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Abstract
Periodic hematological diseases such as cyclical neutropenia or cyclical thrombocy-
topenia,with their characteristic oscillations of circulatingneutrophils or platelets,may
pose grave problems for patients. Likewise, periodically administered chemotherapy
has the unintended side effect of establishing periodic fluctuations in circulating white
cells, red cell precursors and/or platelets. These fluctuations, either spontaneous or
induced, often have serious consequences for the patient (e.g. neutropenia, anemia, or
thrombocytopenia respectively) which exogenously administered cytokines can par-
tially correct. The question of when and how to administer these drugs is a difficult one
for clinicians and not easily answered. In this paper we use a simple model consisting
of a delay differential equation with a piecewise linear nonlinearity, that has a peri-
odic solution, to model the effect of a periodic disease or periodic chemotherapy. We
then examine the response of this toy model to both single and periodic perturbations,
meant tomimic the drug administration, as a function of the drug dose and the duration
and frequency of its administration to best determine how to avoid side effects.
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1 Introduction

Hematopoiesis is the term for the process of blood cell formation. Normally main-
tained at a homeostatic level within certain bounds (that vary between cell types), the
numbers of circulating white cells, red cells, and platelets typically do not display any
evidence of oscillatory dynamics. However, there are many hematopoietic diseases
[so called periodic diseases (Glass and Mackey 1988)] in which cycling of one or
more circulating blood cell types is seen. Examples include cyclical thrombocytope-
nia (CT) (Langlois et al. 2017), cyclical neutropenia (CN) (Colijn andMackey 2005b)
and periodic chronic myelogenous leukemia (PCML) (Colijn andMackey 2005a), and
there have been numerous mathematical modeling studies of these disorders aimed at
their understanding and treatment (Craig et al. 2015, 2016; Foley and Mackey 2009).

While cyclicity in circulating blood cell numbers is relatively rare in disease states,
induced cyclicity of one or more circulating hematopoietic cell types as a byproduct of
periodically administered chemotherapy is all too common. This cycling is most often
encountered in the neutrophils (with a concomitant risk of infection when neutrophil
numbers fall to sufficiently low levels), but also may be observed in the platelets (with
an accompanying increased risk of bleeding and stroke at the low point of the platelet
cycle, or thrombosis at the high point) as well as rarely in the erythrocytes (red blood
cells, with accompanying anemia at the low point of the cycle). The commonality of
this cycling with its attendant side effects (infection, bleeding, anemia) is one of the
primary reasons leading to an interruption and/or cessation of chemotherapy.

In mammals hematopoiesis starts in the bone marrow with the proliferation and
subsequent differentiation of hematopoietic stem cells (HSCs) into one of the three
major cell lines, and ends with the release of mature blood cells into the circulation.
Although all mature blood cells have the HSCs as their common origin, the control of
their production is only partially understood (Beuter et al. 2003). However, the broad
outline is clear.

Thenumbers of circulating blood cells are controlled by adelayednegative feedback
mediated by cytokines, such as granulocyte colony-stimulating factor (G-CSF) for the
white blood cells, thrombopoietin (TPO) for the platelets, and erythropoietin (EPO) for
the red blood cells (Mackey et al. 2017). The periodic administration of chemotherapy,
or the existence of hematological disorders like CN, PCML, or CT, may lead the level
of peripheral blood cells to exhibit oscillations that are more or less regular (Craig
et al. 2015; Foley and Mackey 2009; Mackey et al. 2017). There is a vast literature
of mathematical models that propose how to control chemotherapy side effects or
understand periodic hematological disorders, see for example Beuter et al. (2003,
Chapter 8), Foley and Mackey (2009) and Pujo-Menjouet (2016).

A scalar delay differential equation (DDE),with a linear piecewise constant negative
feedback nonlinearity, which captures the essence of the negative delayed feedback
mechanism involved in the control of blood cells by cytokines,was analyzed inMackey
et al. (2017). This equation has an oscillatory solution (to mimic an inherent oscil-
lation due to a periodic disease or induced, for example, by the administration of
chemotherapy), and was used as a toy model to examine analytically the effect of a
single perturbation on the limit cycle. The single perturbation was applied at different
points in the limit cycle to mimic the delivery of a cytokine (G-CSF, TPO, or EPO)
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and to examine the subsequent effect on the model oscillation. The single perturba-
tion amplitude and duration were related to the dose and time of administration of an
exogenous cytokine, as it is known that the timing of the administration of a cytokine
can be crucial in its clinical effect (Mackey et al. 2017). In Mackey et al. (2017) the
results were limited to an examination of a single stimulus as the authors were unable
to deal with the clinically more interesting case of a periodic stimulus. Here, we study
the effect of a periodic perturbation on the dynamics of this delay differential equation.

This paper is organized as follows. Section 2 presents the model background and its
DDE with discontinuous (Heaviside step function) delayed feedback and summarizes
some fundamental results from Mackey et al. (2017) concerning the response of the
limit cycle to a single stimulus. Section 3 extends the analysis from Mackey et al.
(2017) of the response of the periodic solution to a single stimulus. We further define
the concept of resetting time for a single perturbation and investigate its maximum
and minimum values as function of the perturbation phase. We also describe a special
case where changes in the phase and amplitude of the perturbation leads to solutions
close to unstable limit cycles.

Section 4 analyzes the response of the DDE to a periodic perturbation. We define
sufficient conditions to obtain a periodic solution such that all localminima are positive
(clinically important), and also show examples of solutions with different numbers of
local minima and maxima. The proofs of all the results stated in the remarks and
propositions are presented in “Appendix”. Section 5 considers our modeling results in
the context of cytokine administration, and carries out a detailed comparison with a
more comprehensive model of Zhuge et al. (2012). The penultimate Sect. 6 presents a
variety of bifurcation results in our model system, while Sect. 7 gives a brief summary
and prospects for further work.

2 Model background

Here we consider the simple mathematical model used in Mackey et al. (2017) to
describe the dynamics of a circulating blood cell population x(t) in which the cell
death rate of circulating cells is denoted by γ and their production rate is described
by a delayed negative feedback mechanism f (x(t − τ)). The delay τ captures the
physiologically known delay due to cellular division, differentiation and maturation.
The dynamics of x(t) is taken to be described by [see Mackey et al. (2017)]

x ′(t) = −γ x(t) + f (x(t − τ)), (1)

where the piecewise constant nonlinearity f is of the form

f (x(t − τ)) :=
{
bL for x(t − τ) < θ,

bU for x(t − τ) � θ,
(2)

with γ > 0, θ > 0, bL > bU > 0, bU �= γ θ . To solve the initial value problem (1)
we must specify the initial function ϕ : [−τ, 0] → R
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1640 D. C. De Souza, M. C. Mackey

x(t) = ϕ(t) for − τ � t � 0. (3)

Denote the solution of (1) with initial function (3) by x(t, ϕ) and the zeros of the
solution x(t, ϕ) for t ∈ [−τ,∞) as the set of all z j , with j ∈ N, such that x(z j , ϕ) = 0.
Here we only consider initial (history) functions (3) that are continuousC([−τ, 0],R)

with a finite number of zeros. Denote by Z0 ⊂ C([−τ, 0],R) a set of history functions
which has at most one zero on [−τ, 0] and changes sign at this zero. Given a history
function ϕ0 ∈ Z0, it follows from Mackey et al. (2017, Section 3) that (x(t, ϕ0) − θ)

has a strictly increasing sequence of zeros z j = z j (ϕ0) in (0,∞), j ∈ N, such that

z j + τ < z j+1 for all j ∈ N.

The model given by (1) and (2) contains five parameters {γ, τ, bU , bL , θ}. Using
the change of variables ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(t) → x(t) + θ,

t → γ t,
τ → γ τ,

bL := γ (θ + βL),

bU := γ (θ − βU ),

(4)

we can rewrite (1)–(2) as a function of three parameters {τ, βU , βL}, namely

x ′(t) = −x(t) + f (x(t − τ)), (5)

where

f (x(t − τ)) :=
{

βL for x(t − τ) < 0,
−βU for x(t − τ) � 0,

(6)

with −βU < 0 < βL , τ > 0. Equation (5) with f (x(t − τ)) defined by (6) captures
the negative delayed feedback mechanism involved in the control of hematopoietic
cells by cytokines. For the initial function

x̃(t) := −βU + βU e
−(t+τ) for − τ � t � 0,

the solution of Eq. (5) is a limit cycle x̃(t), and is given by (7) (Mackey et al. 2017)
and is presented in Fig. 1.

x̃(t) :=
{

βL + (¯x − βL)e−t for 0 � t � z̃1 + τ,

−βU + (x̄ + βU ) e−(t−z̃1−τ) for z̃1 + τ � t � T̃ .
(7)

where the minimum (¯x) and maximum (x̄) of x̃(t) are given by (Mackey et al. 2017)

¯x := −βU (1 − e−τ ), x̄ := βL(1 − e−τ ), (8)

T̃ is the period of the limit cycle (7) and z̃ j , with j ∈ N>0 := {x ∈ N | x > 0}
represents the zeros of x̃(t). For j > 2 we have z̃ j = z̃ j−2 + T̃ . The period T̃ and the
zeros z̃1, z̃2 are given by (9) (Mackey et al. 2017).

123

Author's personal copy



Response of an oscillatory differential delay equation… 1641

Fig. 1 A schematic representation of the limit cycle (7) on the interval [− τ, T̃ ]

z̃1 := ln
βL − ¯x

βL
, z̃2 := z̃1 + τ + ln

βU + x̄

βU
, T̃ := z̃2 + τ. (9)

At t = 0 where the limit cycle has a minimum point and at the maximum of the limit
cycle when tmax := z̃1 + τ the derivative of x̃(t) is undefined. From (9) it is clear that
z̃ j+1 > z̃ j + τ for all j ∈ N>0.

For every history function ϕ restricted to the set ϕ0 the solution x(t, ϕ0) of (5)–(6)
converges to the limit cycle (7) within a finite time and with a new phase, and this limit
cycle is stable (Mackey et al. 2017, Theorem 3.3). The DDE (5)–(6) admits infinitely
many other periodic orbits, but are all unstable (Mackey et al. 2017, Remark 3.2 and
3.3).

3 Single stimulus

In this section we consider the response of Eq. (5) to a single pulse perturbation. We
summarize some notation from Mackey et al. (2017), defining the resetting time for
the pulse-like perturbation and distinguishing it from the concept of cycle length map
defined in Mackey et al. (2017). We show that the resetting time is always less than
the cycle length map, and that the minimum resetting time is equal to or greater than
the stimulus duration. We also show how a single perturbation can lead to an infinite
resetting time because of an unstable limit cycle. The influence of the amplitude, phase
and time duration of the perturbation on the cycle length map is also examined.

Consider a single pulse-like perturbation of amplitude a > 0 and duration σ ∈
(0, τ ] which starts at t = Δ ∈ [0, T̃ ), where T̃ is the period of the periodic solution of
Eq. (5) with f (x(t − τ)) given by the discontinuous function (6). For Δ � t � Δ+σ

Eq. (5) becomes
x ′(t) = −x(t) + f (x(t − τ)) + a. (10)

Mackey et al. (2017) examined the response of the limit cycle (7) to a single pulse-like
stimulus with positive amplitude a, as defined in Eq. (10). They calculated theminima,
maxima and period of the perturbed limit cycle for different values of the starting time
and duration of the single pulse-like perturbation [the single stimulus of amplitude a
and duration σ can be related to the dose and temporal duration of the administration
of exogenous cytokines in an attempt to regulate the peripheral blood cells (Mackey
et al. 2017)].

The response of the limit cycle solution (7) to a perturbationwith amplitude a can be
calculated piecewise by considering the phase which the stimulus begins Δ ∈ [0, T̃ )
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1642 D. C. De Souza, M. C. Mackey

and ends Δ + σ . We distinguish the perturbation for different values of {Δ, σ, a} as
in Mackey et al. (2017).

To use the same notation, we classify the stimulus distinguishing whether it begins
in a rising phase R (ẋ > 0), falling phase F (ẋ � 0), with negative value N (x < 0),
or non-negative value P (x � 0); and whether it ends in a phase R or F, with value
N or P. Precisely, including the points where the derivative is undefined, we use the
nomenclature R for Δ ∈ [0, tmax ), F for Δ ∈ [tmax , T̃ ), P for Δ ∈ [z̃1, z̃2], and N for
Δ ∈ [0, z̃1)∪(z̃2, T̃ ]. For example, the sequence of lettersRPFN denotes a pulsewhich
begins in the rising phase with positive value and ends in a falling phase with negative
value.We also denote the solution of theDDEwith perturbation (10) by x (Δ)(t), and its
zeros by zΔ, j , with j ∈ N>0, as in Mackey et al. (2017). The zeros of x (Δ)(t) form an
increasing sequence with zΔ, j + τ < zΔ, j+1 for all j ∈ N>0 (Mackey et al. 2017).
With this classification we have the following sequence of possibilities (Mackey et al.
2017): {

RNRN,RNRP,RPRP,RPFP,RPFN,

FPFP,FPFN,FNFP,FNFN,FNRN,FNRP.
(11)

Each subcase (11) is defined on a Δ-subinterval I ⊂ [0, T̃ ). For each parameter
vector (τ, βU , βL , σ, a) there is a set of subcases (11). The union of all their Δ-
subintervals is equal to [0, T̃ ) and their intersection is the empty set. We denote the
Δ-subintervals as I with a subscript with the respective sequence of letters, e.g. for
the case RNRN the Δ-subinterval is denoted by IRNRN .

