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I. WHAT DON'T I KNOW? 
NOTES OF 12 MARCH, 1993 

(1) Can the period ever depend on the initial density Jo? 
(2) Can the period ever depend on E in a CML? [YES-SEE WORK WITH JEROME LOSSON.] 
(3) How many of the asymptotic periodicity properties carry over to a lattice? 
(4) Could I ever have asymptotic periodicity with period 3n, 5", etc? [YES-LUBKIN (KIEV) HAD AN EXAMPLE 

IN COMO.] 
(5) Is it possible to have asymptotic periodicity when the basis densities gi(x) do not have disjoint support? It 

violates the current definition of asymptotic periodicity as now given. 

WHAT DO I KNOW? 
13 MARCH, 1993 

(1) Period T:::; r!. 
(2) If :l h 3 limn_,oo pnT f :::; h, then r :::; I lhl I (LM p89-90]. 
(3) :la stationary density J. = ~ L_gi [LM, Proposition 5.4.1]. 
(4) If P has a constant stationary density J., then 

r 

t+l " -P f(x) = L....J·\:.-'(i)(f)lA. (x) + Qd(x) 
i=l 

with 
- lA.(x) 
lA. (x) = µ(Ai) . 

[LM Proposition 5.4.2]. 
(5) P ergodic -¢:::::::;, permutation is cyclical [LM Theorem 5.5.1]. 
(6) r = 1 ~ asymptotic stability of P [LM Proposition 5.5.2]. 
(7) P mixing ~ r = 1 [LM Theorem 5.5.3]. 
(8) limt_,oo Hc(Pt flf.) = HmaxUlf.) [Arrow, Theorem 6.5]. 
(9) Correlation function is periodic [Arrow, Chapter 6D and Provatas Mackey papers]. 

(10) HBc has period T 

Proof. For large times we can write 
r 

pt+1J(x) = LAa-'(i)(f)gi(x) 
i=l 
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so 
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H(Pt+l f) = - Ix t-\,-,(i)(f)gi(x) log [t·\,-,(i)(f)gi(x)] dx 

= - t>-a-'(i)(f) J 9i(x)log [>-a-'(i)(f)gi(x)] dx 
i=l Ai 

= -tAa-'(i)(f) [ii 9i(x)logAa-'(i)(f)dx+ i/i(x)loggi(x)] dx 

= -t Aa-'(i)(f) [logAa-'(i)(f) - ii 9i(x) loggi(x)] dx 

r r 

i=l i=l 

Now the first term on the last line is independent of time, but the second isn't, and in fact it oscillates with period T. 

N ote the strange fact that although HBa oscillates, He approaches a stationary value [Arrow, Theorem 6.5-see 
item 8 above]. 

*********************************************************************** 

CHAPTER 6. 
ASYMPTOTIC PERIODICITY AND ENTROPY EVOLUTION 

In this chapter we turn to an investigation of the fascinating property of asymptotic periodicity in the evolution 
of densities. This behaviour is the statistical analog for densities of the more common periodicity found in some time 
series. The existence of asymptotic periodicity will allow us to prove a weak form of the Second Law in which the 
conditional entropy increases to ( at least) a local maximum. 

In Section A we introduce a class of Markov operators known as smoothing. Smoothing operators have three 
characteristics that are important for our ultimate understanding of the basis of the Second Law of thermodynam
ics. First, the sequence of densities evolving under the action of a smoothing Markov operator has the property of 
asymptotic (or statistical) periodicity. This is illustrated in Section Busing the hat and quadratic maps. Second, any 
smoothing Markov operator has at least one stationary density thus ensuring that there is a state (perhaps not unique) 
of thermodynamic equilibrium. In Section C we show how, for asymptotically periodic systems, the entropy of the 
sequence of densities always increases to a maximum. This maximum, however, may only be relative and less than the 
maximum possible entropy value, thus corresponding to a metastable state. The relative maximum of entropy which 
asymptotically periodic systems approach usually depends on the initial density of the system ( the way in which the 
system was prepared). In Section D we show that the correlation function for an asymptotically periodic system is 
made up of a stochastic component and a strictly periodic (nondecreasing) component. 

A. ASYMPTOTIC PERIODICITY. 
First, we define a smoothing Markov operator. A Markov operator pt is said to be smoothing if there exists a 

set A of finite measure, and two positive constants k < 1 and 8 > 0 such that for every set E with µL(E) < 8 and 
every density f there is some integer to(!, E) for which 

f pt f(x) dx ::S; k 
}Eu(X\A) 

for t 2 to(!, E). 

