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~ Some Considerations on Biological Organization 
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One of the many striking features of living systems is 
organization. Indeed, the essence of this property 
old question: "Which came first, the chicken or the egg?" . 

Circular organization, or circularities,may be observed in biologi
cal systems from the microscopic molecular level to the macroscopic 
ecological level. At the molecular level, the most famous is the DNA -
protein cycle. Thus, through several intermediate steps the DNA mole
cule produces protein enzymes which are, in turn, used in DNA syn
thesis. It is also important to note that during this process two DNA 
molecules may result out of one. Here, the circular organization is of 
an autocatalytic type which is just the condition that life can con
tinue as a self-maintaining process. The necessity and importance of 
Circularity and autocatalysis for living systems as parts of the self
generating and self-maintaining stream of life has been elaborated 
explicitly in the work of AN DER HEIDEN et al. /1 /, /2/. 

At the cellular level, the circular organization of the cell cycle 
gives rise to two daughter cells out of a single mother cell. 

Circular organization is not necessarily coupled to autocatalysis, 
e.g. generally there is a complicated circular interdependence between 
the organs of a multicellular organism. Thus the heart, liver, kidney 
and lungs are all highly dependent on one another for their individual 
integrity. Of course the number of organs in mature organisms is not 
increased. 

The production of organisms is again autocatalytic. From one (or, 
in the case of sexual reproduction, from two) organism two or more 
additional organisms may result. At this level the autocatalytic 
principle has been pushed to its extreme. Thus, a single tree may 
have, in principle, millions of offspring. 

Evidently, autocatalytic processes always produce populations (of 
molecules, cells, organisms etc.). Therefore, population dynamics 
generally includes autocatalytic feedback effects. Other nearly nec
essary effects are saturation (caused by environmental or internal, 
e.g. density, constrairits) and destruction, which is unavoidable in 
any open system. Many types of destruction are known, e.g. mechanical, 
thermodynamic, chemical, and biological (death). 
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The interaction of autocatalysis, saturation and destruction is 
capable of generating dynamics ranging from the most simple to the 
most complicated. In this paper a simple model is presented which 
combines these three principles and demonstrates a variety of their 
effects. 

2. A model for the interaction of autoc-atalysis, saturation, and 
destructI'OO 

Autocatalysis implies a circular dependence of a quantity x1 
single variable, a vector or a function of space) on itself. 
dependence is not necessarily realized after a single step, but 
nerally involves several intermediate steps which can be viewed 
grammatically as 

a 
This 

ge
dia-

The quantities xi are assumed to be functions of time: xi=xi(t). 
Each step requires a certain time for completion, so the time struct
ure of the cycle is 

The detailed dynamics in each step may, in fact, be very complicat
ed. A rather general Ansatz is given by 

t 
J Gi(t,t',xi(t'»dt' ( 1 ) 

i 1,2, ... ,n 

(in the case that i=1, set i-1 equal to n). 

Here the delays d i are implicit in the kernels Ki . The first integral 
describes production of the quantity xi' while the second integral 
describes its destruction. A mathematical or numerical analysis of 
system (1) is not yet available. 

The advantage of a general description like (1) is that many models 
in the literature may be recognized as special cases of this general 
system. In this way a definite relationship between these models may 
be established. Thus the well-known Goodwin model /3/ for the control 
of protein synthesis, closely related to early concepts of Jacob and 
Monod, is a special case of (1). Goodwin's system of equations, with 
delays introduced by LANDAHL /4/, is 

dX 1 (t) /dt 

dXi(t)/dt 
(2 ) 
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Here a1' a2"'" an and g1' g2"'" gn-1 are positive and constant 
rate factors. Only through the term f(xn(t-dn » is nonlinearity intro
duced. Goodwin, and most other investigators of this system, have 
assumed the function f: IR+ + IR+ to be either monotone increasing or 
monotone decreasing. In the first case system (2) represents a posit
ive feedback loop, in the second case a negative feedback loop. Ge
nerally it is presumed that the function f is bounded (i.e. f(x) S 
const. for all x EIR+) , reflecting the principle of saturation. A 
review of mathematical results concerning the behavior of solutions 
to the system (2) in the situation where all delays d i = 0, 
i=1 ,2, •.•• ,n, can be found in TYSON & OTHMER /5/. 