For the subcase FNFP, the time required for the perturbed solution x (Δ)(t) to return
to the limit cycle x̃ may not be finite everywhere due to a rapidly oscillating periodic
solution (Mackey et al. 2017). This is the most complex case in (11) and will be
analyzed here in detail. In this case the pulse starts in the falling phase of the limit
cycle x̃ with x (Δ)(Δ) < 0, which implies Δ ∈ (z̃2, T̃ ). The pulse also ends in the
falling phase, i.e. Δ ∈ (tmax , T̃ − σ), and with positive value x (Δ)(Δ + σ) > 0. The
positivity condition x (Δ)(Δ + σ) > 0 implies Δ < δ2, where δ2 is a constant defined
by x (Δ)(δ2 + σ) = 0, which yields

δ2 := z̃2 − σ + ln

(
βU

βU − a(1 − e−σ )

)
for βU > a(1 − e−σ ), (12)

the same constant δ2 defined inMackey et al. (2017, Eq. (5.11)). Thus theΔ-subinterval
in the case FNFP is of the form

IFNFP = (z̃2, T̃ − σ) ∩ (−∞, δ2).

In Remark 3.1 we show that the inequality a > βU holds for the case FNFP and
we distinguish between two subcases, FNFP1 and FNFP2. For the case FNFP1 we
have x (Δ)(T̃ ) > 0 as in the perturbed solutions shown in Fig. 2, while for the case
FNFP2 we have x (Δ)(T̃ ) � 0 as in the examples displayed in Fig. 3.

Remark 3.1 The inequality a > βU holds for the case FNFP and we can distinguish
two subcases by incorporating further conditions as follows:
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Response of an oscillatory differential delay equation… 1643

Fig. 2 A schematic representation of the unperturbed limit cycle (5) (solid line) and two perturbed solutions
(dashed lines) for the caseFNFP1.Here the parameters are τ = 1, σ = 0.6, βU = 0.3, βL = 0.4, a = 0.52,
and Δ ∈ {2.23, 2.36}

Fig. 3 As in Fig. 2, but for the case FNFP2 and FNFP4 with Δ ∈ {2.04, 2.13}

– FNFP1 If x (Δ)(T̃ ) � 0, then

Δ ∈ (z̃2, T̃ − σ) ∩ (−∞, δ2) ∩ [δ4,∞) = IFNFP1; (13)

– FNFP2 If x (Δ)(T̃ ) < 0, then

Δ ∈ (z̃2, T̃ − σ) ∩ (−∞, δ2) ∩ (−∞, δ4) = IFNFP2; (14)

where the constant δ4 is such that x (Δ)(T̃ ) = 0 for Δ = δ4 and is given by

δ4 = z̃2 + ln
βU (eτ − 1)

a(eσ − 1)
. (15)

(remember that all proofs are presented in “Appendix”).

In Remark 3.2 we show that the case FNFP2 from Remark 3.1 can be distinguished
between two subcases by including the extra condition x (Δ)(zΔ,3 + τ) < 0 to define
the case FNFP3, and the extra conditions x (Δ)(zΔ,3 + τ) � 0 and x (Δ)(zΔ,4 + τ) < 0
to define FNFP4. The examples of solutions shown in Fig. 3 correspond to the subcase
FNFP2 and also FNFP4 while the examples of solutions shown in Fig. 4 refers to
case FNFP3. The case FNFP2 actually splits into an infinite number of subcases, and
examples are shown in Fig. 5. The solution represented by the dashed line in Fig. 5
shows how long the transient solution can be before it returns to the periodic orbit.

Remark 3.2 The case FNFP2, described in Remark 3.1, can be further divided into
two subcases by including extra conditions as follows:

– FNFP3 If x (Δ)(zΔ,3 + τ) < 0, then

Δ ∈ (z̃2, z̃2+τ −σ) ∩ (−∞, δ2) ∩ (−∞, δ4) ∩ (−∞, δ̂4) = IFNFP3; (16)
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1644 D. C. De Souza, M. C. Mackey

Fig. 4 A schematic representation of two solutions for Case FNFP3, where the parameters are τ = 1, σ =
0.4, βU = 0.6, βL = 0.4, a = 0.85, and Δ ∈ {2.06, 2.15}

Fig. 5 A schematic representation of the unperturbed limit cycle (5) (solid black line), a rapidly oscillating
unstable periodic solution (solid gray line) and a perturbed solution (dashed line) for the case FNFP2. Here
the parameters are τ = 1, σ = 0.39235, βU = 0.4, βL = 0.4, a = 0.8, and Δ = {δ∞, 2.208}, where
δ∞ ≈ 2.19505 is given by (19)

– FNFP4 If x (Δ)(zΔ,3 + τ) � 0 and x (Δ)(zΔ,4 + τ) < 0, then

Δ ∈ (z̃2, z̃2+τ−σ) ∩ (−∞, δ2) ∩ (−∞, δ4) ∩ [δ̂4,∞) ∩ (−∞, δ5) = IFNFP4;
(17)

where the constants δ2, δ4, δ̂4 and δ5 are respectively given by (12), (15), (50) and (52).

Between the case shown in Fig. 3 and the rapid limit cycle shown in Fig. 5 there
is a sequence of subcases. For each new case the solution oscillates one more time
before approaching the limit cycle. For all solutions of the cases FNFP it is expected
that ¯x � x (Δ)(t) � x̄ .

For a perturbation with starting time Δ we define the resetting time F(Δ) as the
time interval required for the perturbed solution x (Δ)(t) to return to the limit cycle
x̃(t)with a new phase. We formally define the resetting time in Definition 3.1 and give
it for each case (11) in Remark 3.3.

Definition 3.1 (Resetting time) Let us define the function F : [0, T̃ ) � Δ �→ F(Δ) ∈
R. Assume that the limit cycle x̃(t) is perturbed at time Δ, as in (10), and that after
a time interval F(Δ), defined as the resetting time, the perturbed solution returns to
the limit cycle with a new phase φ and stays on it, i.e. x (Δ)(t) = x̃(t + φ) holds for
all t � Δ + F(Δ).

Remark 3.3 Assume that the limit cycle x̃(t) is perturbed at time Δ as in (10) and
δ4 < z̃2, i.e. IFNFP2 = ∅. For each of the cases (11) the resetting time F(Δ) is given,
respectively, by:

1. FRN RN (Δ) = σ ;
2. FRN RP(Δ) = tmax + (zΔ,2 − z̃2) − Δ;
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Response of an oscillatory differential delay equation… 1645

3. FRPRP(Δ) = tmax + (zΔ,2 − z̃2) − Δ;
4. FRPFP(Δ) = σ ;
5. FRPFN (Δ) = zΔ,2 + τ − Δ;
6. FFPFP(Δ) = σ ;
7. FFPFN (Δ) = zΔ,2 + τ − Δ;
8. FFNFP1(Δ) = zΔ,3 + τ − Δ;
9. FFNFN (Δ) = z̃2 + τ − Δ;

10. FFN RN (Δ) = σ ;
11. FFN RP(Δ) = z̃3 + τ − (z̃4 − zΔ,4) − Δ.

By definition, the resetting time F(Δ) is the minimum time required for the per-
turbed solution to return to the limit cycle, while the cycle length map T (Δ) is the time
measured between two marker events (Glass and Mackey 1988), one located before
the solution is perturbed and the other after the perturbed solution has returned to the
limit cycle. The cycle length map is given by T (Δ) = T̃ + T̃φ(t), where φ(t) is the
phase difference between the two marker events. In Mackey et al. (2017) the zeros of
the limit cycle, z̃ j , and the zeros of the perturbed solution, zΔ, j , were used as marker
events to calculate the cycle length map T (Δ). Thus, by definition, the resetting time
is always less than the cycle length map, c.f. Remark 3.4.

Remark 3.4 For all Δ ∈ [0, T̃ ) with δ4 < z̃2 (IFNFP2 = ∅) we have F(Δ) < T (Δ).

In the next section we consider (10) with a periodic perturbation instead of a single
perturbation. Thus it will be of interest to know whether T (Δ) and F(Δ) are finite,
and to know their lower and upper bounds. We define the maximum and minimum of
the resetting time and cycle length map respectively by

F̄ := max
Δ∈[0,T̃ )

F(Δ), ¯F := min
Δ∈[0,T̃ )

F(Δ), T̄ := max
Δ∈[0,T̃ )

T (Δ), and ¯T := min
Δ∈[0,T̃ )

T (Δ).

As expected, for all Δ ∈ [0, T̃ ) and σ ∈ (0, τ ] the minimum resetting time is equal
to or greater than the stimulus duration σ , as detailed in Remark 3.5. In Remark 3.7
the maximum of T (Δ) for the case a < βU is investigated.

Remark 3.5 For all Δ ∈ [0, T̃ ) and σ ∈ (0, τ ] with δ4 < z̃2 (IFNFP2 = ∅) we have

¯F = σ .

Remark 3.6 For δ2 > tmax the inequality a < βU holds and IRPFN = ∅.
Remark 3.7 For a < βU the maximum of the cycle length map occurs at Δ = δ2 and
is given by

T̄ = T̃ + ln

(
βU

βU − a(1 − e−σ )

)
> T̃ . (18)

Remark 3.6, and the fact that the cycle length map T (Δ) is continuous for a <

βU (Mackey et al. 2017, Corollary 4.2), allows us to compute a maximum of T (Δ) as
stated in Remark 3.7.

As consequence of Remarks 3.4 and 3.5, σ is a lower bound for the cycle length
map, i.e. T (Δ) > σ . From Remarks 3.7 and 3.4 it follows that for a < βU the
maximum T̄ (18) is an upper bound for the resetting time, i.e. F(Δ) < T̄ .
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1646 D. C. De Souza, M. C. Mackey

For a > βU the resetting time and cycle length mapmay not be bounded above. For
all of the cases in (11) the caseFNFP is the only one inwhich the cycle lengthmapmay
not be finite everywhere (Mackey et al. 2017). In Fig. 5 we show perturbed solutions
that illustrate how a single perturbation to FNFP can lead to an infinite resetting
time due an unstable limit cycle. In Remark 3.8 we show that for Δ equal to (19)
the perturbed solution x (Δ)(t) settles down on a rapidly oscillating unstable periodic
solution with ¯x < x (Δ)(t) < x̄ whose period (T̃ (∞)) satisfies τ − σ < T̃ (∞) < τ .

Remark 3.8 For the case FNFP the cycle length map and the resetting time both tend
to infinity when Δ tends to the constant δ∞ which is given by

δ∞ = z̃2 + σ + ln
a − βU (1 − e−σ )

a
, (19)

and satisfies z̃2 < δ∞ < z̃2 + σ . For Δ = δ∞ the perturbed solution x (Δ)(t) settles
down on a rapidly oscillating unstable periodic solution for which the period (T̃ (∞))

satisfies τ −σ < T̃ (∞) < τ and is given by T̃ (∞) = T̃ −δ∞. Moreover, the minimum
(¯x

(Δ)) and maximum (x̄ (Δ)) of the rapid limit cycle are given by

{
¯x

(Δ) = βU (e−(δ∞−z̃2) − 1),
x̄ (Δ) = a(1 − e−σ ) + βU (ez̃2−δ∞−σ − 1),

and satisfy ¯x
(Δ) > ¯x and x̄ (Δ) < x̄ .

Next we investigate how the cycle length map T (Δ) computed in Mackey et al.
(2017) varies with changes in the perturbation amplitude a and the pulse duration σ .

Figure 6a, c show how T (Δ) changes as function of σ , while panels (b) and (d)
show how T (Δ) changes when a is varied. For all examples of the four panels T (0) =
T (T̃ ). All curves T (Δ) of panel (a) are continuous on [0, T̃ ]. In panels (b) and (d)
we see that for a = βU a Type 1 discontinuity (Winfree 1980) appears in the cycle
length map. All curves T (Δ) show this discontinuity in panel (c). In the limit σ → 0
we have δ1 → z̃1, δ2 → z̃2, Δ ∈ IRNRP = [max{0, δ1}, z̃1) → ∅ and Δ ∈ IFPFN =
[tmax , z̃2) ∩ (δ2,∞) → ∅. The decreasing length of both intervals IRNRP and IFPFN
as σ is decreased can be seen by comparing the curves with a < βu from panels (b)
and (d). For panel (b) σ = 0.5 while for panel (d) σ = 0.01 and the intervals IRNRP
and IFPFN approach vertical lines for Δ ≈ z̃1 and Δ ≈ z̃2, respectively.

In Fig. 6 the intersections points Δ∗ where T (Δ∗) = T̃ are so-called fixed points
of the cycle length map and they are unstable if T ′(Δ∗) > 0 and stable if T ′(Δ∗) <

0 (Granada et al. 2009), where T ′(Δ∗) denotes the derivative of T (Δ) with respect to
Δ evaluated at Δ∗.