This definition implies that any initial density, even if concentrated on a small region of the phase space X, will 
eventually be smoothed out by pt and not end up looking looking like a delta function. Notice that if X is a finite 
phase space we can take X = A so the smoothing condition looks simpler: 

fort 2 to(!, E). 

Smoothing operators are important because of a theorem of Komornik and Lasota (1987), first proved in a more 
restricted situation by Lasota, Li, and Yorke (1984). 
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Theorem 6.1. Spectral Decomposition Theorem (Komornik and Lasota, 1987). Let pt be a smoothing Markov 
operator. Then there is an integer r > 0, a sequence of nonnegative densities gi, a sequence of bounded linear 
functionals ,\, i = 1, ... , r, and an operator Q : L 1 - L 1 such that for all densities f, Pf has the form 

r 

Pf(x) = LAi(f)gi(x) + Qf(x). (6.1) 
i=l 

The densities 9i and the transient operator Q have the following properties: 

(1) The gi have disjoint support (i.e. are mutually orthogonal and thus form a basis set), so gi(x)gj(x) = 0 for all 
i # j. 

(2) For each integer i there is a unique integer a( i) such that Pgi = 9a(i) · Furthermore, a( i) # a(j) for i # j. 
Thus the operator P permutes the densities 9i· 

(3) 11 ptQf II- 0 as t - oo, t EN. 

Notice from equation (6.1) that pt+l f may be written in the form 

r 

pt+l f(x) = LAi(f)ga'(i)(x) + Qtf(x), tE N (6.2) 
i=l 

where Qt= ptQ, II Qd II- 0 as t - oo, and at(i) = a(at-l(i)) = · · ·. The density terms in the summation of (6.2) 
are just permuted by each application of P. Since r is finite, the series 

r 

L Ai(f)ga'(i) (x) (6.3) 
i=l 

must be periodic with a period T :Sr!. Further, as 

is just a permutation of 1, • • • , r the summation (6.3) may be written in the alternative form 

r 

L Aa-'(i) (f)gi(x), 
i=l 

where a-t(i) is the inverse permutation of at(i). 
This rewriting of the summation portion of (6.2) makes the effect of successive applications of P completely 

transparent. Each application of P simply permutes the set of scaling coefficients associated with the densities gi(x) 
[remember that these densities have disjoint support]. 

Since Tis finite and the summation (6.3) is periodic (with a period bounded above by r!), and II Qd II- 0 as 
t - oo, we say that for any smoothing Markov operator the sequence { pt f} is asymptotically periodic or, more 
briefly, that Pis asymptotically periodic. Komornik (1991) has recently reviewed the subject of asymptotic periodicity. 

One interpretation of equation (6.2) is that any asymptotically periodic system is quantized from a statistical point 
of view. Thus if t is large enough, which simply means that we have observed the system longer than its relaxation 
time so 11 Qd II is approximately zero, then 

r 

pt+l f(x) '.:::'. LAi(f)ga'(i)(x). 
i=l 

Asymptotically, pt f is either equal to one of the basis densities gi of the ith pure state, or to a mixture of the densities 
of these states, each weighted by Ai(!). It is important to also realize that the limiting sequence { pt f} is, in general, 
dependent on the choice of the initial density f. 

How would the property of asymptotic periodicity be manifested in a continuous time system? If tis continuous, 
t E R+, then for every t we can find a positive integer m and a number 0 E [O, 1] such that t + 1 = m + 0. Then, 
asymptotically 

r 

pt+l f(x) = pm(p0 f) '.:::'. L Aa"'(i)(P0 f)gi(x). 
i=l 
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Now, in the continuous time case we expect that there will be a periodic modulation of the scaling coefficients .X 
dependent on the initial density f, and the asymptotic limiting density will continue to display the quantized nature 
characteristic of the discrete time situation. This behaviour has been discovered and studied by Losson (1991) in 
differential delay equations. 

Asymptotically periodic Markov operators always have at least one stationary density given by 

1 r 

f.(x) =-:;: L9i(x), (6.4) 
i=l 

where rand the 9i(x) are defined in Theorem 6.1. It is easy to see that f.(x) is a stationary density, since by Property 
2 of Theorem 6.1 we also have 

1 r 

Pf.(x) =-:;: LYa(i)(x), 
i=l 

and thus J. is a stationary density of pt. Therefore, for any smoothing Markov operator the stationary density (6.4) 
is just the average of the densities Yi· 

Our next theorem will be very useful in Chapter 10 when we study the entropy behaviour of discrete time systems 
placed in contact with a heat bath. 