In case of negative feedback the essential result is that the 
system has a unique steady state which may be either (locally asymp
totically) stable or unstable. In the first case the steady state is 
also globally asymptotically stable, meaning that all solutions ap
proach the steady state as t + 00. If, on the other hand, the steady 
state is unstable then non-constant periodic solutions do exist (as 
proved for n=3 by TYSON /6/ and for arbitrary n by HASTINGS, TYSON & 
WEBSTER /7 j) . 

For n < 3 and no delays, according to these results periodic solut
ions do not exist. Computer simulations suggest that periodic solut
ions, in cases where they exist, define a unique limit cycle which is 
attractive with respect to all solutions with the exception of the 
unstable steady state. However, no proof of this conjecture is avail
able. 

In the case of positive feedback there is either a unique globally 
asymptotically stable steady state or there are several steady states 
which are either locally asymptotically stable or unstable. Computer 
simulations suggest that no undamped oscillations do occur, normal 
hysteresis appears to be common. However, this question is not yet 
completely settled. 

In considering situations with delays, let us return to the situat
ion of negative feedback, i. e. f monotonic decreasing. The restrict
ion n> 2 for the existence of periodic oscillations is not necessary 
when there are delays d i > 0. This was proved by HADELER & TOMIUK /8/ 
for n=1 (in which case the system (2) reduces to a single different
ial-difference equation), by AN DER HEIDEN /9/ for n=2, and finally by 
MAHAFFY /10/ for arbitrary n. 

These proofs only demonstrate that the system (2) has periodic 
solutions without addressing the stability of these solutions. How
ever, in the case of positive delays extensive computer simulations 
always show stable limit cycles. These cycles are simple in the sense 
that withiL one period each of the variables xi has a single maximum 
and a single minimum. 

For n=1 the system (2) reduces to the single equation 

dx(t)/dt = f(x(t-d» - a x(t). ( 3) 

Interestingly enough, this equation has been used in a variety of 
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quite different areas. WAZEWSKA & LASOTA /11/, before 1974, used it 
for modelling the production of red blood cells. MACKEY and his co
workers /12-17/ have used it to explain the origin of a variety of 
haematological diseases including aplastic anemia and periodic haem
atopoiesis, COLEMAN & RENNINGER /18/ applied·it to periodic excitat
ions of neurons, MAY /19/ to the population dynamics of whales; MACKEY 
and GLASS /20/ to the respiratory cycle; KING et al. /21/ to psychi
atric disorders like schizophrenia and panic attacks, AN DER HEIDEN et 
al. /22/ for inhibitory neural networks; MACKEY & AN DER HEIDEN /23/ 
to epileptic disorders; NISBET & GURNEY /24/ to blowflies; ANDERSON & 
MACKEY /25/ for commodity cycle oscillations. Solutions of equation 
(3) have also been used to explain the potential applicability of the 
concept of dynamical diseases /26/, /27/, /16/. 

In some of these cases it cannot be claimed that (3) is a very 
realistic description of the underlying biology. What is important, 
however, is that a single equation of this type is sufficient to 
produce nearly all the phenomena observed in these different areas. 
For many of these phenomena, in particular for complex periodic oscil
lations (exhibiting more than one maximum per period) and irregular, 
chaotic-like oscillations, it is essential that the feedback function 
f is not monotone, i. e. f represents neither strictly positive nor 
negative feedback. Instead, the graph of f must have at least one 
"hump" as illustrated in Fig. 1 a. 

( aJ (bJ 

Fig. ~ Feedback nonlinearities of mixed type. It is essential that the 
functions are neither strictly decreasing (negative feedback) nor 
strictly increasing (positive feedback), but have at least one "hump" 

Such a shape is quite reasonable for systems with autocatalysis and 
saturation. Since f(x(t-d» describes the production of the quantity 
x, autocatalysis requires frO) = 0: in the absence of x no new x can 
be produced (think e.g. that x is the concentration of red blood 
cells or the number of whales in a whale population). On the other 
hand, saturation implies that for large values of x no additional x is 
produced, i. e. f (x) + 0 as x + 00 • More generally it can be .said that 
a function like that in Fig. 1 a or b represents positive feedback in 
its increasing part and negative feedback in its decreasing part. The 
functions of Figures 1 illustrate mixed feedback. 