For a < βU the cycle length map is continuous (Mackey et al. 2017, Corollary 4.2).
Figure 7 shows the cycle length map T (Δ) and time resetting F(Δ) for the examples
with dark blue lines from Fig. 6a, b. In panel (a) we have a < βU , T (Δ) is continuous
and the vertical dashed lines indicate the points where F(Δ) is discontinuous. From
left to right the lines respectively correspond toΔ equal to: z1 = tmax −σ = 0.48988,
δ2 = 1.35965 and T̃+δ1 = 2.19500. The graphs correspond to the following sequence
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(a) (b)

(c) (d)

Fig. 6 Graphs of the cycle length map [0, T̃ ] � Δ �→ T (Δ) for βU = βL = τ = 1 and hence T̃ =
2.97976, z̃1 = 0.48988, z̃2 = 1.97976 with 11 curves transitioning from cyan to dark blue respectively for
σ = {0, 0.1, . . . , 0.9, 1} in (a, c) and a = {0, 0.1, . . . , 1} in (b, d) with: a = 0.5 for (a), σ = 0.5 for (b),
a = 1 for (c) and σ = 0.01 for (d) (color figure online)

(a) (b)

Fig. 7 Cycle length map [0, T̃ ] � Δ �→ T (Δ) and time resetting [0, T̃ ] � Δ �→ F(Δ) for βU = βL =
τ = 1 and hence T̃ = 2.97976. For (a) a = 0.5, σ = τ and for (b) σ = 0.5 and a = βU . The vertical
dashed lines indicate the points where F(Δ) is discontinuous

of cases:RNRP,RPRP,RPFP,RPFN,FPFN,FNFN,FNRN,FNRP. In panel (b)we
have a = βU , T (Δ) has a discontinuity at δ2 = z2 and the vertical dashed lines indicate
the points where F(Δ) is discontinuous. From left to right the lines are respectively
given by Δ equal to: tmax −σ = 0.98988, δ2 = z2 = 1.97976 and T̃ + δ1 = 2.63784.
For this example we have the following sequence of cases: RNRP, RPRP, RPFP,
FPFP, FPFN, FNFN, FNRN, FNRP.

In the examples from both panels of Fig. 7 we have T (0) = T (T̃ ), F(0) = F(T̃ ).
Thus the discontinuity of T (Δ) at δ2 = z2 in Fig. 7b is due to how the cycle length
map is defined and not due to the dynamics. This type of discontinuity is called Type
1 (Winfree 1980). On the other hand, the resetting time presents three discontinuities
on each panel of Fig. 7 and independently of the way that F(Δ) is defined, it has two
discontinuities which are defined as Type 0 (Winfree 1980).
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4 Phase response to a periodic stimulus

In a clinical setting, it is more likely that a patient would receive periodic administra-
tions of a cytokine to ameliorate the effects of periodic chemotherapy. However, there
has been controversy about how to best time these administrations.

Here we examine the response of the DDE (5) to a periodic perturbation p(t) =
p(t + Tp). We keep τ > 0, −βU < 0 < βL , a > 0 and σ ∈ (0, τ ]. The perturbation
is ON during a time interval σ and OFF during a time interval α > 0, so the period is
Tp = σ + α. The perturbation is defined by

p(t) =
{
a, if t ∈ [Δn,Δn + σ ],
0, if t ∈ (Δn + σ,Δn+1),

(20)

where Δn+1 = Δn + Tp, n ∈ N and Δ0 ∈ [0, T̃ ).
We denote the solution of the perturbed DDE by x (p) : R −→ R which, up to

t = Δ0, is equal to the periodic solution x̃ . For t � Δ0 the function x (p) is defined by

x ′(t) = −x(t) + f (x(t − τ)) + p(t), (21)

with f (x(t − τ)) and p(t) given by (6) and (20), respectively. The solution of (21) is
built up piecewise by functions of the form Ak+Bke−(t−φk ) for each interval [φk, φk+1]
with k ∈ N andφ1 = Δ0, whereφk are the pointswhere the derivative is discontinuous.
These discontinuity points are known as breaking points in the literature (Bellen and
Zennaro 2003). Along the solutions of (21) the breaking points are located at the points
where f (x(t − τ)) switches from a negative to non-negative value or p(t) switches
from positive to zero. Thus for k, n ∈ N the solution of (21), x (p)(t), is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βL + a + (
x (p)(φk) − βL − a

)
e−(t−φk ), if t ∈ [Δn,Δn + σ ] and x(t − τ) < 0,

βL + (
x (p)(φk) − βL

)
e−(t−φk ), if t ∈ (Δn + σ,Δn+1) and x(t − τ) < 0,

−βU + a + (
x (p)(φk) + βU − a

)
e−(t−φk ), if t ∈ [Δn,Δn + σ ] and x(t − τ) � 0,

−βU + (
x (p)(φk) + βU

)
e−(t−φk ), if t ∈ (Δn + σ,Δn+1) and x(t − τ) � 0.

In order to examine the effect of the periodic stimuluswewill consider the perturbation
period Tp and resetting time F(Δ) due to each perturbation. Recall that by definition
α > 0 and from Remark 3.5 we have ¯F = σ for all Δ ∈ [0, T̃ ), then Tp > ¯F . Theanalysis of the periodic perturbation must distinguish between two cases, Tp > F̄ and

¯F < Tp � F̄ .

Case (i) Tp > F̄ After each perturbation the solution x (p) returns to the periodic
solution x̃ , with a new phase, before the next perturbation starts. Hence, in this case
the solution x (p)(t) can be computed on each intervalΔn � t � Δn+σ andΔn+σ �
t � Δn+1, with n ∈ N, as was done in Mackey et al. (2017, Section 5). For the special
case where Tp = F(Δ0) and x (p)(Δ0) = x (p)(Δ1) the solution x (p) is periodic. For
this singular case the time interval that the solution takes to return to the limit cycle
x̃ is equal to the perturbation period and is such that the solution returns to x̃ at the
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x

t

Fig. 8 Example of Proposition 4.1 for βU = 0.4, βL = 0.4, σ = 0.6, τ = 1, α = 0.45, Δ0 = z2
and a = a1 = 0.90384, where a1 is given by (22). The numerical solution with periodic perturbations
(Tp = 1.05) is represented by the blue line and the solution without perturbations by the black line
(T̃ = 2.97976) (color figure online)

same phase that it had when it left the limit cycle. For the cases where Tp �= T (Δ0)

or Tp = F(Δ0) and x (p)(Δ0) �= x (p)(Δ1) the solution may become periodic after a
finite number of stimuli or may continue to be non-periodic.

Case (ii) ¯F < Tp � F̄ For this case the solution will be periodic if (Tp/T̃ ) ∈ N>0.
Again for the special case where Tp = F(Δ0) and x (p)(Δ0) = x (p)(Δ1) the solu-
tion x (p) is periodic, but here T (Δ0) � F̄ , as is shown in the example of Fig. 8.
For the cases where Tp �= T (Δ0) or Tp = F(Δ0) and x (p)(Δ0) �= x (p)(Δ1),
after the end of the first perturbation, t > (Δ0 + σ), the next perturbation may
start before or after the perturbed solution returns to the limit cycle. In both cases
the second stimulus will not start at the same phase of the limit cycle where the
first stimulus started. Thus, each perturbation starts with a different phase, with
respect to the previous, and it may occur that the phases repeat after a finite num-
ber of stimuli, resulting in a periodic solution. Otherwise, the phases will not
repeat during successive perturbations and the solution may be quasi-periodic or
non-periodic.

The numerical solutions of Fig. 8 and onwards were computed using the MATLAB
dde23 routine (Mathworks 2015). All solutions of (21) are composed of piece-wise
function segments on intervals [φk, φk+1], where φk are the breaking points. These
breaking points were detected and included in the solution meshes by using the MAT-
LAB events function (Mathworks 2015; Shampine et al. 2003).

In Proposition 4.1 below we show that if a � a1 and Δ0 = z2, then the solution
converges to the orbit given by (23) and (24).

Proposition 4.1 If Δ0 = z2 and a � a1, where

a1 = βU
(eα − e−σ )

(1 − e−σ )
, (22)

then the solution of (21) is given by

x (p)(t) = −βU + a +
(
x (p)(Δn) + βU − a

)
e−(t−Δn),

if t ∈ [Δn,Δn + σ ], (23)

123

Author's personal copy



1650 D. C. De Souza, M. C. Mackey

x (p)(t) = −βU +
(
x (p)(Δn + σ) + βU

)
e−(t−Δn−σ),

if t ∈ [Δn + σ,Δn+1], (24)

where

x (p)(Δn) = βU (e−nTp − 1) + a(1 − e−σ )e−α
n∑

k=0

e−kTp , for n ∈ N>0, (25)

x (p)(Δn + σ) = βU (e−nTp−σ − 1) + a(1 − e−σ )

n∑
k=0

e−kTp , for n ∈ N. (26)

In Proposition 4.2 we show that the solution of Proposition 4.1 converges to a
limit cycle. We compute this periodic solution and show that if the phase of the first
perturbationΔ0 overlaps with the minimum point of the limit cycle, then the perturbed
solution settles down on this limit cycle.

Proposition 4.2 If a � a1, then: (i) the solution of (21) converges to the limit cycle
given by (27), (ii) for Δ0 = 0 and a non-negative history function ϕ(t) � 0, with
t ∈ [−τ, 0), and such that ϕ(0) = ¯x

(p), the solution of (21) settles down on the limit
cycle given by

x (p)(t) =
{

−βU + a + (¯x
(p) + βU − a)e−(t−Δn), if t ∈ [Δn,Δn + σ ],

−βU + (
x̄ (p) + βU

)
e−(t−Δn−σ), if t ∈ [Δn + σ,Δn+1],

(27)
for n ∈ N, where ¯x

(p) and x̄ (p) are defined by

¯x
(p) = −βU + a

(1 − e−σ )

(eα − e−σ )
, (28)

x̄ (p) = −βU + a
(1 − e−σ )

(eα − e−σ )
eα. (29)

In Propositions 4.1 and 4.2 it is shown that the perturbed solution converges to a limit
cycle if a � a1 and Δ0 = z2. For a = a1 we have ¯x

(p) = 0 and x̄ (p) = βU (eα − 1).
For Tp �= T (Δ0) or Tp = F(Δ0) and x (p)(Δ0) �= x (p)(Δ1) the long-time behavior

of the solutions for both Cases (i)–(ii) described earlier does not depend on the value
of Δ0 ∈ [0, T̃ ). Indeed, the results of Propositions 4.1 can be extended for all Δ0 ∈
[0, T̃ ), which was done in Proposition 4.3. Figure 9 shows examples of solutions,
distinguishing four cases, which satisfy the conditions of Proposition 4.3. All solutions
of Fig. 9 converge to a limit cycle given by (27). In panel (b) and (c) the solution points
x (p)(Δn) and x (p)(Δn + σ) exponentially converge to (28) and (29), respectively. In
panel (a) this convergence occurs for t � tmax while for panel (d) it occurs for
t > z p,1 + τ , where z p,1 is the first zero of x (p)(t) with t > Δ0.

Proposition 4.3 For any initial phase Δ0 ∈ [0, T̃ ) the Proposition 4.1 holds and the
solution converges to the limit cycle given by Proposition 4.2.

123

Author's personal copy



Response of an oscillatory differential delay equation… 1651

(a) (b)

(c) (d)

Fig. 9 Proposition 4.3 cases with βU = 0.4, βL = 1.4, σ = 0.6, a = 1, τ = 1, α = 0.3, and with
Δ0 ∈ [0, T̃ ). The numerical solutions with periodic perturbations are represented by the blue line and
the solution without perturbation by the black line. For each panel the Δ0 interval is: (a) (z̃1, tmax ), (b)
[tmax , Δl ), (c) [Δl , z̃2) with Δl given by (62), (d) [z̃2, T̃ + z̃1] (color figure online)

5 Treatment implications

At this point it is interesting to consider our results with this extremely simple model
in the context of a hypothetical patient with cyclic circulating blood cell numbers (e.g.
cyclic neutropenia, or cycling induced by chemotherapy) being treated with periodic
G-CSF administration. We denote the normal level of neutrophils by xnorm . For cyclic
neutropenia the circulating neutrophil numbers typically oscillate from normal levels
to very low levels with a period of about 19 to 21 days (Colijn and Mackey 2005b).
The period for cycling induced by periodic chemotherapy is approximately equal to
the period of the chemotherapy (Craig et al. 2016).

One issueof interest iswhether or not it is possible to abrogate the severe neutropenic
phases of the oscillation in the model as is done in practice by keeping the circulating
neutrophil levels equal to or greater than normal.We can answer this in the affirmative,
since the condition ¯x

(p) � xnorm is sufficient to end the neutropenia. Using (22)
and (28), the condition to end the neutropenia can be written as

¯x
(p) = βU

(
a

a1
− 1

)
� xnorm . (30)

From (30)we obtain the condition a � a1(1+xnorm/βU ), which satisfies the condition
a � a1 from Proposition 4.1 and increases the nadir of the oscillations to, or above,
the normal level xnorm .

During the periodic G-CSF administration the hypothetical patient will have a
neutrophil oscillation described by a limit cycle x (p) given by Proposition 4.2 with an
oscillation amplitude given by
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1
2

3
4

5

0
1

2
3

4
5

0

0.4

0.8

1.2

1.6

(a) aσ

α

(b)
α

σ

x
¯
(p)

Fig. 10 For βL = 2, βU = 0.4 and xnorm = 0.6: (a) the time interval between cytokine administrations
α, given by (31), increases as the duration σ and/or amplitude a of the cytokine dose increase; (b) with
a = 0.9 the minimum ¯x

(p), given by (28), is decreasing with respect to α and increasing with respect to σ

(
x̄ (p) − ¯x

(p)
)

= a
(1 − e−σ )

(eα − e−σ )
(eα − 1) > 0.