Theorem 6.2. Let P be a Markov operator. If there exists an h E £ 1 and 'Y < 1 such that 

limsup ll(Pt f - h)+ I I :S 'Y far f ED, (6.5) 
t--+oo 

then { pt .f} is asymptotically periodic. 

Proof. Let E = ¼(1-'Y) and take F = {h }. Since F, which contains only one element, is evidently weakly precompact, 
then by WPC3 of Chapter 3 there exists a 6 > 0 such that 

L h(x)µ(dx) < E for µ(E) < 6. 

Furthermore, there is a measurable set A of finite measure for which 

r h(x) µ(dx) < E. 
lx\A 

Now fix f ED. From (6.5) we may choose an integer no(!) such that 

for t 2: to(!), 

and, as a consequence 

{ pt f(x) µ(dx) :S { h(x) µ(dx) + 'Y + E 

le le for t 2: to(!) 

for an arbitrary set C. Setting C =EU (X \ A) in (6.8) and using (6.6) and (6.7) we have 

{ ptf(x)µ(dx):S { h(x)µ,(dx)+ { h(x)µ(dx)+"f+E 
1 EU(X\A) 1 E 1 X\A 

< 3E + 'Y = 1 - E for t 2: to(!). 

Thus Pis smoothing. This, in conjunction with Theorem 6.1, completes the proof. D 

(6.6) 

(6.7) 

(6.8) 

The interpretation of Theorem 6.2 is straightforward. Namely, for those regions where pt f > h for sufficiently 
large t, if the area of the difference between pt f and h is bounded above by 'Y < 1, then { pt f} is asymptotically 
periodic. 

We close this section with the statement and proof of a necessary and sufficient condition for the ergodicity of a 
smoothing Markov operator. 
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Theorem 6.3. Let P be an asymptotically periodic Markov operator in a normalized measure space. Then P is 
ergodic if and only if the permutation a( i) of the Spectral Decomposition Theorem 6.1 is cyclical. 

Proof. We start with the proof that when Pis ergodic then a(i) must be a cyclical permutation. Suppose that the 
disjoint supports of the r densities 9i(x) are labeled by Ai, i = 1, · · · , r. Assume that a(i) is not cyclical so there is 
an invariant subset IE {a(i)}. As a consequence, there is at least one set Ai that is invariant, and since the supports 
of the densities 9i ( x) have positive measure we conclude that there is an invariant subset of the phase space X that is 
not trivial. This contradicts the definition of ergodicity, so when P is ergodic the permutation a( i) must be cyclical. 

To prove the converse, that if a(i) is a cyclical permutation then Pis ergodic, we first use the spectral decompo
sition of pt f given by equation (6.1) to write the system state density average (3.15a) as 

Now the limit 
t-1 - lL >.i(f) = lim - >-a-k(i)(f) 

t--->oo t 
k=O 

exists because the cyclicity of the permutation a(i) of the set {1, · · ·, r} implies the periodicity of the >.oe-k(i)(f). 
Furthermore, since every portion of this summation of length r consists of exactly the same set of numbers but in a 
different order for each different i, it is clear that the limit 5..i(f) is, in fact, independent of i. Call it>-.(!). Thus, from 
the Spectral Decomposition Theorem 6.1, we have that 

r 

lim Atf(x) = >-.(!) '°' 9i(x). 
t--tOCJ L..J 

i=l 

Since limt---, 00 Ad is a density, integrating over the entire phase space X gives 

so >-.(!) = ~ and 

f lim Atf(x) dx = r>-.(f) = 1, Jx t--->oo 

1 r 

lim Atf(x) = - '°' 9i(x) = f.(x), 
t--->oo r L..J 

i=l 

which is a stationary density of the asymptotically periodic Markov operator P. Thus, { pt f} is Cesaro convergent to 
a unique stationary density f. and Pis ergodic by Theorem 4.7. This finishes the proof. D 

This theorem tells us that for an asymptotically periodic system, cyclicity of the permutation a( i) is necessary 
and sufficient for the existence of a unique state of thermodynamic equilibrium characterized by the stationary density 
f •. 

B. ASYMPTOTIC PERJODICITY ILLUSTRATED. 
Asymptotic periodicity may be either inherent to a dynamical system, or induced by stochastic perturbations 

of a system (Chapter 10). For dynamics described by maps on the unit interval, the following theorem (Lasota and 
Mackey, 1994) is sometimes useful in establishing the existence of inherent asymptotic periodicity. 