The fact that transition from single sign feedback to mixed feed
back tremendously increases the complexity of the behavior of the 
system was first discovered by MACKEY & GL~SS /20/ and independently 
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by WAZEWSKA & LASOTA /11/. They used computer simulations to study 
behavior of solutions to (3) and found phenomena like period doubling 
bifurcations and chaotic oscillations (see e. g. GLASS & MACKEY /26/ 
for illustrations). AN DER HEIDEN /28/, /29/ showed numerically that 
system (2) witho1,lt any delays (i. e. di=O for i=1,2 , .•• ,n) also pro
duces chaotic oscillations if f is assumed to be a humped function. 

However, it is extremely difficult to give any mathematical treat
ment of the phenomena revealed by the computer "solutions". Thus, in
sight into why these complicated-types of behavior occur is restrict
ed. Recently, however, some progress has been made by choosing part
icularly simple feedback functions (AN DER HEIDEN & WALTHER /30/, AN 
DER HEIDEN & MACKEY /31/, AN DER HEIDEN /32j). In the following we 
give a simple approach to illustrate how complicated temporal behavior 
may arise from simple interactions, incorporating destruction, mixed 
feedback and delay. 

~ ~ Paradigm ~ Complexity 

In this section we show, step by step, how a complicated time series 
may arise from a simple limiting case of equation (3). To facilitate 
the analysis, the feedback function f has the simple humped form 
illustrated in Fig. 2., i. e. 

if x < b or x > 1 
f(x) ( 4) 

if b:ii x :ii 

where the (constant) parameters band c satisfy 0 < b < 1 and c > O. 

c 

Fig. 2 Extreme case of a mixed feedback 
~ __ ~ ______ ~ __________ ~~~ nonlinearity with a single hump 

b 

Combining equations ( 3) and ( 4) gives 

" ! - a x(t) if x(t-1) < b or x(t-1) > 
dx(t)/dt 

c - a x(t) if b:iix(t-1):ii1 

(Sa) 

(Sb) 

where we have set the delay, d, equal to 1 by choosing the unit of 
time t to be d. 

The choice of such a step nonlinearity is purely for illustrative 
purposes. (The form of the nonlinearity suggests a process with two 
thresholds in production: a lower threshold (at x=b) for the onset of 
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production; and an upper one (at x=1) for the cessation of pro
duction.) However, the type of behavior demonstrated here is not an 
artefact of the discontinuity in the function f, and in /30/ a mathe
matical argument is given why all results for the step function also 
hold for a class of smooth nonlineari ties •. The general case of a 
smooth nonlinearity requires substantially more effort in mathematical 
analysis, and also obscures understanding with a mountain of technical 
considerations. By considering the simpler situation we illustrate the 
principal aspects which may be important for understanding complexity 
in the applied sciences. 

Since f is either 0 or c, Eq.(S) says that any solution x(t) 
obeys, alternately in successive time intervals, either 

x(t) if x(s»1 or x(s)<b for all sdt-1,t-1) (6a) 

or 

x(t) = y -( y- x(t» e-a(t-t) if b:>x(s):>1 for all s£(t-1,t-1) (6b) 

where y = c/ a. 

Eq.(6a) (exponential decrease to 0) holds if, in the time between 
t-1 and t-1, the values of x are larger than 1 or smaller than b. 
Correspondingly x obeys Eq.(6b) (exponential increase to y) whenever, 
in the time interval from i-1 to t-1, the values of x are between b 
and 1. Thus any solution of Eq. (5) is a piecewise and continuous 
composition of the functions of Eq.(6a) and E~.(6b)' A change between 
Eq.(6a) and Eq.(6b) takes place at any time t if, at time t*-1, the 
variable x(t) crosses the level b or 1. Figures 3 through 6 show 
solutions of Eq.(S), and illustrate this pattern. 

For simplicity, we restrict our attention to the case b = 1/2 and a 
fixed ratio y = 2. Some remarks for arbitrary parameters are given in 
the end of this section. In the following, we show that increasing a 
from low to high values (thereby also increasing c because Y = 2) 
leads to a sequence of increasingly more complex oscillations. 

