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The human blood cell production system usually remains extremely robust, in terms of
cell number or function, with little signs of decline in old age. To achieve robustness,
circulating blood cells rely on a formidable production machinery, the hematopoietic
system, located in the bone marrow. All circulating blood cells—red blood cells,
white blood cells and platelets—are renewed on a daily basis. The hematopoietic
system produces an estimated 1012 cells per day. This is a significant fraction of the
3.7 × 1013 cells in an adult (Ogawa 1993; Bianconi et al. 2013).

Robustness is partly due to the short timescales at which cell populations are able
to return to equilibrium, combined with large cell numbers and renewal rates. White
blood cells (WBCs), among which neutrophils are most prevalent, are the body’s
first line, innate immune system. Upon infection, WBCs are mobilised from the bone
marrow, to increase their number in circulation and fight off pathogen within hours
(Furze and Rankin 2008).

The 26 billion circulating neutrophils in human have a mean residence time of
only 11h in the blood (Dancey et al. 1976). After their release from the bone marrow,
they quickly disappear in the peripheral tissues and are destroyed in the spleen, liver
and bone marrow (Furze and Rankin 2008). In addition to the high renewal rate of
circulating blood cells, a large number of mature neutrophils, ten times or more the
circulating number, are kept in a bone marrow reserve, ready for entering circula-
tion.

This high renewal rate and mobilisation capability, however, come at a cost. The
blood system is an easy target for chemotherapeutic drugs, whose main way of acting
is by killing proliferating cells.White blood cells and especially neutrophils, with their
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fast turnover, are particularly vulnerable to chemotherapy. Chemotherapy can induce
neutropenia—a state of low absolute neutrophil count (ANC)—in cancer patients,
which puts them at risk of infection.

Homeostatic regulation of white blood cells is mainly controlled by the cytokine
granulocyte colony-stimulating factor (G-CSF). G-CSF promotes survival of white
blood cell precursors and their differentiation into mature cells. The identification of
this protein in the 1980s (Welte et al. 1996) and the subsequent development of human
recombinant forms of G-CSF paved theway to the treatment of chemotherapy-induced
neutropenia. G-CSF therapy has also been successful at treating congenital and other
forms of neutropenia.

Today, G-CSF is used as an adjuvant in several anti-cancer treatment protocols.
The aim of the adjuvant therapy is to minimise the length of the neutropenic episodes.
However, exogenousG-CSFadministration interfereswithwhite blood cell production
regulation. What should be a straightforward effect—administer G-CSF to cause the
ANC to increase—turns to bemore complicated than that. For instance, itwas observed
that early timing of G-CSF administration could lead to prolonged neutropenic phase
(Zwick et al. 2011). Thus, in order to take advantage of the full potential of G-CSF,
a detailed understanding of the physiological interaction between neutrophils and
exogenous G-CSF is necessary. In this issue of the Bulletin, Craig et al. (2016) present
a physiological model of neutrophil production that includes a detailed modelling of
the kinetics of G-CSF.

Mathematical modelling of white blood cell production has a long history (Pujo-
Menjouet 2016). The fundamental structure of all blood cell production models is the
delayed negative feedback loop. The negative feedback loop is the key to a robust
homeostasis; when cell number drops, blood cell production is increased, and cell
number quickly returns to equilibrium. There is an intrinsic delay in the action of the
negative loop, due to the finite time required to produce the extra cells needed. Dys-
regulation of parts of the negative feedback loop can lead to oscillation in circulating
blood cell number. An example where this occurs is cyclic neutropenia, a genetic con-
dition in which the ANC is oscillating with a period of around three weeks in human,
and two weeks in the grey collie. Because the match is so good between clinical data
and model predictions, the feeling is that the dynamics of the hematopoietic system
dynamics is well characterised. This basic view of the negative feedback loop is too
simple, however, if one is interested in short term perturbations of the hematopoietic
system, following rounds of chemotherapy, for instance.