Theorem 6.4. Let S: [O, 1]--; [O, 1] be a nonsingular transformation satisfying the following three conditions: 

(1) There exists a partition O = bo < b1 < · · · < bm = 1 of [O, 1] such that for each integer i = 1, · · · , m the 
restriction of S ( x) to [bi- l, bi] is a C 2 function. 

(2) IS'(x)I 2 {) > 1, x cl bi. 

(3) There exists a real constant c such that ~ ::; c < oo, x cl bi, i = 0, 1, · · · , m. 

Further, let P be the Frobenius-Perron operator corresponding to S. Then for all densities f, the sequence {Ptf} is 
a.symptotically periodic. 
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Example 6.1. To examine the properties of an asymptotically periodic system, choose a generalization of the tent 
map (3.5), 

{
ax O<x<½ 

S(x) = -
a(l - x) ½ :S x :S 1, 

(6.9) 

where 1 <a< 2 (see Provatas and Mackey, 1991a). 
To investigate how the map (6.9) transforms densities, we must first derive an expression for the operator P that 

corresponds to this transformation. Proceeding as in Example 3.6 where the tent map with a = 2 was introduced, it 
is a simple calculation to show that the Frobenius-Perron operator corresponding to (6.9) is given by 

Pf(x) = ¼ [f (¼x) + f (1- ¼x)]. (6.10) 

For 1 < a :S 2, and for the partition bo = 0 < b1 = ½ < b2 = 1, the generalized hat map (6.9) satisfies the conditions 
of Theorem 6.4. Thus, the hat map is asymptotically periodic and the evolution of densities via the operator (6.10) 
can be expressed through the spectral decomposition (6.1). 

Ito et al. (1979) have shown that the hat map is ergodic, thus possessing a unique invariant density f, of the 

form (6.4). Its form has been derived in the parameter window an+l = 211211 (n+i) < a :S 211211 n = an, n = l, 2, ... 
by Yoshida et al. (1983). Provatas and Mackey (1991a) have proved the asymptotic periodicity of (6.9) with period 
T = ( n + l) for 211211 (n+i) < a :S 211211n. Thus, for example, { pt f} has period 1 for 2112 < a '.S 2, period 2 for 
21/ 4 < a :S 2112 , period 4 for 2118 < a :S 2114, etc. 

To analytically illustrate the eventual dependence of the sequence { pt f} on the initial density f for asymptotically 
periodic systems, pick a= v'2 which is the upper boundary of the range of a values for which (6.9) is asymptotically 
periodic with period 2. For this value of a, the unique stationary density (6.4) satisfying Pf,= f,, where Pis given 
by (6.10), takes the explicit form 

f, (x) = u1J1 (x) + vlh (x) 

where u = ½[3 + 2v2], v = ½[4 + 3v'2], and the sets J 1 and J2 are defined by 

Ji = [h - 1, 2 - hJ and 

respectively ( cf. Provatas and Mackey (199la)). S maps the set J1 into J2 and vice versa. 

(6.11) 

(6.12) 

It can be shown analytically that picking f,(x) given by (6.11) as an initial density simply results in a sequence of 
densities all equal to the starting density. This is quite different from what happens with an initially uniform density 

(6.13) 

In this case, the first iterate Ji = Pf is given by 

(6.14) 

and iteration of !1 (x) leads, in turn to an h(x) = f (x) and thus the cycling of densities repeats indefinitely with 
period 2 (cf. Figure 6.la). 

This effect of the choice of the initial density on the sequence of subsequent densities can be further illustrated 
by choosing an initial density 

f(x) = [3 + 2v2]1Ji (x) (6.15) 

totally supported on the set J1 . In this case, 

f1(x) = Pf(x) = [4 + 3v2]lh(x), (6.16) 

and .fo = f, fa= !1, · · · so once again the densities cycle between f and Ji with period 2 (cf. Figure 6.lb). Figure 
6.lc illustrates the behaviour of { pt f} for an initially nonuniform density.• 



ASYMPTOTIC PERIODICITY NOTES 10 MARCH, 1995 FILE: APNOTES.TEX 

Example 6.2. Sharkovski (1965) has shown that maps like (3.7), 

S(x) = rx(l - x) 

7 

(6.17) 

with a single quadratic maximum display period doubling in the number of fixed points as the parameter r is increased. 
For example, with O ::; r < l the single fixed point of (5.17) is x* = 0, while for 1 < r :s; 3, equation ( 6.17) has one 
stable fixed point given by x* = 1 - ¼- For r between 3 < r :s; r c ::::::: 3.57 · · · there is a cascade of parameters which 
sequentially give rise to 2 unstable fixed points, then 4, 8 etc. The periodicity in each of these intervals is equal to the 
number of fixed points. At r c, also known as the accumulation point, there are an infinite number of unstable fixed 
points. 