The characterization of the temporal evolution of the process com
mences at time to=O. Because of the delay an arbitrary initial con
di tion x (t), -1 :> t :> 0, mus t be given which unique I y determines x (t) 
for all t> O. For simplicity start with the initial condition x(t)=1 
for -1 ~ t:> 0 (later it is shown that the following considerations hold 
equally well for a broad class of initial conditions). Then in the 
interval from t=O to t=1 Eq.(6b) applies (take t=O), resulting in 

x(t) = 2 - exp (-at) for 0:> t;$ 1 (7 ) 

and thus, in particular, x (1) = 2-exp( -a). In Figs. 3 through 6 the 
time course of x(t) is plotted for various values of a. All of these 
plots show this initial rise of x(t) described by Eq.(7). In all of 
these figures the horizontal lines x=b=1/2 and x=1 are plotted as they 
prove to be important in understanding the solution: namely whenever 
they are crossed, then one time unit later an alteration between the 
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equations (6a) and (6a) applies, i. e. an alteration between exponent
ial increase and exponential decrease takes place. 

Since x (t) is larger than 1 between t=O and t=1 
for t between 1 and 2 (note that now t=1) and thus 

x(t) = x(1) e- a (t-1) for 1::; t::; 2 • 

In particular x(2) = x(1) exp(-a). 

Eq.(6a) applies 

(8 ) 

The first maximum of x(t) occurs at t = 1. Subsequently, x(t) 
decreases exponentially, as described by (6a), until the level x(t)=1 
is again reached. Denote the time at which this occur~ t 1 , so x (t 1 ) = 
1 (see Fig. 3). Then because of Eq.(6a) (now with t=t 1 ) x(t) will 
still decrease exponentially until the time t=t1+1, when it has the 
value x(t 1+1) = exp(-a). However, according to Eq.(6b) with t=t1+1, 
once this point is reached x(t) rises again, and therefore at t1+1 a 
minimum is attained. As long as the parameters satisfy 

exp ( -a) > b = 1 /2 (9 ) 

this minimum is above the level b. 

Assume inequality (9) to hold (as, e.g., in Fig. 3a for a = 0.6). 
After t=t1+1, the variable x(t) increases according to Eq.(6b) until a 
time t=t*+1, where t* is the first time when x(t) crosses the level 1 
from below. Clearly the time course of x(t) in the time interval from 
t=O to t=1 and in the interval from t=t* to t=t*+1 coincide and so we 
have determined one period of a periodic solution of Eq.(5). Figure 3a 
shows a periodic solution (with period '" 3.3) of this type. It is 
simple in that there is just one minimum within one period. 

The situation evolves in a different fashion if the inequality in 
(9) is reversed, Le., if exp(-a) < b. Then since x(t) is below the 
level b for a certain time interval there is a decrease of x(t) in the 
corresponding interval one time unit later. This decrease can be seen 
in Fig. 3b (for a=0.8) to occur between t=3 and t=4, and it is due to 
the undershoot by x(t) of the level b=1/2 between t=2 and t=3. If a is 
not'too large this undershoot lasts for a rather short time and 
consequently the short decrease of x(t) in the time between t=3 and 
t=4 will not lead to a crossing of the level 1 from above. Afterwards 
x (t) again increases until time t=t * + 1, where t * again denotes the 
first time where x(t) crosses level 1 from below. This increase is 
followed by an exponential decrease lasting until t=t2+1, where t 2= 
t*+1 is the time where x(t) crosses 1 from above again. Obviously 
x(t 2+1) = exp(-a). Hence during the interval t=t2 until t=t2+1 the 
solution x behaves just as in the time interval from t=t1 to L1 +1. 
Again we obtain one period of a periodic solution, where, the period 
equals t 2-t 1 ('" 3 for a=0.8, see Fig. 3b). However, this solution is 
slightly more complex than found for low values of a, since now there 
are 2 minima within one period. 

If a is further increased beyond 0.8 then the time when x(t) < b=1/2 
becomes progressively more prolonged (compare Figs. 3b, c et. seq.). 
As a consequence, for values of a near a=0.86 the decrease of x(t) one 
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Fig. 3 The analytic solutions to 
Equation (3) in conjunction with 
Equation (4), and various values 
of the decay rate a. b=1/2, 
y =c/a=2, x(t)=1 for -1:1i t:ii 0, 
t=O to 17 and x=O to 2 through
out. The vertical lines here and 
in Figs. 4, 5 and 6 are spaced 
one .time unit apart, and the 
horizontal lines are x=O, 1/2, 1 
and 2. (a) a=0.6 (b) a=0.8 (c) 
a=O.86 (d) a=0.88 (e) a=O.9 (f) 
a=0.98 (AN DER HEIDEN & MACKEY 
/31/l 