Negative feedback loop-based models of neutrophil production do not incorporate
an explicit action of the G-CSF, and most do not include a mature neutrophil pool in
the bone marrow. In their model, Graig and colleague have included a physiological
pharmacokinetics/pharmacodynamics (PK/PD) model of G-CSF, in which they con-
sider the effect of having a pool of bone marrow neutrophils on G-CSF kinetics, and
on the recovery after chemotherapy-induced neutropenia.

It is important to model G-CSF explicitly because exogenous administration of G-
CSF breaks the negative feedback loop: it is possible for the neutrophil count and the
G-CSF concentration to be high at the same time. This mismatch leads earlier models
to underestimate the contribution of neutrophil-mediated G-CSF clearance.
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G-CSF is cleared by two distinct mechanisms, a linear renal clearance and G-CSF
receptors on neutrophils. Bound G-CSF is internalised and subsequently degraded.
After G-CSF administration, rapid bone marrow neutrophil mobilisation and disap-
pearance leads to a drop in neutrophil-mediated clearance. Craig et al. (2016) show
convincing evidence that PK models neglecting the bone marrow neutrophil reserve
overestimate renal clearance and that neutrophil internalisation is the main clearance
mechanism.

They present a model with five delay differential equations (DDEs): three for the
neutrophil dynamics (stem cell number, bonemarrow and circulating neutrophil count)
and two for G-CSF (unbound and bound G-CSF). Mature bone marrow neutrophil
(NR) includes a state-dependent time delay τNM(t) , which satisfies a DDE itself. The
time delay accounts for variable neutrophil maturations speeds. When building a DDE
model with varying delays, it is tempting to take the equations with constant delays
and just “add” the time or state-dependence to the delay terms. This is a mistake,
though. The new equations with varying delays do not represent the intended model
and can lose desirable properties such positivity of solutions.

To see the difficulty with including varying delays, we consider an abstract regula-
tion model, where the cell population of interest is a pool of mature cells. We assume
that mature cells are produced at a positive rate β dependending smoothly on the total
number of cells x , and representing the rate of new cells produced after a constant
maturation delay τ .

A delay differential equation for x(t) could be written as

dx(t)

dt
= β(x(t − τ)) − γ x(t), (1)

where γ is a death rate. To take into account a time-varying delay, τ ≡ τ(t), it is
tempting to modify the equation directly and write

dx(t)

dt
= β(x(t − τ(t))) − γ x(t), (2)

but this formulation is incorrect. Indeed, if τ(t) = t , no maturing cell can ever reach
maturity and be released in the mature cell pool, even though the production rate
β(x(t − t)) = β(x(0)) is nonzero.

In order to define an equation satisfying the modelling assumption that maturing
cells spend a varying amount of time in maturation, it is necessary to look at the under-
lying transport equation that gives rise to the delay. The simplest transport equation
that gives rise to a varying delay is

∂t n(t, a) + v(t)∂an(t, a) = 0 (3)

where v(t) is a time-varying maturation velocity and a is the maturity level. If cells
are released into the mature pool when they reach a maturity level a = aM , then the
time required for cell to become mature is defined implicitly by the relationship
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Fig. 1 a The conveyor belt
analogy Mahaffy et al. (1998).
Maturing cells are transported at
speed v(t). The production rate
of mature cells is v(t)n(t, aM ),
while new cell enters the
maturation compartment at a
rate β(x(t)) = v(t)n(t, 0). b
Simulations of Eqs. (9) (solid)
and (2) (dashed) with initial
history x(θ) = 1 for
θ ∈ [−τ0, 0],
β(x) = k0k

2/(k2 + x2),
τ(t) = τ0 + A sin(2π t/T ), γ =
0.2, k0 = 1.0, k = 1.0, τ0 =
10.0, A = 0.5, T = 21
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From a maturation time viewpoint, Eq. (3) is a transport equation with a moving
boundary. Differentiating equation (4) with respect to time yields

1 − dτ(t)

dt
= v(t)

v(t − τ(t))
(5)