On the other side of the critical parameter, r c < r :s; 4 the quadratic map ( and maps like it with a single quadratic 
maximum) has a spectrum of parameter values, labeled by rn, n = l, 2, • · • where so-called "banded chaos" has been 
reported by Crutchfield et al. (1980), Lorenz (1980), and Grossman and Thomae (1977, 1981) based on numerical 
work. At these values the unit interval X = [0, 1] partitions into 2n subintervals, labeled .Ji, l = l, 2, · · · , 2n. These 
are such that S2n : .Ji ----> .Ii maps .Ji onto .Ii. As well each .Ji is mapped cyclically through the whole sequence of {.Ji} 
after 2n applications of S. The iterates of a time series are attracted to these .Ji subsets, returning to any .Ii every 
2n iterations. These iterates form an aperiodic sequence with a positive Liapunov exponent [Devaney, 1986]. The 
procedure whereby which one obtains the parameter values r n at which 2n banded chaos occurs is given by Grossman 
and Thomae (1981). 

The Frobenius-Perron operator corresponding to the quadratic map (6.17) is 

Pf(x)= l [1(I.+I_ ~)+f(I__I_ ~)] ✓1 _ 4; 2 2v 1
--;- 2 2v 1

--;-
(6.18) 

At values of r = rn, the iterates of any initial density f supported on [0, 1], acted on by (6.18), will eventually 
decompose so they are supported on disjoint sets .Ii. Subsequent to the contraction of density supports onto the 
sequence of sets {.Ji}, the evolution of the sequence { pt f} becomes periodic in time. At these values, the observed 

- periodic evolution of ensemble densities, is, in fact, asymptotically periodic (Provatas and Mackey, 1991a). 
The parameter values r = r n define a reverse sequence to the period doubling sequence for r :s; r c· For the latter 

sequence, we talk of a period doubling in the number of unstable fixed points. When r = r n however, fixed points are 
replaced by "chaotic bands" and going from r n to r n+ 1 involves a doubling in the number of bands. 

As with the hat map of Example 6.1, the scaling coefficients >-.1(!), >-.2(!) can be analytically determined for 
period two asymptotic periodicity for the quadratic map when r = r 1 , and the attracting phase space consists of the 
subsets .11 and .12. These are disjoint and connected at the fixed point of (6.17), and S: .11 ----> .J2, S: .J2 ----> .11. The 
coefficients >-.1 (f), >-.2 (f) may be obtained for any arbitrary initial density f supported on the phase space X = [0, 1]. 

Figure 6.2 illustrates the period 2 asymptotic evolution of { pt f} after 20 transients, for r = r 1 . In Figure 6.2a 
the initial density is uniform on the region of .11 U .12 given by [O. 7, 0.8]. Figure 6.2b shows an asymptotic cycle of 
{ pt f} with f (x) = 200(x - 0.9) supported on [0.9, 1 ]. Figure 6.3a illustrates a period 4 cycle in { pt f} when r = r 2, 

with the initial density f uniform on [0.5, 0.85]. Figure 6.3b shows one period 4 cycle of pt f with f (x) = 200(x - 0.91) 
supported on [0.9, 1]. All of the illustrated sequences are dependent on the initial density. • 

C. THE WEAK FORM OF THE SECOND LAW. 
The fact that asymptotically periodic Markov operators have a stationary density given by (6.4) does not guar

antee the uniqueness of this stationary density. Regardless of whether or not asymptotically periodic systems have 
unique stationary densities, they have the important property that their conditional entropy is an increasing function 
that approaches a maximum. This result is formulated more precisely in 

Theorem 6.5. Let P be an asymptotically periodic Markov operator with stationary density J.. Then as t ----> oo the 
conditional entropy Hc(Ptflf,) of ptj with respect to J. approaches a limiting value HmaxUlf,) :s; 0, where 

Hmax(flf,) = - z;, L >-.i(f)gi(x) log { J.~x) z;, >-.i(f)gi(x)} dx. (6.19) 

Proof. Since Pis asymptotically periodic, the representation of the Spectral Decomposition Theorem 6.1 is valid, and 
more precisely equation (6.2) for pt f. Write equation (6.2) in the form 

pt+I f (x) = "J:,t(f, x) + Qtf(x), 
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where Et(f, x) denotes the summation portion of (6.2). Remember that since Pis asymptotically periodic, for large 
times t, II Qd 11:::: 0 and thus pt+l f(x) :::: Et(f, x), so the long time conditional entropy is given by 

Hc(pt+l flf.):::: - L Et(f, x) log { Ef ~{~;)} dx 

= Hc(Et(f)lf.). 