time unit later lasts so long that x(t) crosses the level 1 from above 
(for a=0.86 this occurs between t=3 and t=4, see Fig. 3c), ultimately 
giving rise to an additional minimum of x(t) in the interval between 
t=4 and t=5 (see Fig. 3c). This in turn implies that the duration of 
the second undershoot of the level 1/2 by x (t) becomes shorter, so 
short in fact that the decrease between t=6 and t=7 does not go beyond 
the level 1. Since between t=6 and t=7 the solution x (t) is larger 
than 1, x(t) afterwards decays exponenti'ally to the value of exp(-a), 
completing one cycle which started at t=t1 (see Fig. 3c). The import
ant fact to note is that the crossing of 1 between t=3 and t=4 leads 
to a sudden increase of the period from about 3 at a=0.8 to about 6 at 
0.86. A period doubling bifurcation is present at just that value of 
the parameter a for which the minimal value of x(t) between the times 
3 and 4 equals 1. One period now contains 5 minima. 

It may happen that a minimum will again disappear if a is increased 
still further. An example is shown in Fig. 3d, where a=O.88. There, 
the increase of x(t) between t=4 and t=5 has become so large that the 
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undershoot of the level 1/2 present for a=O.86 between t=5 and t=6 is 
now missing. This, in turn, obliterates the minimum between t=6 and 
t=7. However, this change has no drastic influence on the period. 

For a=O.9 (see Fig.3e) the increase of x(t} in the time interval 
between t=4 and t=5 is so large that an additional minimum is again 
created between t=5 and t=6, though the periodicity remains unchanged 
and the period is still near 6 (remember that the time unit is just 
the delay time). 

The next large change of period occurs between a=O.97 and a=O.98. 
For a=O.98 (see Fig. 3f) the maximum between t=5 and t=6 has become so 
large that the duration of the overshoot above 1 is sufficient to 
create a minimum between t=6 and t=7 which is below 1. The second 
exponential decay from 1 to exp (-a) occurs between t=10 and t=12 
because x (t) is above 1 in the interval between t=9 and t=l O. The 
periodic solution obtained has a period of about 8.8 time units and 
includes 9 minima. In this case the period of the new bifurcating 
solution is not twice as long as that of the original periodic solut
ion. 

As a is increased, progressively more complex solutions arise. The 
details of these behaviors may be reconstructed as in the above ex
amples, using Eq.(6a} and Eq.(6b}. Instead of discussing the details 
we briefly outline a criterion to demonstrate the existence of a 
stable periodic solution, which has already been applied several 
times. 

~ ~ Sufficient Criterion for Periodicity 

Whenever the solution x(t} exceeds the value 1 during a time inter
val longer than the delay (remember d=l here), then afterwards the 
solution must decay exponentially to the value exp(-a}. We have chosen 
the initial condition such that this decay occurs after one time unit. 
Therefore, if this occurs later on a second time we have ascertained 
that the solution between thes two events comprises just one period of 
a periodic solution, no matter what details the solution shows in 
between. 

It is easily shown that the periodic solutions so far observed all 
obey this criterion. Its usefulness is seen directly from an example, 
as in Fig. 4a where a=1.0015. Here x(t} is larger than 1 in the 
interval from t=O to t=l and, for the second time, in the interval 
from t=12.3 to t=13.6. Therefore, there is a periodic solution between 
t1 and t2 (see Fig. 4a) with period t 2- t1 '" 12.2 (and 13 minima). 

It is not a general rule that the length of the period, or the 
number of minima within one period, will increase when the parameter a 
is increased. For a=1.0125 (see Fig. 4b) the period is only about 7, a 
reduction by nearly a factor 2 from the period at a=1.0015 (Fig. 4a). 
The reduction is due to the fact that the seventh minimum shown in 
Fig. 4a, which is below 1, has a value above 1 for a=1.0125. Thus our 
criterion for periodic solutions applies in the interval between t=7 
and t=8. 
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Fig. 4 As in Fig.3 with (a) 
-a:-1:001s (b) a=1.012S 
(c) a=1.001 

Similar considerations hold for the pair a=1.001 (see Fig. 4c) and 
a=1.001S, where there is a reduction from a period of length 15 to a 
period of 12.2 (the example in Fig. 4c shows 16 minima wi thin one 
period). 

