evolution in delayed dynamical systems

We have

dx

dt
= ε−1F(x(t), x(t − τ)), x(t) = ϕ(t) t ∈ [−τ, 0]

and we want to be able to write down

UNKNOWN OPERATOR ACTING ON DENSITY = 0.

If F(x , x(t − τ)) = −x(t) + S(x(t − τ)) so we have

ε
dx

dt
= −x(t) + S(x(t − τ)), x(t) = ϕ(t) t ∈ [−τ, 0]

then we should have

If τ → 0 then we should recover the Liouville equation from
UNKNOWN OPERATOR
If ε→ 0 and t ∈ N then UNKNOWN OPERATOR should
reduce to the Frobenius Perron operator for the map S
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Density evolution in DDE’s

DDE induces a flow Tt on a phase space of continuous
functions C = C ([−τ, 0],R), xt = T ϕ.

It would seem that the evolution of a density under the action
of this semi-group would be given by an extension of FP
equation∫
A
Pt f (x)µ(dx) =

∫
T −1
t (A)

f (x)µ(dx) for all measurableA ⊂ C

Merely formal, highlights problems. Namely:

what is the measure µ on C?
what is a density f on C?
what does it mean to do integration over subsets of C?
what is T −1

t ?
See MCM & Tyran-Kamińska (2006) (unpublished, 57 pages)
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Possible lines of attack

The method of steps and/or functional iteration

Hopf functionals

Approximations using a distribution of delays and the linear
chain trick

However, these don’t address the fundamental issues

We need some way of formulating the problem
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Conclusions and implications

Q1: Chaotic density evolution: Is the sequence

stable stationary density → simple asymptotic periodicity →
complicated asymptotic periodicity → chaotic density

evolution

possible? Maybe

Q2: Asymptotic periodicity in delay dynamics?
Numerical experiments indicate that really intriguing results
show up when one looks at the density of an ensemble of DDE
trajectories AT A SINGLE POINT OF TIME (Losson & MCM)
Q3: Deterministic Brownian motion?

Analytic results (MCM & Tyran-Kamińska) show that you can
produce a deterministic Brownian motion
Numerical experiments (Lei & MCM) indicate one can produce
a Brownian motion with deterministic DDE dynamics.
Confirmation awaits a formal proof

Q4: How to develop a theory for the evolution of densities in
systems with delays?
Quite unknown.
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