However, Et(f, x) is periodic with finite period T. Since by Theorem 3.1 we also know that Hc(Pt flf.) 2 Hc(flf,) [the 
conditional entropy can never decrease], it follows that the approach of Hc(Ptf\f.) to Hc(Et(f)lf.) must be uniform. 
Even though Et(f, x) is periodic with a finite period T, Hc(Et(f)\J.) is a constant independent oft. In fact we have 

Hc(Et(f)lf.) = - L ~ ,\(f)gi(x) log { f.~x) ~ ,\i(f)gi(x)} dx 

= Hmax(f\f.) $ 0 

for large t. The nonpositivity of HmaxU\f.) is a consequence of the integrated Gibbs inequality (1.5). D 

Note that if the stationary density f. of Pis given by (6.4), then the expression for HmaxUlf.) becomes even 
simpler. Namely, with 

l r 

J.(x) = ;: Lgi(x), 
i=l 

HmaxUl.f,) as given by (6.19) becomes 

r 

HmaxUlf.) = -logr - L,\i(f)log,\i(f) (6.20) 
i=l 

when we use the orthogonality of the densities gi(x). Since OS ,\i(f) S 1 for all i, we may also place a lower bound 
on HmaxUlf,): 

-logr $ Hmax(flf,) S 0. 

This weak form of the Second Law of thermodynamics is the strongest result that we have yet encountered. 
It demonstrates that as long as the density evolves under the action of a Markov operator that is smoothing, the 
conditional entropy of that density converges to a maximum. There are two important facets of this evolution that 
should be recognized: 

(1) The convergence of the entropy is due to the fact that II Qt f II- 0 as t - oo in the representation (6.2) of 
Theorem 6.1. 

(2) The maximum value of the entropy, HmaxUlf.), as made explicit by the notation, is generally dependent on 
the choice of the initial density f and, thus, the method of preparation of the system. This indicates that 
systems with asymptotically periodic dynamics may have a discrete or continuous spectrum of metastable 
states of thermodynamic equilibrium, each with an associated maximal entropy. 

Example 6.3. To illustrate the evolution of the conditional entropy of an asymptotically periodic system we return 
to our example of the tent map (6.9) with a= ,J2. For this value of a, the stationary density f. is given by equation 
(6.11). If we pick an initial density given by J., then the conditional entropy Hc(Pt f.lf.) = 0, its maximal value, for 
all t. However, if we pick an initially uniform density (6.13), f(x) = (2+-v2)1J,uJ,, then it is straightforward to show 
that 

Hc(flf.) = Hc(filf.) '.:::'. -0.01479, 

where J1 = Pf is given by equation (6.14). Thus by choosing an initial density given by (6.13) or (6.14), the limiting 
conditional entropy approaches a value less than its maximal value of zero. 

This effect of the choice of the initial density affecting the limiting value of the conditional entropy can be further 
illustrated by choosing an initial density 

.f(x) = [3 + 2V2]1J, (x) 

totally supported on the set J1 . In this case, as we have shown, 
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and f2 = f, h = J1, etc. so once again the densities cycle between f and !1 with period 2. The limiting value of the 
conditional entropy is given by 

Hc(flf,) = Hc(f1 If.)= - log(2) '.::: -0.69316. 

Thus, with three different choices of an initial density f we have shown that the conditional entropy of the asymptot
ically periodic system (6.9) may have at least three different limiting asymptotic values. • 

Example 6.4. The continuous functional dependence of HmaxUlf.) on the initial density f can be illustrated ana
lytically for the maps (6.9) and (6.17) when they generate period 2 asymptotic periodicity. In particular consider a 
class of initial densities given by ( cf Provatas and Mackey, 1991a) 

f(x) = { 
0
½ x E h'1,1'1 +{] 

otherwise, 

where 1'l is the solution of 1'l = S2(1'1) and is given by 

for the hat map and by 

for the quadratic map. 

1 
1'l = a+ l 

(6.21) 

A plot of HmaxUlf.) for the hat map is shown in Figure 6.4. A remarkable feature of Figure 6.4 is the existence of 
a sequence of { values at which the limiting conditional entropy values are equal. For these values of l the asymptotic 
decomposition of pt.f is identical and the limiting conditional entropy is HmaxUlf.) =:: -0.01479 as we calculated in 
the previous example with an initial density given by (6.13). Note also the local minima in the limiting conditional 
entropy as the spreading parameter l increases. 