It should be noted that though this criterion is sufficient for the 
existence of a periodic solution, it is not necessary. Fig. Sa shows a 
periodic solution for a=2.7S which does not satisfy the criterion. 
However, a situation as in Fig. Sa is quite exceptional since it 
requires a very special composition and fitting of pieces of increas
ing and decreasing exponentials. Indeed Figs.Sb (a=2.7) and Sc 
(a=2.77S) again exhibit periodic solutions of the more general type 
(now with periods 72.4 and 20.2 respectively, count the number of 
minima!). 

Figs.6a and 6b show two records of solutions where the period, if 
there is any at all, is longer than the time for which the solution 
has been computed. It is noteworthy that within time unit (i.e. the 
time delay) there occur many oscillations if a is large, and thus the 
time scale of the fine structure of the solutions for large a is much 
smaller than the time delay. 

All of the periodic solutions satisfying the discussed criterion of 
periodicity are stable in the following sense: If y(t), -1:;; t :;; 0, is 
any other initial condition satisfying b < y(t) <cia (assuming cia> 1) 
and not crossing the value 1 from above, then the corresponding solut
ion y (t), t > 0, converges to some time shift x (t-to ) of the periodic 
solution x (t) , t > 0 (as may be seen by following the solutions for two 
time uni ts ) . 

3.2 Existence of Stable Limit Cycles of Spiral Type 

The previous 
successively 

sections 
arise if 

give 
some 

some intuition into 
parameter is varied 

how complexi ty 
systematically. 

may 
The 
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!:.l.2....:.. ~ As in Fig. 3 with 25 
time units per panel. 
(a)a=2.75, t=O to 50, 
(b) a=2.7, t=O to 75, 
(c) a=2.775, t=O to 25 

!:.l.2....:.. ~ As in Fig. 3 with 25 time 
units per panel. (a) a=6, t=O to 150, 
(b) a=20, t=O to 50 

indicated techniques can be much more sharpened and extended such that 
it is possible to prove some far- reaching results. In the following 
sections we shall describe some of these results. For the proofs the 
reader is referred to the literature, essentially to the papers /30/, 
/31/, /32/. 

A periodic solution is called of spiral type if one of its periods 
contains several maxima with increasing amplitude. In other words, 
during such a period the values of the solution at successive times of 
local maxima increase, and after this period the cycle repeats start
ing with a maximum with lowest value. It has been proved (see /31/) 
that there are values of the parameters a and c for which the follow
ing proposition holds: 

There is a sequence of values (bn ), n=l, 2, .... , b n < b n +1 , such 
that for any b satisfying b n < b < b n+1 there exists an asymptotically 
orbi tally stable periodic solution (limit cycle) of spiral type to 
Equations (3) & (4) having n maxima within one smallest period. As 
n+ 00 the length of the period of the corresponding periodic solut
ions tends to 00 • 
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3.3 Existence of Chaotic Solutions 

There are many different definitions of chaos in the literature. 
For nonlinearities f of the form 

J 0 if x <b 
f(x) c if b::i x :5 

1 d if 1 < x 

the following type of chaos can 
of the parameter values a, b, c, 

(10) 

be proved to exist for at least some 
and d (for specification see /31/). 

Let (ni)' i=1,2, ••• , be an arbitrary sequence of natural numbers 
satisfying ni+1> ni. Then there exists a solution x(t) of Equations 
(3) & (10) with the following properties: 

x (t) has infinitely many maxima occurring at times t j , j=l, 2,3, ..• , 
t j +1 > t j . At other times no maxima occur. The relations 

if j = ni for some i 

and 

are satisfied. 

More loosely speaking, there are solutions with arbitrary mixtures of 
small oscillations (where values at the maxima do not exceed the value 
one) and large oscillations (where values at the maxima do exceed 1). 

3.4 Statistical Behavior 

There is at least one difficulty with this and similar types of chaos. 
Just as a limit cycle or a steady state may be stable or unstable, the 
chaotic domain in the state space may be stable or unstable (or equi
valently attractive or repelling). If it is unstable and if, moreover, 
its measure in the state space is zero, then generally the chaotic 
orbits will not be observed in any physical realization of the 
system. Indeed, it can be shown that for certain regions of the para
meters (a, b, c, d) the chaotic set exhibited in the previous section 
has the structure of a Cantor, set, hence has measure zero, and is 
unstable. Therefore it is important to find other domains in the 
parameter space where the chaotic behavior is not exceptional. This 
problem is considered in the paper /32/. In fact, it could be proved 
that for certain parameter values (a,b,c,d) there exists an attract
ive set of solutions to (3) & (10) such that the values of these 
solutions at their (infinitely many) maxima are distributed'according 
to a continuous probability distribution. 