Notice that x̄ (p) � ¯x
(p) � 0 and we only have x̄ (p) = ¯x

(p) for α = 0, or σ = 0, or
a = 0.

To avoid neutropenia, in the limiting case we can force ¯x
(p) = xnorm in (30), which

gives a = a1(1+ xnorm/βU ). This satisfies the condition a � a1 from Proposition 4.1
and in combination with (22) yield the minimal interval between administrations α

to avoid neutropenia as function of the duration σ and the amplitude a of cytokine
administration:

α = ln

(
a + (xnorm + βU − a)e−σ

xnorm + βU

)
. (31)

In Fig. 10a we show that for a > xnorm + βU the minimal interval between cytokine
administrations α to avoid neutropenia, given by (31), increases as the duration σ

and/or the amplitude a of the cytokine dose increase. In panel (b) we show that the
minimum ¯x

(p), given by (28), is decreasing with respect to the time interval between
cytokine administration α and increasing with respect to the duration σ of the admin-
istration. Both effects are what one would intuitively expect.

We also investigate the hypothetical situation where the periodic G-CSF admin-
istration still results in neutropenia and the neutrophils oscillate between fminxnorm
and fmax xnorm where fmin � 1 � fmax . We mimic this situation by imposing the
conditions {

¯x
(p) − fminxnorm = 0,

x̄ (p) − fmax xnorm = 0,
(32)

where ¯x
(p) and x̄ (p) are respectively given by (28) and (29).

For a healthy adult human the normal circulating neutrophil level fluctuates around
0.22−0.85×109 cells/kg of body mass (Craig et al. 2016). Assuming that we want to
administer G-CSF to maintain the oscillation within these normal bounds and taking
xnorm ≈ 0.4, then we have fmin ≈ 0.5 and fmax ≈ 1.5. In order to solve (32) we need
to fix one of the triplet (a, σ, α) and then solve for the remaining two parameters.

Both limit cycle extrema ¯x
(p) and x̄ (p) are nonlinear increasing functions with

respect to σ , nonlinear decreasing functions with respect to α, and linearly increasing
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Fig. 11 Examples of orbits with a � a1 and βU = 0.4, βL = 1.4, σ = 0.6, τ = 1, a = 1.48655,
α = 0.510826 for four different values of Δ0: (z̃1 + tmax )/2, (tmax + Δl )/2 with Δl given by (62),
(Δl + z̃2)/2, (z̃2 + T̃ + z̃1)/2. The numerical solutions with periodic perturbations are represented by the
blue line and the solution without perturbations by the black line (color figure online)
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Fig. 12 The extrema ¯x
(p) and x̄(p) are plotted as function of α in (a, c) and as function of σ in (b, d) using

the same parameters of Figure 11 in (a, b), but with a = 1.3 in (c) and a = 1.8 in (d). The blue dashed
lines correspond to x = fmax xnorm and the red dashed lines correspond to x = fmin xnorm (color figure
online)

with respect to a. Thus we take a and α as unknowns and solve (32) with the set of
parameters: βU = 0.4, βL = 1.4, σ = 0.6 and τ = 1, xnorm = 0.4, fmin = 0.5 and
fmax = 1.5. Using the MATLAB fsolve routine (Mathworks 2015) to solve (32)
gives a = 1.48655 and α = 0.510826.

In Fig. 11 all the four solutions x (p) with different initial perturbation phases Δ0
converge to the same limit cycle, which is given by Proposition 4.2, but with different
phases. We also investigated how ¯x

(p) and x̄ (p) change as function of α in Fig. 12a, c
and as function of σ in Fig. 12b, d considering the same parameters of Fig. 11a, b, but
with a = 1.3 in panel (c) and a = 1.8 in panel (d). We have ¯x

(p) = fminxnorm and
x̄ (p) = fmax xnorm for α = 0.510826 in panel (a) and for σ = 0.6 in panel (b). In both
panels (c) and (d) there is a parameter interval such that ¯x

(p) and x̄ (p) are bounded
above by x = fmax xnorm and bounded below by x = fminxnorm .
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Several mathematical models have used aDDE similar to (5)–(6) to study blood cell
dynamics, but with different feedback functions (6), and it would be of interest to know
howour results comparewith those obtained inmore complicated (and physiologically
more realistic) treatments. One could think of, for example, the Hearn et al. (1998)
model for canine cyclical neutropenia, or the neutrophil models of Zhuge et al. (2012)
and Brooks et al. (2012) which consider GCS-F administration during chemotherapy
in humans.

Here we consider the neutrophil model from Zhuge et al. (2012). Equation (2)
from Zhuge et al. (2012) describes the dynamics of bone marrow hematopoietic stem
cells (Q) and circulating neutrophils (N ). We decouple the neutrophil dynamics from
the stem cell dynamics by assuming that stem cells are at their normal steady state
concentration Q∗ = 1.1× 106 cells/kg of body mass. Thus the second component of
equation (2) from Zhuge et al. (2012) becomes

N ′(t) = −γN N (t) + AN (t)κN (N (t − τN ))Q∗, (33)

where γN = 2.4 days−1 is the neutrophil apoptosis rate, AN (t) is the amplification
factor, κN (N (t − τN )) is the rate that stem cells commit to differentiate to neutrophil
precursors, and τN is the total time it takes to a neutrophil be producedwhich is defined
as the sum of the neutrophil proliferation time (τNP ) and the neutrophil maturation
time (τNM ), i.e. τN = τNP + τNM (Zhuge et al. 2012). The neutrophil proliferation
phase duration is constant and equal to 5 days, while the neutrophil maturation phase
duration depends of the G-CSF serum level. We consider that for a G-CSF dose
of 30 µg/kg/day the neutrophil maturation time is equal to 4.3 days, as estimated
by Zhuge et al. (2012). The normal level of circulating neutrophils is taken to be
N∗ = 6.3 × 108 cells/kg of body mass (Zhuge et al. 2012).

Assuming periodic administration of G-CSF the amplification can be expressed as
AN (t) = AN +ξ(t), where AN = 6.55×104 and ξ(t) is the periodic perturbation due
to the G-CSF (Zhuge et al. 2012). Without G-CSF the amplification factor is constant
and equal to AN (Zhuge et al. 2012). We can rewrite (33) as

N ′(t) = −γN N (t) + F(N (t − τN )) + P(t), (34)

where F(N (t − τN )) = ANκN (N (t − τN ))Q∗ is the delayed negative feedback, P(t)
is a periodic perturbation assumed to be of the type (20), but with t , σ and α in units
of days and a in units of cells/kg/day. As in Zhuge et al. (2012), we consider that the
effects of G-CSF are maintained for one day (σ = 1 day) and that the interval between
consecutive administrations is also one day (α = 1 day). We approximate the delayed
negative feedback F(N (t − τN )) by the piecewise constant function

F(N (t − τN )) =
{
bL for N (t − τN ) < N∗,
bU for N (t − τN ) � N∗,

(35)

and take bL equal to the feedback maximum value ANκN (0)Q∗, where κN (0) = f0 =
0.4 days−1 (Zhuge et al. 2012), andbU = εbL with0 < ε � 1.The changeof variables
N (t) → x(t), γN → γ , τN → τ , N∗ → θ , followed by the change of variables (4)
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Fig. 13 For both numerical simulations the neutrophil concentration is given by N (t̂ ) = x(t) + N∗, where
t̂ = t/γN , x(t) is the solution of (21) for βL = 11.3783, βU = 0.6288, τ = 22.32, σ = α = 2.4 days−1,
N∗ = 0.63, and the perturbation begins at day 21, i.e. Δ0 = 21γN . The perturbation amplitude a = 0.719
for the black line and a1 = 7.5602 for the blue line, where a1 is given by (22). The green straight line
(N = 0.63) corresponds to the healthy neutrophil concentration while the red line (N = 0.061) is the
reference level for severe neutropenia. The time t̂ is in units of days while the neutrophil concentration N (t)
and the parameters βU , βL and a are in units of 109 cells/kg of body mass (color figure online)

togetherwith p(t) = P(t)/γN transformEq. (34)with F(N (t−τN ))given by (35) into
the form (21). Taking ε = 10−4 and the parameter values earlier describedwe compute
the parameters from (21) as being τ = τN , γN = 22.32, σ = α = γN = 2.4 days−1,
βL = −N∗ + bL/γN = 11.3783 and βU = N∗ − bU/γN = 0.6288, where βU and
βL are in units of 109 cells/kg of body mass.

For this set of parameters, N (t) oscillates between 0.0012 and 12 × 109 cells/kg
with a period of 19.85 days as shown in the first 21 day portion of Fig. 13wherewe plot
N (t̂ ) = x(t) + N∗, where t̂ = t/γN and x(t) is the solution of (21). The remainder
of Fig. 13 for days 21 to 70 shows the simulated effects of G-CSF treatments for
two different perturbation amplitudes. The black line corresponds to a G-CSF dose of
a = 0.719×109 cells/kgwhile for the blue line a = a1 = 7.5602×109 cells/kg. Both
perturbations start at day 21, i.e.Δ0 = 21γN . The green line corresponds to the normal
neutrophil concentration (N = N∗) while the red line is the reference level for severe
neutropenia, namely N = 0.061 × 109 cells/kg.1 For the black line the perturbation
amplitude a is such that the neutrophil concentrations are greater than or equal to the
reference level for severe neutropenia, while for the blue line the amplitude a is such
that the neutrophil concentrations are equal to or greater than the normal level N∗. For
t̂ � 21 days the black line has a maximum value of about 12.2×109 cells/kg (of body
mass) which is slightly larger than the maximum value reached without perturbation.

In order to compare the effects of the same G-CSF perturbation in both models, we
estimate the amplitude of perturbation P(t) from (34) through the negative feedback
function AN (t)Q∗κN (N∗) ≡ AN (t)Q∗ f0/2 from (33) by computing its variation for
the value of AN (t) under the G-CSF effects (Agcs f

N ) and without the effects of G-
CSF (AN ). Under the effects of a G-CSF dose of 30μg/kg/day the amplification rate
AN (t) can be approximated by Agcs f

N = exp(ηmax
NP τNP − γmin

0 τ
gcs f
NM ), where ηmax

NP =
3.0552 days−1 is the neutrophil maximal proliferation rate, γmin

0 = 0.12 days−1 is the

neutrophil minimal death rate in maturation, and τ
gcs f
NM = 4.3 days is the maturation

1 Human neutropenia is classified as severe if the neutrophil concentration is below 0.061 × 109 cells/kg
(of body mass), which corresponds to an absolute neutrophil count (ANC) of 500 cells/µl (Craig et al.
2015).
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time, yielding the figure Agcs f
N = 2.5715×106 (Zhuge et al. 2012). This figure together

with the change of variables p(t) = P(t)/γN gives the approximation for perturbation
amplitude a ≈ (Agcs f

N − AN )Q∗ f0/(2γN ) ≈ 229.72 × 109 cells/kg of body mass.
For this amplitude and considering the other parameters as are in Fig. 13, the dynamics
of neutrophil concentration N (t̂ ) (not shown) is similar to the behaviour observed for
the blue line from Fig. 13, it cycles with the same period of the G-CSF administration,
but with N (t̂ ) varying from 19.1 to 210.6× 109 cells/kg of body mass. This variation
is much larger than the oscillation due to the G-CSF administration obtained in Zhuge
et al. (2012), see the first few days of the simulation with red line presented by the
authors in Fig. 3b. This perturbation amplitude value also is about 30-fold larger than
the amplitude necessary to end neutropenia (a1) considered for the simulation with
blue line shown in Fig. 13.

The discrepancy in the response of both models to the same perturbation amplitude
is related with the difference between their negative feedback functions, but it also
might be related with the fact and that the response to G-CSF is highly variable for
the model from Zhuge et al. (2012), as indicated by the authors.

Consider the limit cycle N (t̂ ) = x(t) + N∗ shown in Fig. 13 for t̂ ∈ [0, 21],
where t̂ = t/γN and x(t) is the solution of (21), the perturbation amplitude is zero
a = 0 and the other parameters are as in Fig. 13. Define the minimum, maximum
and period of oscillation for N (t̂ ) respectively by ¯N := ¯x + N∗, N̄ := x̄ + N∗ and
T̂ := T̃ /γN , where ¯x , x̄ and T̃ are given by (8) and (9). This together with e−τ ≈ 0
and βL = gβU , where g ≈ 18.09, yields ¯N ≈ −βU + N∗ = 1.2 × 106 cells/kg
(of body mass), N̄ ≈ βL + N∗ = 12.0083 × 109 cells/kg (of body mass) and T̂ =
2τN + ln((g + 1)2/g)/γN = 19.85 days. The choice of values for bL and bU from
the feedback function (35) defines the parameters βL = −N∗ + bL/γN and βU =
N∗ − bU/γN and therefore it is important to define the minimum and maximum of
the oscillation, since ¯N ≈ bU/γN and N̄ ≈ bL/γN , but it does not play an important
role for defining the oscillation period. Indeed, T̂ increases linearly with the delay τN
and for g = βL/βU varying from 10−3 to 103 the period stays between 19.1176 and
21.4791 days, which are close to the periods of 19–21 days observed for CN (Colijn
and Mackey 2005b).