A similar comparison of the limiting conditional entropy can be made for the asymptotic periodicity of the 
quadratic map at r = r 1 . The same set of initial densities defined by (6.21) is considered. Figure 6.5 is the plot 
analogous to Figure 6.4 for the hat map. Note that for the quadratic map the maxima in the limiting conditional 
entropy do not define isoentropic points, although HmaxUlf.) =:: -0.093 as {-+ 1. Moreover, a zig-zag pattern similar 
to Figure 6.4 emerges but on a much smaller scale, as shown by the insets. • 

We close this section with the statement and proof of a sufficient condition for the weak form of the Second Law 
of thermodynamics. 

Theorem 6.6. Let P be a Markov operator in a normalized measure space, and assume that there is a stationary 
density f. > 0 of P. If there is a constant c > 0 such that for every bounded initial density f 

for sufficiently la.rge t, then pt is asymptotically periodic and 

This theorem assures us that if we are able to find some time t 1 such that the conditional entropy is bounded below 
for times t > t 1 , then the entropy is evolving under the action of an asymptotically periodic Markov operator and, as 
a consequence of Theorem 6.5, the conditional entropy of pt f approaches a maximum that is generally dependent on 
the initial density with which the system was prepared. 

Proof. Pick a subset E of the phase space X with nonzero Lebesgue measure µL(E). From the definition of the 
conditional entropy Hc(Ptflf,) and our hypothesis, for all sufficiently large times t we have 

t _ { t ( ( pt f ( X) ) { t ( ) ( pt f ( X) ) 
Hc(P flf.) = - }E Pf x) log f.(x) dx - Jx\E Pf x log f.(x) dx 

2-c. 
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Remembering the definition of the function TJ from equation {1.2), it follows that 

k pt f (x) log ( p; ~~~)) dx S c - fx\E pt f (x) log ( ~ ~~~)) dx 

= c+ fx\E T/ ( ~~~~)) µ.(dx) 

s C + T/max r µ.(dx) 
lx\E 

< c+ µ.(X). 
- e 

Further specify the set E by 

E = { x EX: ( ~.~~~)) > N}, 

where the constant N is selected to make µL(E) < 8. Then, 

log N k pt f(x) dx $ k pt f(x) log ( ~.~~~)) dx Sc+ µ.~X), 

or 1 c+ µ.(X) 
pt f(x) dx $ e = E. 

E logN 

Next, pick a second subset ACX of nonzero measure so 

f pt f(x) dx = f pt f(x) dx -f pt f(x) dx = 1 - µ.L(A). 
lx\A ix A 

Thus, 

f ptf(x)dx $ 1-µL(A) +E = k. 
JEu(X\A) 

It is clear that we may always select the set A in such a way that E < µL(A) < 1 and, hence, 0 < k < 1. Therefore, P 
is smoothing by definition. The rest of the proof is a direct consequence of the Spectral Decomposition Theorem 6.1 
and Theorem 6.5 concerning the convergence of the conditional entropy under the action of an asymptotically periodic 
Markov operator. D 

D. ASYMPTOTIC PERIODICITY AND CORRELATIONS. 
In the previous chapter we showed that temporal correlations in mixing systems decay to zero in spite of the fact 

that entropy is absolutely constant when the system is invertible. Suppose that instead of a mixing transformation 
we have an asymptotically periodic transformation with a unique stationary density J. of the corresponding Markov 
operator P, and, as a consequence, the system is ergodic. In this case the behaviour of the correlation function is quite 
different. 

Since P is asymptotically periodic and Theorem 6.1 also holds for L1 functions, we can choose f = TJ to obtain 

r 

pr+lry(x) = ~ .. \(ry)g0 ,,.(i)(x) + Q.,.ry(x). 
i=l 

Further, because of the ergodicity of P we can write the correlation function as 

R (T + 1) =< pr+lr, <J > a,rJ .,, 

or, more explicitly, 

Ra,r,(T+ 1) = t-\(TJ) fxgcx.,.(i)(x)u(x)dx+ ix u(x)Q.,.rJ(x)dx. (6.22) 



ASYMPTOTIC PERIODICITY NOTES 10 MARCH, 1995 FILE: APNOTES.TEX 11 

Due to the asymptotic periodicity of P, the first term in (6.22) is periodic in T with period T :S; r!. Furthermore, 
because of the convergence properties of the transient operator Q the second term will decay to zero as T ---+ oo. 
Therefore, for asymptotically periodic dynamics the correlation function naturally separates into sustained periodic 
and decaying stochastic components. 