More precisely it could be proved /32/ that there is an interval I 
and a map G: I -+- I such that the following conditions are satisfied: 

For each SE I there is a solution xs of (3) & (10) with the following 
properties: 
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(i) There are infinitely many times (t i ), i=1, 2, ... , 0 < t i < ti+1' such 
that Xs has a maximum at ti 

(iii) There is a density h: I -+ IR+ such that G is invariant, ergodic, 
mixing, and exact with respect to h. 

The notions of ergodicity, mixing, and exactness describe increas
ing degrees of random and chaotic types of behavior. For an extensive 
discussion of these notions the reader is referred to the book by 
LASOTA & MACKEY /33/. The notion of mixing is really adapted to and 
from the ordinary idea of turbulence: Take any (arbitrarily small) 
subinterval J of I. Applying iteratively G on the points of J these 
in the long run become distributed in a random fashion across the 
whole interval I (just like in a turbulent pool of water the molecules 
of any small volume become distributed randomly across the whole pool 
in the course of time). In particular the phenomenon of "critical 
dependence of time courses on initial conditions" is realized. 

3.5 The Influence of Discontinuities on the Solutions 

When viewing the solutions presented in the previous sections as a is 
varied, one naturally wonders if the results are in some sense arti
factual and due to the discontinuities in the slope and value of the 
function f as given in Eqs.(4) and (10). That this is definitely not 
the case can be shown analytically by techniques which have been 
successfully applied for a class of nonlinearities and the same delay
differential equation in /30/. All of the described qualitative phe
nomena are also obtained with smooth feedback functions f, at least if 
these are in a certain sense close to the described discontinuous 
nonlinearities. 

Of course there are even large quanti ta ti ve differences between 
solutions to equation (3) with different functions f. In order to give 
an impression about the variability in the appearance of solutions in 
Fig.7 numerical solutions are shown with other types of functions f, 
some aspects of which are, however, related to the previously discuss
ed f. All of these types are encompassed by 

1 

0 if o :£ x < 0 

c(x- o)/(s-o) if 0:£ x < S 

f (x) c if s:£ x :£ Ii! ( 11 ) 

1 
c(x-1)/(1i! -1 ) if Ii! < x :£ 1 

0 if 1 < x 

In Eq.(11) the parameters satisfy 0:£0:£s:£Ii!:£1 and c> O. Eq.(11) 
reduces to Eq. (4) if 0 = s = b and Ii! =1. As in the previous sections 
time is scaled, so d=1. In all calculations we used a=1. 7 and c=3.4 
(thereby preserving the previous relationship Y =c/a=2), and an in-
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itial condition of x(t)=1 for -1;:;; t;:;; O. The other parameters (E ,<5 , 
~ ) are different for each of t~e numerical solutions in Fig. 7a-g and 
are given in the legend. The interested reader may graphically realize 
which types of nonlinearities we captured by these choices of para
meters. By help of the horizontal lines in Fig. 7, corresponding to 
the levels x= <5 , x= E , x= ~ , the discussion of the first part of this 
section may be continued to obtain some understanding why the solut
ions behave as they do. 

The essential points to note here are that: (1) the same techniques 
developed in the previous sections may be applied to understand the 
evolution of complex patterns; and (2) the removal of discontinuities 
in the values of f at x=1/2 and (or) at x=1 has smoothed the solut
ions. Further, the numerically generated solutions obey the general 
cri teria for the determination of periodicity set forth previously 
(e.g. on this basis the period in Fig. 7b is approximately 4.3). Note, 
however, that some of the numerical solutions (Figs. 7d,g) are not 
periodic over the time displayed here. 