For a wide range of values of the parameters βL , βU (and so bL , bU ) the solution of
Eq. (34) with F(N (t − τN )) given by (35) yields a neutrophil dynamics characteristic
of CN, with periods close to 19–21 days andminimum andmaximum of the oscillation
given approximately by ¯N ≈ bU/γN and N̄ ≈ bL/γN , respectively. So the piecewise
linear feedback function (35) may be used as reference to construct nonlinear con-
tinuous feedback functions such as those from the mathematical models Zhuge et al.
(2012) and Brooks et al. (2012) in order to model CN dynamics, namely the period,
maximum and minimum of the oscillations.

Daily administrations of G-CSF in both humans and grey collies with CN has
the effect of reducing the oscillation period and increasing both the neutrophil nadir
and the oscillation amplitude (Hearn et al. 1998; Colijn and Mackey 2005b). For the
model (34) with F(N (t − τN )) given by (35) the G-CSF perturbation does increase
the neutrophil nadir, as shown in Fig. 13 simulations. However, for the simulation with
black line shown in Fig. 13 the oscillation amplitude is only slightly increased and
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the period stays close to the period of oscillation, while for the simulation with blue
line both the amplitude and period of oscillation decreases. These results indicates
that the perturbation P(t) from (34) does not capture the G-CSF effects on either the
period and amplitude from CN oscillations. Thus we must conclude that the simple
model considered here deviates considerably from the supposedly more physiologi-
cally realistic model of Zhuge et al. (2012). While disappointing it is hardly surprising
considering the differences in the two models.

We can also compare the model effects of periodic administration of chemotherapy
for a healthy human by reducing Eq. (34) with F(N (t − τN )) given by (35) into the
form (21). So the neutrophil dynamics is given by N (t̂ ) = x(t)+N∗, where t̂ = t/γN
and x(t) is the solution of (21). For this onset of chemotherapy the amplitude of the
periodic perturbation p(t)must be negative (only for this onset we assume that a < 0).
We simulate the situation where a normal human receives chemotherapy doses with
period of administration varying from 1 to 40 days, as is considered in Zhuge et al.
(2012).

As mentioned earlier, for a healthy adult human the normal circulating neutrophil
level fluctuates around 0.22−0.85×109 cells/kg of bodymass. These levels are similar
to the neutrophil concentrations shown in Figure 2(b) of Zhuge et al. (2012) for the
first few days, before the chemotherapy begins. Thus, before chemotherapy we have
p(t) = 0 and we obtain that the neutrophil concentration N (t̂ ) is a limit cycle which
oscillates from ¯N = 0.22 to N̄ = 0.85 by taking βU = 0.41, βL = 0.225, a = 0 and
the other parameters as in Fig. 13, with ¯N , N̄ , βU and βL in units of 109 cells/kg of
body mass. For this set of parameters the period of oscillation is T̂ = 19.21 days.

As inZhuge et al. (2012),we consider that the effects of chemotherapy ismaintained
for one day, so σ = (1 day)γN . We compute the amplitude of perturbation (a) by
considering that for a daily administration of chemotherapy the neutrophil nadir ( ¯N

p)

is zero, i.e. ¯N
(p) := ¯x

(p) + N∗ ≡ −(βU − a)(1 − e−τ ) + N∗ = 0, from where it
follows that

a = βU − N∗/(1 − e−τ ) ≈ βU − N∗ ≈ −0.22 × 109 cells/kg. (36)

For this set of parameters the neutrophil concentration N (t̂ )wasnumerically computed
for t̂ ∈ [0, 2000] for each period of administration T̂p = 1, 1.1, 1.2, . . . , 40 days,
where T̂p ≡ Tp/γN with Tp = α + σ and σ fixed at σ = (1 day)γN . For each period
Tp Fig. 14 shows the amplitude (max(N (t̂ ))−min(N (t̂ ))) and nadir (min(N (t̂ ))with
t̂ ∈ [600, 2000] for panel (a) and t̂ ∈ [0, 50] for panel (b). For all simulations the first
perturbation begins at zero (Δ0 = 0) and the history function of (21) is given by

x(t) = −βU + βU e
−(t−σ+τ) for t ∈ [−τ, 0], (37)

which is equivalent to the segment of the limit cycle (7) for t ∈ [T̃ − σ − τ, T̃ − σ ].
For t ∈ [0, σ ] the solution of (21) is given by

x(t) = −βU + a + (βU e
σ−τ − a)e−t . (38)
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Fig. 14 Both panels show the Amplitude (left axis and blue squares connected with a solid blue line)
and Nadir (right axis and green circles connected with a solid green line) of the neutrophil concentration
N (t̂ ) = x(t) + N∗, where t̂ = t/γN and x(t) is the solution of (21), as function of the period T̂p . For

both panels βL = 0.225, βU = 0.41, τ = 22.32, σ = 2.4 days−1, Δ0 = 0, N∗ = 0.63 and the T̂p
meshes have 391 equally spaced points from 1 to 40 days. For each mesh point N (t̂ ) was numerically
computed for t̂ ∈ [0, 2000]. The amplitude is given by (max(N (t̂ )) − min(N (t̂ ))) and the nadir is given
by min(N (t̂ )) with t̂ ∈ [600, 2000] for (a) and t̂ ∈ [0, 50] for (b). In (a) the triangle and diamond red
dots show, respectively, the nadir and amplitude with t̂ ∈ [600, 2000] for T̂p = nT̂ /2 and n = 1, 2, 3, 4,

where T̂ ≈ 19.21 days is the period of the unperturbed limit cycle. The amplitude and nadir are in units of
108 cells/kg of (body mass), the period T̂p is in units of days and the parameters βU , βL and a are in units
of 109 cells/kg of body mass (color figure online)

The first perturbation begins at Δ0 = 0. So at the end of the first perturbation we have
t = σ = (1 day)γN and (38) yields

x(σ ) = −βU (1 − e−τ ) + a(1 − e−σ ) ≈ −βU + a(1 − e−σ ). (39)

With N (t̂) = x(t) + N∗, (39), (36) and t̂ = t/γN = σ/γN = 1 day we have

N (1) = x(σ ) + N∗ ≈ (N∗ − βU )e−σ ≈ 0.2 × 108 cells/kg. (40)

The history function (37) considered here gives the shortest nadir possible for x(t)
at the end of the first perturbation. Although we have not proved this results mathemat-
ically, it is intuitive that for the scenario of a single perturbation and considering the
history function (37), the minimal value of the solution (21) as function of the phase
Δ ∈ [0, T̃ ] occurs for Δ = 0 and at the end of the perturbation (t = σ ). This minimal
value is given by (39) and the correspondent neutrophil minimal level is given by (40).

In Fig. 14b the neutrophil nadir converges to the minimal level N (1) (40). For
1 � T̂p � 5 the neutrophil minimum levels after the transient dynamics is smaller
than N (1) and the nadir increases with T̂p. For T̂p � 5 the time interval for which the
perturbation is turned off (T̂p − σ/γN ) is large enough for the perturbed solution (21)
returns to the unperturbed limit cycle (7) before the perturbation be turned on again.
Thus for T̂p � 5 the minimum levels of neutrophil only depends on which phases of
the unperturbed limit cycle (7) the perturbation is turned on and the resulting nadir is
approximately equal to (40).

The amplitude and nadir curves shown in Fig. 14b are essentially the same when
they are computed for t̂ ∈ [0, 2000] instead of t̂ ∈ [0, 50]. Comparing the nadir values
and amplitude values for both time intervals and the same mesh T̂p, their maximum
absolute difference is smaller than 0.0001 × 108 cells/kg of body mass.
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In Fig. 14a the triangular symbols indicate the nadir for the points T̂p = nT̂ /2
with n = 1, 2, 3, 4 and show that they are close to the nadir resonance peaks. For the
first resonance peak the maximum occurs for T̂p ≈ 9.9 days and for the third peak it
occurs for T̂p ≈ 29.1 days. The second and fourth resonance peaks are limited above
by the nadir of the unperturbed limit cycle ¯N = 2.2 × 109 cells/kg of body mass.
Their maximum values stay constant at ¯N along the three points 19.9, 20 and 20.1
days for the third resonance peak, and along the four points 29.1, 39.1, 39.2 and 39.3
days for the fourth peak.

The results shown in Fig. 14a are quantitatively and qualitatively different from
the results shown in Figure 2(a) from Zhuge et al. (2012). In Figure 2(a) from Zhuge
et al. (2012) the nadir and amplitude vary considerably along the interval T̂p ∈ [1, 40],
and at the resonance points the amplitude increases and the nadir decreases. While in
Fig. 14a the nadir and amplitude increase rapidly for 1 � T̂p � 5 and are essentially
constant for 5 � T̂p � 40, except at the 4 narrow resonance peaks,where the amplitude
decreases and the nadir increases substantially.

Administration protocols of common chemotherapeutic drugs (such as docetaxel,
cyclophosphamide, cisplatin, paclitaxel, etc.) often prescribe a chemotherapy cycle of
three weeks (T̂p = 21 days) (Zhuge et al. 2012). Our simulations in the current model
would suggest that chemotherapy treatments with cycles close to 21 days do not affect
the nadir levels, except that for cycles inside of the narrow interval from about 19.9 to
20.1 days would increase the neutrophil nadir along the treatment.

So, again, the results of the simple model considered in this paper seem to be at
odds with the results of the model of Zhuge et al. (2012).

6 Bifurcations in the face of periodic perturbation

Periodic perturbation can give rise to periodic solutions through a variety of bifurca-
tions, and in this section we explore these. We examined these mechanisms and how
the local maxima and minima of the solution change by performing one parameter
continuation on the extremal points.

In Fig. 15 we present orbit diagrams for (21) as one of each of the parameters
{a, σ, βU , τ } is varied. Orbit diagrams are normally produced for maps, but we can
reduce the solution of (21) to a map by considering crossings of a Poincaré section
which contains the local maxima and minima of x(t) along the solution (De Souza
and Humphries 2018).

All graphs of Fig. 15 were constructed with the following technique. A mesh with
104 points was used to compute the solutions for increasing parameter values (noted
on each abscissa) for panels (a) and (c) and for decreasing parameter values for panels
(b) and (d). For all mesh points the orbits were computed using the MATLAB dde23
routine (Mathworks 2015), with an absolute error of 10−9 and relative error of 10−9.
The points where the trajectory is discontinuous were detected and included in the
solution mesh by using the MATLAB events function. For each mesh point we
integrated through a transient of 5.5Tp, and then plotted all the maxima and minima
that occur over the next 5.5Tp. The last τ time units of the solution is used as the
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Fig. 15 Bifurcation diagrams showing local maxima and minima of numerical solution segments of (21)
with the parameters βL = 1.4, βU = 0.7, σ = 0.6, a = 0.9, τ = 1, α = 0.3. Black and blue dots represent
respectively the local maxima and minima computed along a mesh with 104 points for increasing parameter
values for (a, c) and for decreasing parameter values for (b, d). We varied a from 0 to 1.4 in (a), σ from 0
to 1 (Tp = σ + α varies from 0.3 to 1.3) in (b), βU from 0.5 to 0.9 in (c), and τ from 0.005 to 1.3 in (d)
(color figure online)

history function to compute the solution at the next mesh point. We also used the
function Jumps of the MATLAB dde23 routine to include the discontinuity points
in each history function mesh to compute the solution of the next mesh point. For the
first mesh point we integrated through a transient of length 220Tp.

In all panels of Fig. 15, the one parameter continuation reveals numerous points
of period-doubling bifurcation of periodic orbits and several parameter intervals of
periodic dynamics and windows of irregular motion. Panels (a) and (b) respectively
show that the smallest minima of the solutions increases, except for small varia-
tions, as the perturbation amplitude a or the time duration of perturbation σ are
increased. Conversely, panels (c) and (d) respectively show that the smallest min-
ima of the solutions decreases, except for small variations, as βU or the delay τ are
increased.

Figure 15a shows discontinuities in the extrema for a ≈ 0.957, while panel (b)
shows discontinuities for σ ≈ 0.553 and σ ≈ 0.741. These discontinuities are due
to numerical issues and must disappear by increasing the integration time and the
mesh size. However, it was verified that doubling the the integration time and/or the
mesh size was not enough to remove these discontinuities. While it would be inter-
esting to obtain these graphs with continuous extrema, it might take a long time
to find a suitable integration time and mesh size because every attempt requires
to solve the DDE (21) numerically with a reasonable precision and also include
the breaking points in the solution meshes. We have not pursued this issue in this
paper.
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Fig. 16 Here we show three numerical solutions of (21) in the left panels and their respective time-delay
embeddings x(p)(t−τ)×x(p)(t) in the right panels. To construct the embeddingswe integrated the solution
through a transient for t ∈ [0, 200] and computed x(t) and x(t − τ) for t ∈ [200, 400]. For (a, b) we took
a = 1.1 and used the interval t ∈ [450, 500] for the embedding. For (c, d) we took βU = 1.3 and used the
interval t ∈ [600, 700] for the embedding. For (e, f) we have τ = 0.6 and used the interval t ∈ [1100, 1400]
for the embedding. All other parameters were taken as in Fig. 15

In the left side of Fig. 15c we see a parameter interval with a simple limit cycle
followed by intervals with period-5, -4 and -3 limit cycles, where the period-3 region
ends with an abrupt transition to irregular motion. A small parameter change can thus
cause periodic motion to become irregular, and vice versa.