This decoupling of the time correlation function into two independent components can be understood as follows. 
Asymptotically periodic systems have r disjoint attracting regions of their phase space X whose union is given by 

r 

LJ supp {gi}-
i=l 

Each of the regions supp{gi} map onto each other cyclically according to a(i). All ensembles of initial conditions 
will asymptotically map into these regions (i.e., all densities will decompose). Thus a time series will also visit these 
supports periodically, and we expect a periodic component in the time correlation function. However, iterates of the 
time series which return into any one of the supp {gi}, are described by a density 9i, and so there must exist a stochastic 
component of the correlation function (the second term of (6.22) ). 

Thus, asymptotically periodic systems have temporal correlations which are a combination of both periodic and 
stochastic elements and which never decay to constant values as t ---+ oo in spite of the fact that their conditional 
entropy does approach a local maximum as t ---+ oo. This is to be compared with mixing systems whose entropy is 
forever fixed by the mode of preparation of the system, but which nevertheless show an approach of the correlations in 
the system to zero at long times. The contrasting nature of these two results indicates that there is no connection to 
be drawn between the limiting behaviour of entropy in a system and the limiting behaviour of temporal correlations. 

E. SUMMARY. 
In this chapter we have shown how the property of smoothing for Markov operators is equivalent to asymptotic 

periodicity of sequences of densities (Theorem 6.1), and that asymptotic periodicity is sufficient to guarantee the 
existence of at least one state of thermodynamic equilibrium (with density given by equation (6.4)) as well as the 
increase of the entropy to a maximum as time progresses (Theorem 6.5). Interestingly, the maximum entropy to which 

,._, asymptotically periodic systems evolve in this circumstance (equation (6.19)) may be less than the absolute maximum 
value corresponding to equation (6.4), and usually depends on the initial density with which the system is prepared. 
Thus the entropy of the final thermodynamic state of an asymptotically periodic system depends, in general, on the 
initial state. Theorem 6.6 gives a sufficient condition for this behaviour in the form of the existence of a finite lower 
bound on the conditional entropy. Further, the behaviour of the entropy and correlations in asymptotically periodic 
systems is opposite to that of mixing systems, indicating that there is no connection to be drawn between entropy 
evolution and the limiting behaviour of correlations. 

In the next chapter we introduce a dynamical property even stronger than asymptotic periodicity which is both 
necessary and sufficient for the evolution of system entropy to its unique maximal value of zero. 
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Figure 6.1. The evolution of pt fin the period two window under the action of the hat map, with a= h. In (a) 
.f is uniform over .11 U .12. Since the 9i are uniform over Ji, i = 0, 1, pt .f sets into immediate oscillations without 
transients. In (b) .f is uniform over the subspace .11. Again ptj sets into immediate oscillations through the 

states 91 and 92· In (c) .f(x) = 4(5~V2lx, restricted. to .11 U .12. Now pt .f evolves through two transient densities 
before settling into a periodic oscillation. 
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Figure 6.2. A numerical illustration of one periodic cycle of the asymptotic sequence { pt f} under the action of 
the quadratic map for the parameter r = r 1 = 3.678573508. A transient of 20 densities has been discarded, and 
the iterates P 21 f, P 22 f, and P 23 f are shown. Since P 21 f = P 23 f, the sequence { pt f} asymptotically repeats 
with period 2. In (a) the initial density f, shown in the inset, is uniform over [0.7, 0.8]. In (b), f(x) = 200(x-0.9) 
over [0.9, l]. 
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Figure 6.3. Two period 4 cycles of the asymptotic sequence { pt f} for the quadratic map when r = r 2 = 
3.,592572184. In this figure 40 transients have been discarded and the iterates P 41 f, P 42J, P 43 f, P 44 f and P 45 f 
are shown. Since P 41 f = P 45 f, the sequence { pt f} asymptotically repeats with period 4. In (a) the initial 
density (inset) f is uniform over [0.5, 0.85]. In (b) f(x) = 200(x - 0.9) over [0.9, l]. 
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Figure 6.4. The limiting conditional entropy, HmaxUlf,), versus the spreading parameter~ for the hat map at 
a = J2. ~ is equal to the width of the support of an initial uniform density .f. The local maxima in the figure 
correspond to equal limiting conditional entropy values. 
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Figure 6.5. A graph of the limiting conditional entropy HmaxUIJ.) versus ~ for the quadratic map at r = r 1. 

The parameter~ plays the same role as in Figure 6.4. Variations in HmaxUIJ.) occur over a smaller~ scale for 
the quadratic map. (ii) is a blow-up of the inset box in frame (i). (iii) is a blow-up of the inset box in (ii). 