New mature cells are produced at a rate v(t)n(t, aM ), which is the flux of cell going
through the boundary a = aM . The analogy of the conveyor belt introduced inMahaffy
et al. (1998) is useful to represent the effect of a varying speed and the boundaries
(Fig. 1a). It is convenient to assume v(t) ≥ 0, to avoid cells from re-entering the
maturation compartment at a = aM or leaving the compartment at a = 0. In the same
way, the flux of cells entering maturation is v(t)n(t, 0). If we pose that the flux of cell
entering maturation is β(x(t), then we have the boundary condition

v(t)n(t, 0) = β(x(t)) (6)

Using the characteristics, we have that n(t, aM ) = n(t − τ(t), 0), and it follows that

v(t)n(t, aM ) = v(t)n(t − τ(t), 0) = v(t)

v(t − τ(t))
β(x(t − τ(t))). (7)

Therefore the correct form for the varying time delay equation is

dx(t)

dt
= v(t)

v(t − τ(t))
β(x(t − τ(t))) − γ x(t), (8)
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together with Eq. (5). If the form for τ(t) is known, the time-varying delay equation
is

dx(t)

dt
=

(
1 − dτ(t)

dt

)
β(x(t − τ(t))) − γ x(t). (9)

Both descriptions are valid representations. Equations (5) and (8) use a varying matu-
ration velocity, while Eq. (9) uses a moving boundary for the length of the maturation
phase. Equation (5) andnon-negativity of v(t) imply thatdτ(t)/dt should never exceed
1. Equation (2) creates cells out of nowhere, leading to slow build-up in cell number
even though cell number should stabilise (Fig. 1b). Graig and colleagues took care of
keeping the books straight, making sure that all equations really represent the mod-
elling assumptions.

In total, the full model possesses 32 kinetic parameters, and auxiliary equations for
τN , τNM , AN , AQ due to non-constant delays, and additional equations for PK/PD of
the chemotherapy. Most of these parameters could be estimated from the literature,
based on a combination of modelling and experimental measurements. The remaining
parameters were estimated in a stepwise manner; first by characterising parameter
constraints at homeostasis, then the G-CSF pharmacokinetics parameters and finally
the neutrophil dynamics after IV or subcutaneous G-CSF administration.

Strong feedback mechanisms tend to become unstable, both dynamically and in
terms of parameter sensitivity. To avoid that, Graig and colleagues used a combina-
tion of nonlinear least-square fitting together with objective functions that guaranteed
robust fits. This way, Craig et al. (2016) could characterise not only physiologi-
cal neutrophil dynamics, but also the out-of-equilibrium dynamics following G-CSF
administration. A limitation with parameter estimation is the lack of data about stem
cells. They used the observation that G-CSF administration speeds up neutrophil pre-
cursor transit times to recover some of the stem cells kinetics.

The last parameter estimation step was made on individual patient chemotherapy.
Graig and colleagues used neutrophil dynamics data during chemotherapy to estimate
PK parameters. This way, they obtain a full PK/PD model of neutrophil dynamics
during chemotherapy, with a detailed model for G-CSF administration.

To check the validity of the model, Graig and colleague simulated the CHOP14
protocol, which includes combined chemotherapy and G-CSF administration. They
compared the simulation of six cycles of 14-day chemotherapy treatment with pub-
lished CHOP14 data. Simulation predictions were very close to the published data,
although no parameters were adjusted. These simulations show how the administra-
tion of G-CSF depletes the bone marrow neutrophil pool, and prevent circulating
neutrophil counts from recovering. These results suggest that delaying G-CSF admin-
istration during chemotherapy would help minimise the severity of the neutropenia
episodes.

This new model for granulopoiesis under exogenous G-CSF treatment illustrates
the need for a realistic description of the physiology when trying to generate clini-
cally relevant predictions. Including time delays into differential equation models has
often been made too hastily, leading to modelling errors and raising doubts about the
relevance of such models. This new paper shows how rigorous derivation of state-
dependent time delays can move the boundaries of granulopoiesis modelling.
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