Figure 16 shows a period-5 limit cycle in panels (a)–(b), a period-8 limit cycle in
panels (c)–(d) and a complex solution in panels (e)–(f). For all three orbits we used
Δ0 = z2 and we have Tp < F̄ and a < a1. Orbits from Fig. 16a, b correspond to
solutions of Fig. 15a for a = 1.1 and orbits from Fig. 16c, d are related with solutions
of Figure 15c for βU = 1.3. The solutions shown in Fig. 16e, f correspond to solutions
with τ = 0.6 inside of the windows of apparent chaotic dynamics of Fig. 15d.

For some parameters {τ, βU , βL , σ, a, σ, α}, there can occur frequency locking
between the perturbation period (Tp) and the limit cycle period (T ). For example, for
the limit cycle shown in Fig. 16a, b we have T = 4.5 and Tp = 0.9 which yields a
frequency locking 5:1, while for the solution of Fig. 16c, d we have T = 26.1 and
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Fig. 17 Projected Poincaré section of the orbit of Fig. 16e, f onto the plane (x(t−τ), x(t−2τ)) for crossing
of the Poincaré section x(t) = 0.14 with x ′(t) > 0 for (a) and x ′(t) < 0 for (b)

Tp = 0.9, with a frequency locking of 29:1. The solutions shown in Figs. 9 and 11
converge to limit cycles where T = Tp, and a frequency locking of 1:1. In fact, the
frequency locking 1:1 occurs for all limit cycles with a � a1 (see Propositions 4.2
and 4.3).

In order to solve (21) it is necessary to define a history function for t ∈ [−τ, 0],
which is an infinite-dimensional set of initial conditions. Thereby the solution space
of (21) is infinite dimensional and consequently a hyperplane defined by a Poincaré
section is also infinite dimensional. Although the Poincaré section is infinite dimen-
sional, we can project it onto R

2 by taking, for example, the solution points x(t − τ)

and x(t − 2τ) such that x(t) = k for some constant k ∈ R. In Fig. 17 we project a
Poincaré section of the orbit of Fig. 16e, f onto the plane (x(t − τ), x(t − 2τ)) for
crossing of the Poincaré section x(t) = 0.1 with x ′(t) > 0 for panel (a) and x ′(t) < 0
for panel (b). Both Poincaré sections form a locus with sparse points, indicating that
the irregular motion of the orbit of Fig. 16e, f is chaotic (Nayfeh and Balachandran
2007).

Figure 18a shows a magnified part of the diagram of Fig. 15c. In the other panels
we show orbits from the diagram of panel (a) transitioning from a region of regular
motion to regularmotion. In panel (a) we have an irregularmotionwithβU = 0.805, in
panel (b) we have βU = 0.808 and the orbit changes from irregular to regular motion
for t ≈ 240, while in panel (c) the transition to regular motion occurs for t ≈ 2. This
scenario of an abrupt transition from periodic motion to irregular motion and vice
versa is highly suggestive of a boundary or an exterior crisis scenario (Nayfeh and
Balachandran 2007; Grebogi et al. 1983).

7 Discussion and conclusions

Here we have been able to exploit the relative simplicity (due to the piecewise linear
nonlinearity) of our model system in an extension of the results of Mackey et al.
(2017) examining the response to a single stimulus (Sect. 3), as well as examining the
response of the system to a periodic stimulus in Sect. 4. The insights and techniques
of Sect. 4 allowed us to draw conclusions about treatment implications in Sect. 5. The
numerical bifurcation diagrams of Fig. 15 revealed that an effective way to increase the
minima of the oscillations, and hence decrease the neutropenia duration, is to increase
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Fig. 18 (a) A magnification of part of the diagram of Fig. 15c. For the same parameters, the other three
panels show solutions of (21) transitioning from irregular to regular motion with βU = 0.805 for (b),
βU = 0.807 for (c) and βU = 0.808 for (d)

the drug dosage by either increasing the time duration of the drug administration σ ,
or increasing the drug dose administrated per unit of time, which is proportional to
a. From Propositions 4.1 and 4.2 and Eq. (31) we obtained the condition a = a1
to avoid neutropenia, from which we computed the minimal interval between drug
administrations α to avoid neutropenia as function of the time duration of the drug
administration σ by Eq. (31).

The numerical results we have presented in Sect. 6, while not exhaustive, certainly
indicate that there is awealth of bifurcation behaviour to be understood in this relatively
simple system. However, this must remain the object of further study as it is outside
the main thrust of this paper.

Finally we note that the study of periodic perturbation of limit cycle systems has
been long and intensive, particularly in a biological context, c.f. Winfree (1980),
Guevara and Glass (1982), Glass and Winfree (1984), Krogh-Madsen et al. (2004),
Bodnar et al. (2013), and the emphasis has been on an examination of the phase
response curve. However, to apply numerical methods such as the phase reduction
method due to Novicenko and Pyragas (2012) and Kotani et al. (2012) to calculate
the phase response (or phase resetting) curve for a DDE and the method to compute
the approximating Lyapunov exponents for DDEs due to Breda and Van Vleck (2014)
we need to linearize the DDE (21) around a reference orbit, but the feedback function
f (x(t − τ)) is discontinuous at x = 0. An extended approach using (21) with a
continuous delayed feedback f (x(t − τ)) (a sigmoid type) would allow us to apply
these numerical methods to study the solutions with f (x(t − τ)) approaching the
discontinuous delayed feedback. This too we reserve for a future study.
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Appendix: Proof of the results

Here we present the proofs of Remarks and Propositions from Sects. 3 and 4.

Proof of Remark 3.1 First it is shown that a > βU holds. For Δ � t � Δ + σ we have

x (Δ)(t) = −βU + a +
(
x (Δ)(Δ) + βU − a

)
e−(t−Δ), (41)

with x (Δ)(Δ) = −βU + βU ez̃2−Δ and

x (Δ)(Δ + σ) = −βU + a +
(
x (Δ)(Δ) + βU − a

)
e−σ (42)

= βU (ez̃2−Δ−σ − 1) + a(1 − e−σ ). (43)

From (42) the condition x (Δ)(Δ + σ) > 0 can be written as

x (Δ)(Δ + σ) = (a − βU )(1 − e−σ ) + x (Δ)(Δ)e−σ ,

but x (Δ)(Δ) = −βU (1 − ez̃2−Δ) < 0 since Δ > z̃2, then we must have a > βU .
For Δ + σ � t � T̃ we have

x (Δ)(t) = −βU +
(
x (Δ)(Δ + σ) + βU

)
e−(t−Δ−σ). (44)

Equation (43) gives x (Δ)(Δ + σ) + βU = βU ez̃2−Δ−σ + a(1 − e−σ ) and this
combined with T̃ = z̃2 + τ from (9) in the solution (44) computed at t = T̃ yields

x (Δ)(T̃ ) = −βU +
(
βU e

z̃2−Δ−σ + a(1 − e−σ )
)
e−T̃+Δ+σ

= −βU (1 − e−τ ) + a(eσ − 1)eΔ−T̃ . (45)

Hence the inequality x (Δ)(T̃ ) < 0 holds if and only if

a(eσ − 1)eΔ < βU (eτ − 1)ez̃2 .

Defining δ4 as the constant such that x (Δ)(T̃ ) = 0 for Δ = δ4 leads to (15).
Then x (Δ)(T̃ ) < 0 if, and only if, Δ < δ4 while x (Δ)(T̃ ) � 0 if, and only if,

Δ � δ4. The interval IFNFP = (z̃2, T̃ − σ) ∩ (−∞, δ2) combined with the condition
x (Δ)(T̃ ) � 0 (see the examples in Fig. 2) gives the interval IFNFP1 given by (13), while
IFNFP combined with the condition x (Δ)(T̃ ) < 0 (see the examples in Fig. 3) yields
the interval IFNFP2 given by (14). ��
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Proof of Remark 3.2 FNFP3: for this subcase we have to assume x (Δ)(zΔ,3 + τ) < 0
(see the examples in Fig. 4).

From x (Δ)(Δ) < 0 and x (Δ)(Δ+σ) > 0we obtain a zero zΔ,3 of x (Δ) in (Δ,Δ+σ)

given by

0 = x (Δ)(zΔ,3) = −βU + a +
(
x (Δ)(Δ) + βU − a

)
e−(zΔ,3−Δ),

ezΔ,3 = (a − βU − x (Δ)(Δ))eΔ

a − βU
= aeΔ − βU ez̃2

a − βU
. (46)

From (44) and (x (Δ)(Δ + σ) + βU ) > 0 it follows that x (Δ)(t) is strictly decreasing
for t ∈ [Δ + σ, T̃ ]. This together with x (Δ)(Δ + σ) > 0 and x (Δ)(T̃ ) < 0 yields that
there is a zero zΔ,4 of x (Δ) in (Δ + σ, T̃ ) given by

0 = x (Δ)(zΔ,4) = −βU +
(
x (Δ)(Δ + σ) + βU

)
e−(zΔ,4−Δ−σ),

ezΔ,4 =
(
x (Δ)(Δ + σ) + βU

)
eΔ+σ

βU
= βU ez̃2 + a(eσ − 1)eΔ

βU
. (47)

For t ∈ (T̃ , zΔ,3 + τ) we have z̃2 < t − τ < zΔ,3. Hence x (Δ)(t − τ) < 0 and

x (Δ)(t) = βL +
(
x (Δ)(T̃ ) − βL

)
e−(t−T̃ ). (48)

From (48) and (x (Δ)(T̃ ) − βL) < 0 we obtain that x (Δ)(t) is strictly decreasing for
t ∈ (T̃ , zΔ,3 + τ). At t = (zΔ,3 + τ) Eq. (48) gives

x (Δ)(zΔ,3 + τ) = βL +
(
x (Δ)(T̃ ) − βL

)
e−(zΔ,3−z̃2), (49)

which is negative by assumption.
The condition x (Δ)(zΔ,3 + τ) < 0 together with Eqs. (49), (46), (45) and a > βU

yield

βLe
zΔ,3−z̃2 < βL − x (Δ)(T̃ ),

βL(aeΔ−z̃2 − βU ) < (a − βU )[βL + βU (1 − e−τ ) − a(eσ − 1)eΔ−T̃ ],
Δ < ln

aβL + βU (a − βU )(1 − e−τ )

a[βLe−z̃2 + (a − βU )(eσ − 1)e−T̃ ] =: δ̂4. (50)

Thus the interval IFNFP2, given by (14), togetherwith the extra condition x (Δ)(zΔ,3+
τ) < 0, written as (50), yield the interval IFNFP3 given by (16).
FNFP4: in this subcase we also have to assume x (Δ)(zΔ,4 + τ) < 0 (see the examples
in Fig. 3).

For t ∈ [zΔ,3 + τ, zΔ,4 + τ ] we have zΔ,3 � t − τ � zΔ,4. Hence x (Δ)(t − τ) � 0
and

x (Δ)(t) = −βU +
(
x (Δ)(zΔ,3 + τ) + βU

)
e−(t−zΔ,3−τ).
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From the condition x (Δ)(zΔ,3 + τ) < 0 we have x (Δ)(zΔ,3 + τ)+βU > 0, so x (Δ)

is strictly decreasing on [zΔ,3 + τ, zΔ,4 + τ ], and

x (Δ)(zΔ,4 + τ) = −βU +
(
x (Δ)(zΔ,3 + τ) + βU

)
e−(zΔ,4−zΔ,3). (51)

The condition x (Δ)(zΔ,4 + τ) < 0 along with Eqs. (51), (47) and (49) yield

βU e
zΔ,4 >

(
x (Δ)(zΔ,3 + τ) + βU

)
ezΔ,3 ,

βU e
zΔ,4 > (βU + βL)ezΔ,3 − (βL − x (Δ)(T̃ ))ez̃2 ,[

βU
βU + βL

a − βU
+ βL + βU (2 − e−τ )

]
ez̃2

> a

[
βU + βL

a − βU
− (eσ − 1)(1 − e−τ )

]
eΔ,

Δ < z̃2 + ln
βU (βU + βL) + [

βL + βU (2 − e−τ )
]
(a − βU )

a(βU + βL) − a(eσ − 1)(1 − e−τ )(a − βU )
=: δ5. (52)

From (50) we infer that the condition x (Δ)(zΔ,3 + τ) � 0 implies Δ � δ̂4. This
condition together with the interval IFNFP2, given by (14), plus the extra condition
x (Δ)(zΔ,4 + τ) < 0, written as (52), yield the interval IFNFP4 given by (17). ��
Proof of Remark 3.3 For each case (11)we compute the resetting time F(Δ) as follows:

RNRN: F(Δ) = σ , since x (Δ)(t) = x̃(t + (z̃1 − zΔ,1)) for all t � Δ + σ and
x (Δ)(zΔ,1 + τ) = x̃(z̃1 + τ) = x̄ , where zΔ,1 = z̃1 + T (Δ) − T̃ and T (Δ) is as in
Mackey et al. (2017, Proposition 5.1);

RNRP: F(Δ) = z̃1 + τ + (zΔ,2 − z̃2) − Δ, since x (Δ)(t) = x̃(t − (zΔ,2 − z̃2))
for all t � z̃1 + τ + (zΔ,2 − z̃2) and x (Δ)(zΔ,2 + τ) = x̃(z̃2 + τ) = ¯x , wherezΔ,2 = z̃2 + T (Δ) − T̃ and T (Δ) is as in Mackey et al. (2017, Proposition 5.2);