4. Discussion 

We have shown that simple mathematical tools (essentially knowing 
some qualitative properties of the exponential function) are suffic
ient to obtain insight into how complex, and at first sight somewhat 
unpredictable, temporal patterns may arise from simple deterministic 

43 



mechanisms. As we pointed out, with somewhat more difficult mathemat
ical techniques it has been proved that for a class of smooth non
lineari ties f, Eq. (3) has infinitely many periodic solutions with 
differ ing periods (depending on ini tial condi tions ) and, moreover, 
infinitely many (so-called) aperiodic solutions. Aperiodicity may be 
defined in a way which incorporates properties essential for random 
processes /33/. Therefore deterministic and stochastic behavior are 
not mutually exclusive categories. For an observer not knowing the 
underlying deterministic structure (as given, e.g., by Eq.(3)) the 
process appears to be lacking in order despite the fact that all its 
details can be reproduced, and are determined by, a single equation. 

It is important to note that in an experimental context the quest
ion of periodicity in a process is unanswerable if the period is 
longer than the period of observation. Moreover, as observed above, 
small changes in the parameters may lead to entirely different period
ic patterns. Since in practice parameters are seldom absolutely con
stant, this is yet another potential source of complexity and irregul
ari ty. 

Here, we have only discussed situations in which system dynamics 
are sensitive to the properties of the system some fixed time d in the 
past. However, there are two much more general situations which occur 
in a variety of applied sciences and which have received little at
tention. 

1. State-dependent delays. In the first of these, the character
istic time delay d of the system is no longer constant but now depends 
on the state of the system at the current time, i. e., d=d(x). Though 
this may seem to be a quite peculiar situation, a simple example will 
suffice to illustrate how it may occur. 

In mammals, platelets are produced from cells in the bone marrow 
known as megakaryocytes. The production of immature megakaryocytes is 
controled by the number of circulating platelets, probably mediated by 
a poorly characterized hormone known as thrombopoietin. As megakaryo
cytes age, they undergo repeated rounds of DNA synthesis and nuclear 
division but without cytokinesis, so they may exist at ploidy values 
of 2 N, 4 N, 8 N, 16 N, or 32 N. Thus ploidy value is a convenient 
index of megakaryocytic age. In the normal situation, the vast major
ity of platelets are produced by megakaryocytes of 8 N ploidy, and the 
age of the megakaryocyte at this ploidy value is equivalent to a time 
delay in the platelet production system because of the platelet regul
ation of megakaryocyte production. 

However, a variety of animal experiments as well as clinical ob
servations in humans have shown that the ploidy value at which mega
karyocytes produce platelets is proportional to circulating platelet 
numbers. Thus,the consequence of this is that the essential time delay 
in the platelet production system is a monotone increasing function of 
platelet number. 

Numerical simulations of the platelet control system (BELAIR & 

MACKEY /34/) reveal that time delay differential equations with a 
state-dependent delay of this type may display an astonishing array of 
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dynamical behavior. Many other biological and physical examples also 
exist in which state-dependent delays certainly exist and which may 
play a crucial role in determining dynamical behavior. Other than 
existence and uniqueness theorems of DRIVER /35/ there seems to be no 
analytic treatment of these problems in the literature. FELDSTEIN & 

NEVES /36/ have developed techniques for the numerical investigation 
of state-dependent delay differential equations. 

2. Future effects. A second example of complicating behavior may 
ar ise in sys tems where the current dynamics depend, in some fashion, 
not only on the behavior in the present and in the past but also on 
future dynamics. Though we are totally unaccustomed to thinking about 
the possibility of the future affecting the present because of our 
perceptions of macroscopic causality, there are serious reasons for 
considering such possibilities. Two examples will suffice for il
lustration. 

In the first instance, a wide variety of learned neural programs, 
e. g. catching a ball, walking on a treadmill, must integrate not only 
past and present system states but must also attempt to estimate 
future system states in order to operate smoothly. As a second example 
we might consider economic commodity markets in which the current 
market dynamics are a reflection of what has transpired in the past, 
what the current situation is, and what the anticipated future market 
position will be. All of these factors playa role in the operating of 
futures markets but have not, to our knowledge, ever been considered 
from a formal mathematical point of view. 

Other examples from the physical sciences exist, and we mention 
only that arising in electromagnetic field theory in which, mathemat
ically equally valid, advanced and retarded solutions to Maxwell"s 
equations exist. Customarily, only the L"etarded solutions (with the 
time delay dependent on particle position, thus state dependent) are 
taken,though there is no ~ priori reason to reject the equally valid 
advanced solutions that are dependent on the future dynamics. Again, 
this is a poorly explored area in the mathematical literature. 
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