RPRP: F(Δ) = z̃1 + τ + (zΔ,2 − z̃2) − Δ, since x (Δ)(t) = x̃(t − (zΔ,2 − z̃2))
for all t � z̃1 + τ + (zΔ,2 − z̃2) and x (Δ)(zΔ,2 + τ) = x̃(z̃2 + τ) = ¯x , wherezΔ,2 = z̃2 + T (Δ) − T̃ and T (Δ) is as in Mackey et al. (2017, Proposition 5.3);

RPFP: F(Δ) = σ , since x (Δ)(t) = x̃(t − (zΔ,2 − z̃2)) for all t � Δ + σ and
x (Δ)(zΔ,2 + τ) = x̃(z̃2 + τ) = ¯x , where zΔ,2 = z̃2 + T (Δ) − T̃ and T (Δ) is as
in Mackey et al. (2017, Proposition 5.4);

RPFN: F(Δ) = zΔ,2 +τ −Δ, since x (Δ)(t) = x̃(t − (zΔ,3 − z̃3)) for all t � zΔ,2 +τ

and x (Δ)(zΔ,3 + τ) = x̃(z̃3 + τ) = x̄ , where zΔ,3 = z̃3 + T (Δ) − T̃ and T (Δ) is as
in Mackey et al. (2017, Proposition 5.5);

FPFP: F(Δ) = σ , since x (Δ)(t) = x̃(t − (zΔ,2 − z̃2)) for all t � Δ + σ and
x (Δ)(zΔ,2 + τ) = x̃(z̃2 + τ) = ¯x , where zΔ,2 = z̃2 + T (Δ) − T̃ and T (Δ) is as
in Mackey et al. (2017, Proposition 5.6);
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FPFN: F(Δ) = zΔ,2 + τ −Δ, since x (Δ)(t) = x̃(t − (zΔ,3 − z̃3)) for all t � zΔ,2 + τ

and x (Δ)(zΔ,3 + τ) = x̃(z̃3 + τ) = x̄ , where zΔ,2 = z̃2 + T (Δ) − T̃ and zΔ,3 =
z̃3 + T (Δ) − T̃ with T (Δ) and zΔ,2 given by Mackey et al. (2017, Proposition 5.7
and its proof);

FNFP1: F(Δ) = zΔ,3+τ −Δ, since x (Δ)(t) = x̃(t−(zΔ,4− z̃4)) for all t � zΔ,3+τ

and x (Δ)(zΔ,4 + τ) = x̃(z̃4 + τ) = ¯x , where zΔ,3 and zΔ,4 = z̃4 are computed as
follows. From x (Δ)(Δ) < 0 < x (Δ)(Δ+σ)we obtain a zero zΔ,3 of x (Δ) in (Δ,Δ+σ)

given by

x (Δ)(zΔ,3) = −βU + a +
(
x (Δ)(Δ) + βU − a

)
e−(zΔ,3−Δ) = 0,

where x (Δ)(Δ) = −βU + βU e−(z̃2−Δ). For T̃ < t < zΔ,3 + τ we have z̃2 < t − τ <

zΔ,3. Hence x (Δ)(t − τ) < 0, and

x (Δ)(t) = βL +
(
x (Δ)(T̃ ) − βL

)
e−(t−T̃ ).

Since z̃2 < zΔ,3 and from the proof of Remark 3.1 the inequality Δ � δ4 implies
x (Δ)(T̃ ) � 0, we obtain

x (Δ)(zΔ,3+τ) = βL +
(
x (Δ)(T̃ ) − βL

)
e−(zΔ,3+τ−T̃ ) > βL(1−ez̃2−zΔ,3) > 0. (53)

Notice that x (Δ)(t) > 0 on (zΔ,3, zΔ,3 + τ ]. Using this and zΔ,3 < Δ+σ < z̃2 + τ <

zΔ,3 + τ we obtain that x (Δ)(t) is strictly decreasing on [zΔ,3 + τ,∞) as long as
x (Δ)(t − τ) � 0. It follows that there is a first zero zΔ,4 of x (Δ)(t) in [zΔ,3 + τ,∞)

given by

x (Δ)(zΔ,4) = −βU +
(
x (Δ)(zΔ,3 + τ) − βU

)
e−(zΔ,4−(zΔ,3+τ)) = 0,

with x (Δ)(zΔ,3 + τ) given by (53), where x (Δ)(T̃ ) is given by (45);

FNFN: F(Δ) = z̃2 + τ − Δ, since x (Δ)(t) = x̃(t + (z̃3 − zΔ,3)) for all t � z̃2 + τ

and x (Δ)(zΔ,3 + τ) = x̃(z̃3 + τ) = x̄ , where zΔ,3 = z̃3 + T (Δ) − T̃ and T (Δ) is as
in Mackey et al. (2017, Proposition 5.8);

FNRN: F(Δ) = σ , since x (Δ)(t) = x̃(t + (z̃3 − zΔ,3)) for all t � Δ + σ and
x (Δ)(zΔ,3 + τ) = x̃(z̃3 + τ) = x̄ , where zΔ,3 = z̃3 + T (Δ) − T̃ and T (Δ) is as
in Mackey et al. (2017, Proposition 5.10);

FNRP: F(Δ) = z̃3 + τ − (z̃4 − zΔ,4) − Δ, since x (Δ)(t) = x̃(t + (z̃4 − zΔ,4))

for all t � z̃3 + τ − (z̃4 − zΔ,4) and x (Δ)(zΔ,4 + τ) = x̃(z̃4 + τ) = ¯x , wherezΔ,4 = z̃4 + T (Δ) − T̃ and T (Δ) is as in Mackey et al. (2017, Proposition 5.10). ��
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Proof of Remark 3.4 Define the constants δ1 as in Mackey et al. (2017, Eq. (5.6))

δ1 := z̃1 − σ − ln

(
βL + a(1 − e−σ )

βL

)
< z̃1. (54)

For each case (11) we consider the corresponding Δ interval as computed in Mackey
et al. (2017, Section 5) and listed in (11). Recalling that σ ∈ (0, τ ], T̃ = z̃2 + τ ,
tmax = z̃1 + τ , z̃n = T̃ + z̃n−2 for n ∈ {2, 3, 4 . . .}, z̃ j+1 > z̃ j + τ for all j ∈ N, and
from Mackey et al. (2017, Proposition 4.2) we see that J = jΔ ∈ {0, 1, 2} implies
zΔ,J+1 > Δ and zΔ,J+1 > zΔ,J+1 + τ . Thus, we show that for each case (11) we
have F(Δ) < T (Δ) as follows:

RNRN: Δ ∈ IRNRN = [0, δ1]: since z̃2 > z̃1 + τ > z̃1,

T (Δ) = T̃ + zΔ,1 − z̃1 = z̃2 + τ + zΔ,1 − z̃1 > τ + zΔ,1 > τ � σ = F(Δ);

RNRP and RPRP: Δ ∈ IRNRP = [max{0, δ1}, z̃1) with δ1 given by (54) and Δ ∈
IRPRP = [z̃1, tmax − σ ]: using that z̃2 > z̃1 + τ > z̃1 we infer

T (Δ) = T̃ + zΔ,2 − z̃2 = τ + zΔ,2 > z̃1 + τ + zΔ,2 − z̃2 − Δ = F(Δ);

RPFP: Δ ∈ IRPFP = (tmax − σ, tmax] ∩ (−∞, δ2]:

T (Δ) = T̃ + zΔ,2 − z̃2 = τ + zΔ,2 > τ � σ = F(Δ);

RPFN: Δ ∈ IRPFN = (tmax − σ, tmax] ∩ (δ2,∞): from Mackey et al. (2017, Propo-
sition 4.2) we have zΔ,3 > zΔ,2 + τ , and thereby

T (Δ) = T̃ + zΔ,3 − z̃3 = zΔ,3 − z̃1 > zΔ,2 + τ − z̃1 � zΔ,2 + σ − z̃1,

and using the lower bound of Δ in IRPFN we conclude that

T (Δ) > zΔ,2 + σ − z̃1 = zΔ,2 + τ − (tmax − σ) � zΔ,2 + τ − Δ = F(Δ);

FPFP: Δ ∈ IFPFP = [tmax, z̃2] ∩ (−∞, δ2]:

T (Δ) = T̃ + zΔ,2 − z̃2 = τ + zΔ,2 > τ � σ = F(Δ);

FPFN: Δ ∈ IFPFN = [tmax, z̃2] ∩ (δ2,∞): using zΔ,3 > zΔ,2 and using the lower
bound of Δ in IFPFN we have

T (Δ) = T̃ + zΔ,3 − z̃3 = zΔ,3 − z̃1 > zΔ,2 − z̃1 = zΔ,2 + τ − tmax

� zΔ,2 + τ − Δ = F(Δ);
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FNFP1: Δ ∈ IFNFP1 = Δ ∈ (z̃2, T̃ − σ) ∩ (−∞, δ2) ∩ [δ4,∞): here we have
x (Δ)(zΔ,4 + t) = x̃(z̃2 + t) for all t � 0, which gives T (Δ) = zΔ,4 − z̃2. Noting that
zΔ,4 > zΔ,3 and using the lower bound of Δ in IFNFP1 we obtain

T (Δ) = zΔ,4 − z̃2 > zΔ,3 + τ − z̃2 > zΔ,3 + τ − Δ = F(Δ);

FNFP2: Recall that IFNFP2 = ∅ since δ4 < z̃2;

FNFN: Δ ∈ IFNFN = (z̃2, z̃2 + τ − σ) ∩ [δ2,∞): since zΔ,3 > zΔ,2 + τ = z̃2 + τ

we have

T (Δ) = T̃ + zΔ,3 − z̃3 = zΔ,3 − z̃1 > z̃2 + τ − z̃1 > τ > z̃2 + τ − Δ = F(Δ);

FNRN: Δ ∈ IFNRN = [T̃ − σ, T̃ ) ∩ (−∞, T̃ + δ1): using the fact that zΔ,3 >

zΔ,2 + τ = z̃2 + τ we obtain

T (Δ) = T̃ + zΔ,3 − z̃3 = zΔ,3 − z̃1 > z̃2 + τ − z̃1 > τ � σ = F(Δ);

FNRP: Δ ∈ IFNRP = [T̃ − σ, T̃ ) ∩ [T̃ + δ1,∞): using that z̃2 + τ > z̃1 + 2τ >

z̃1 + τ + σ we have z̃1 + τ − (T̃ − σ) < 0, and thus

T (Δ) = T̃ + zΔ,4 − z̃4 � T̃ + z̃1 + τ − (T̃ − σ) + zΔ,4 − z̃4
> z̃3 + τ − (z̃4 − zΔ,4) − Δ = F(Δ).

��
Proof of Remark 3.5 Each set of parameters (τ, βU , βL , σ, a,Δ) defines a sequence of
cases (11) alongΔ ∈ [0, T̃ ). Thus we show that for each case (11) we have F(Δ) � σ :

RNRN, RPFP, FPFP, FNRN: F(Δ) = σ ;

RNRP: from Mackey et al. (2017, Proposition 5.2) we have x (Δ)(zΔ,1 + τ) > x̄ .
Using this and x̄ + βU = βU ez̃2−tmax in 0 = x (Δ)(zΔ,2) = −βU + (x (Δ)(zΔ,1 + τ) +
βU )ezΔ,1+τ−zΔ,2 we obtain

βU e
zΔ,2 =

(
x (Δ)(zΔ,1 + τ) + βU

)
ezΔ,1+τ

> βU e
z̃2−tmax ezΔ,1+τ .

= βU e
z̃2+zΔ,1−z̃1 .

So (zΔ,2 − z̃2) > (zΔ,1 − z̃1) and zΔ,1 > Δ lead to

F(Δ) = z̃1+τ +(zΔ,2− z̃2)−Δ > z̃1+τ +(zΔ,1− z̃1)−Δ = zΔ,1−Δ+τ > τ � σ ;

RPRP: taking the upper boundofΔ in IRPRP = [z̃1, tmax−σ ] and using that zΔ,2 > z̃2,
see Mackey et al. (2017, Proposition 5.3), we find
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F(Δ) = z̃1 + τ + (zΔ,2 − z̃2) − Δ > z̃1 + τ + zΔ,2 − z̃2 − tmax + σ

= σ + zΔ,2 − z̃2 > τ � σ ;

RPFN: taking the upper bound of Δ in IRPFN = (tmax −σ, tmax] ∩ (δ2,∞) and using
that zΔ,2 � z̃2 Mackey et al. (2017, Proof of Proposition 5.5, Eq. (9.5)) we obtain

F(Δ) = zΔ,2 + τ − Δ � zΔ,2 + τ − tmax > z̃2 + τ − tmax � τ � σ ;

FPFN: from Mackey et al. (2017, Proof of Proposition 5.7) we have zΔ,2 � z̃2, then

F(Δ) = zΔ,2 + τ − Δ � zΔ,2 + τ − z̃2 � τ � σ ;

FNFP1: F(Δ) = zΔ,3 + τ − Δ > zΔ,3 + τ − (z̃2 + τ − σ) = σ + zΔ,3 − z̃2 > σ ;

FNFP2: Recall that IFNFP2 = ∅ since δ4 < z̃2;

FNFN: F(Δ) = z̃2 + τ − Δ > z̃2 + τ − (z̃2 + τ − σ) = σ ;

FNRP: fromMackey et al. (2017, Proof of Proposition 5.10)we have x (Δ)(zΔ,3+τ) >

x̄ . Using this and x̄ + βU = βU ez̃2−tmax in x (Δ)(zΔ,4) = 0 we have

βU e
zΔ,4 =

(
x (Δ)(zΔ,3 + τ) + βU

)
e−(zΔ,4−(zΔ,3+τ))

> βU e
z̃2−tmax ezΔ,3+τ .

= βU e
z̃4+zΔ,3−z̃3 .

So (zΔ,4 − z̃4) > (zΔ,3 − z̃3) and zΔ,3 > Δ lead to

F(Δ) = z̃3+τ +(zΔ,4− z̃4)−Δ > z̃3+τ +(zΔ,3− z̃3)−Δ = zΔ,3+τ −Δ > τ � σ.

��
Proof of Remark 3.6 Recall that δ2 is given by (12) and is defined for βU > a(1−e−σ ).
Thus the definition (12) also holds for a < βU . For the case RPFN of Mackey et al.
(2017, Table 2) we have Δ ∈ IRPFN = (tmax − σ, tmax] ∩ (δ2,∞) and δ2 > tmax , then
it follows that IRPFN = ∅. ��
Proof of Remark 3.7 FromMackey et al. (2017, Corollary 4.2) it follows that the cycle
length map T (Δ) is continuous for a < βU . The proof is divided into two subcases,
δ2 < tmax and δ2 � tmax as follows.

The condition δ2 < tmax implies that a < βU and there exists a sequence of cases
from (11) as is shown in Mackey et al. (2017, Table 1). Once the cycle length map
is continuous we see from Mackey et al. (2017, Third row of Table 1) that T (Δ) is
strictly increasing on [0, δ2] and strictly decreasing on [δ2, T̃ ]. Thus the maximum of
T (Δ) occurs for the case RPFP with Δ = δ2 and we have T̄ = T (δ2) with the cycle
length map given by Mackey et al. (2017, Proposition 5.4), i.e.

123

Author's personal copy



Response of an oscillatory differential delay equation… 1671

T̄ = T̃ + ln

(
1 + a(eσ + 1)

βU
eδ2−z̃2

)
= T̃ + ln

(
βU

βU − a(1 − e−σ )

)
> T̃ , (55)

where T̃ is defined by (9).
For δ2 � tmax there exists a sequence of cases from (11) as is shown in Mackey et

al. (2017, Table 2) and it follows from Remark 3.6 that a < βU holds. For the case
RPFN of Mackey et al. (2017, Table 2) we have δ2 � tmax and from Remark 3.6 it
follows that IRPFN = ∅. Once the cycle length map is continuous and IRPFN = ∅,
we see from Mackey et al. (2017, Third row of Table 2) that again T (Δ) is strictly
increasing on [0, δ2] and strictly decreasing on [δ2, T̃ ]. Thus the maximum of T (Δ)

occurs for the case FPFP with Δ = δ2 and we have T̄ = T (δ2) with the cycle length
map given by Mackey et al. (2017, Proposition 5.6), which is equal to (55). ��
Proof of Remark 3.8 For Δ � t � Δ + σ , Eq. (41) together with x (Δ)(Δ) = −βU +
βU ez̃2−Δ yields

x (Δ)(t) = −βU + a + (βU e
z̃2−Δ − a)e−(t−Δ). (56)

The conditions a > βU and Δ > z̃2 (see Remark 3.1) combined yield a > βU ez̃2−Δ.
Hence x (Δ)(t) is strictly increasing on [Δ,Δ + σ ]. From x (Δ)(Δ) < 0 and x (Δ)(Δ +
σ) > 0 we obtain a zero zΔ,3 of x (Δ) in (Δ,Δ + σ) given by (46).

For Δ + σ � t � T̃ , Eq. (44) together with (x (Δ)(Δ + σ) + βU ) > 0 shows that
x (Δ)(t) is strictly decreasing on [Δ + σ, T̃ ].

For T̃ < t < zΔ,3 + τ we have z̃2 < t − τ < zΔ,3. Hence x (Δ)(t − τ) < 0, and

x (Δ)(t) = βL +
(
x (Δ)(T̃ ) − βL

)
e−(t−T̃ ).

Thus x (Δ) is strictly increasing on [T̃ , zΔ,3 + τ ] since x (Δ)(T̃ ) < 0. For t = zΔ,3 + τ

x (Δ)(zΔ,3 + τ) = βL +
(
x (Δ)(T̃ ) − βL

)
e−(zΔ,3−z̃2). (57)

A rapidly oscillating periodic solution occurs if x (Δ)(Δ) = x (Δ)(T̃ ), x (Δ)(Δ+σ) =
x (Δ)(zΔ,3 + τ) and if the solution x (Δ) for Δ � t � Δ + σ is equal to the solution
x (Δ) for T̃ � t � zΔ,3 + τ , i.e, a = βL + βU . Then, the necessary conditions for the
existence of a rapid oscillation are

⎧⎨
⎩
a = βL + βU ,

x (Δ)(Δ) = x (Δ)(T̃ ),

x (Δ)(Δ + σ) = x (Δ)(zΔ,3 + τ).

(58)

Combining Eq. (58) with (57) we get

⎧⎪⎨
⎪⎩

βL = a − βU ,

x (Δ)(T̃ ) = x (Δ)(Δ),

x (Δ)(Δ + σ) = βL +
(
x (Δ)(T̃ ) − βL

)
e−(zΔ,3−z̃2).

(59)
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Using the first and second relation in the third line of Eq. (59) gives

x (Δ)(Δ + σ) + βU − a =
(
x (Δ)(Δ) + βU − a

)
e−(zΔ,3−z̃2),

and combining this with (42) yields

(
x (Δ)(Δ) + βU − a

)
e−σ =

(
x (Δ)(Δ) + βU − a

)
e−(zΔ,3−z̃2).

From a > βU and x (Δ)(Δ) = −βU +βU ez̃2−Δ it follows that (x (Δ)(Δ)+βU −a) < 0.
Hence the conditions (58) are reduced to

ezΔ,3 = ez̃2+σ . (60)

The relation (60) combined with (46) yields

aeΔ = βU e
z̃2 + (a − βU )ez̃2+σ , (61)

where z̃2 is given by (9). Substituting Δ = δ∞ in (61) gives the constant defined δ∞
in (19) and

δ∞ = z̃2 + σ + ln
a − βU (1 − e−σ )

a
< z̃2 + σ

= z̃2 + ln
aeσ − βU (eσ − 1)

aeσ − a(eσ − 1)
> z̃2.

So the conditions (58) yield Δ = δ∞ with z̃2 < δ∞ < z̃2 + σ .
The period of the unstable periodic solution is given by T̃ (∞) = zΔ,3+τ −(Δ+σ)

(see the example from Fig. 5). Computing zΔ,3 from (60) and using Δ = δ∞ gives
T̃ (∞) = T̃ − δ∞, and this together with z̃2 < δ∞ < z̃2 +σ yields τ −σ < T̃ (∞) < τ .

Recalling that x (Δ)(t) is strictly increasing on [Δ,Δ + σ ], strictly decreasing on
[Δ + σ, T̃ ] and strictly increasing on [T̃ , zΔ,3 + τ ], we infer that for Δ = δ∞ the
minimum and maximum of the rapid limit cycle are respectively given by ¯x

(Δ) =
x (Δ)(δ∞) and x̄ (Δ) = x (Δ)(δ∞ +σ). From x (Δ)(Δ) = −βU +βU ez̃2−Δ withΔ = δ∞
and 0 < δ∞ − z̃2 < σ < τ it follows that

¯x
(Δ) = −βU (1 − e−(δ∞−z̃2))

> −βU (1 − e−σ )

> −βU (1 − e−τ ) = ¯x .

From (56) with t = δ∞ + σ and Δ = δ∞ together with a = βL + βU and 0 <

δ∞ − z̃2 < σ < τ it follows that

x̄ (Δ) = a(1 − e−σ ) + βU (ez̃2−δ∞−σ − 1)

= (βL + βU )(1 − e−σ ) + βU (ez̃2−δ∞−σ − 1)
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= βL(1 − e−σ ) − βU (1 − e−(δ∞−z̃2))e−σ

< βL(1 − e−σ )

< βL(1 − e−τ ) = x̄ .

��
Proof of Proposition 4.1 Using the fact that x (p)(Δ0) = x (p)(z2) = 0, for t ∈
[Δ0,Δ0 + σ ] we have

x (p)(t) = −βU + a + (βU − a)e−(t−Δ0).

The condition a � a1 implies a > βU , so x (p)(t) is increasing and

x (p)(Δ0 + σ) = −βU + a + (βU − a)e−σ

= βU (e−σ − 1) + a(1 − e−σ ),

thus x (p)(Δ0 + σ) = (a − βU )(1 − e−σ ) > 0.
For t ∈ [Δ0 + σ,Δ1] we have

x (p)(t) = −βU +
(
x (p)(Δ0 + σ) + βU

)
e−(t−Δ0−σ),

so x (p)(t) is decreasing, since (x (p)(Δ0 + σ) + βU ) = βU e−σ + a(1 − e−σ ) > 0,
and

x (p)(Δ1) = −βU +
(
x (p)(Δ0 + σ) + βU

)
e−α

= βU (e−Tp − 1) + a(1 − e−σ )e−α.

The condition a � a1 implies x (p)(Δ1) � 0.
For t ∈ [Δ1,Δ1 + σ ] it follows that

x (p)(t) = −βU + a +
(
x (p)(Δ1) + βU − a

)
e−(t−Δ1),

so x (p)(t) is increasing, (x (p)(Δ1) + βU − a) = (βU − a)e−Tp + a(e−α − 1) < 0,
and

x (p)(Δ1 + σ) = −βU + a +
(
x (p)(Δ1) + βU − a

)
e−σ

= βU (e−Tp−σ − 1) + a(1 − e−σ )(1 + e−Tp ).

Since x (p)(t) is increasing for t ∈ [Δ1,Δ1+σ ] and x (p)(Δ1) � 0, then x (p)(Δ1+σ) >

x (p)(Δ1) � 0.
For t ∈ [Δ1 + σ,Δ2] the solution is given by

x (p)(t) = −βU +
(
x (p)(Δ1 + σ) + βU

)
e−(t−Δ1−σ),
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so x (p)(t) is decreasing, (x (p)(Δ1+σ)+βU ) = βU e−Tp−σ +a(1−e−σ )(1+e−Tp ) >

0, and

x (p)(Δ2) = −βU +
(
x (p)(Δ1 + σ) + βU

)
e−α

= βU (e−2Tp − 1) + a(1 − e−σ )(1 + e−Tp )e−α.

Thus x (p)(Δ2) > βU (e−Tp − 1) + a(1 − e−σ )e−α = x (p)(Δ1) � 0.
For t ∈ [Δ2,Δ2 + σ ] we have

x (p)(t) = −βU + a +
(
x (p)(Δ2) + βU − a

)
e−(t−Δ2),

so x (p)(t) is increasing, (x (p)(Δ2) + βU − a) = (βU − a)e−2Tp + a(e−α − 1) +
(e−α − 1)e−2α < 0, and

x (p)(Δ2 + σ) = −βU + a +
(
x (p)(Δ2) + βU − a

)
e−σ

= βU (e−2Tp−σ − 1) + a(1 − e−σ )[1 + e−Tp + e−2Tp ].

Since x (p)(t) is increasing for t ∈ [Δ2,Δ2+σ ] and x (p)(Δ2) � 0, then x (p)(Δ2+σ) >

x (p)(Δ2) > 0.
For t ∈ [Δ2 + σ,Δ3] it follows that

x (p)(t) = −βU +
(
x (p)(Δ2 + σ) + βU

)
e−(t−Δ2−σ),

so x (p)(t) is decreasing, (x (p)(Δ2+σ)+βU ) = βU e−2Tp−σ +a(1−e−σ )[1+e−Tp +
e−2Tp ] > 0, and

x (p)(Δ3) = −βU +
(
x (p)(Δ2 + σ) + βU

)
e−α

= βU (e−3Tp − 1) + a(1 − e−σ )[1 + e−Tp + e−2Tp ]e−α.

Thus x (p)(Δ3) > βU (e−Tp − 1) + a(1 − e−σ )e−α = x (p)(Δ2) > 0.
For t ∈ [Δ3,Δ3 + σ ] the solution is given by

x (p)(t) = −βU + a +
(
x (p)(Δ3) + βU − a

)
e−(t−Δ3),

so x (p)(t) is increasing, (x (p)(Δ3)+βU −a) = (βU −a)e−3Tp +a(e−α −1)+(e−α −
1)e−3α < 0, and

x (p)(Δ3 + σ) = −βU + a +
(
x (p)(Δ3) + βU − a

)
e−σ

= βU (e−3Tp−σ − 1) + a(1 − e−σ )[1 + e−Tp + e−3Tp ].
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Since x (p)(t) is increasing for t ∈ [Δ3,Δ3+σ ] and x (p)(Δ3) � 0, then x (p)(Δ3+σ) >

x (p)(Δ3) > 0.
Generalizing this procedure, we see that x (p)(Δn) and x (p)(Δn +σ) can be written

according to Eqs. (25) and (26). The proof is completed inductively for (25) and (26)
with n = 1, 2, 3 and Δn = nTp + Δ0. Hence, we see that for t ∈ [Δn,Δn + σ ] the
solution x (p)(t) is given by Eq. (23) and for t ∈ [Δn + σ,Δn+1] the solution x (p)(t)
is given by Eq. (24). ��

Proof of Proposition 4.2 (i): Since a � a1 we can take the limit n −→ ∞ in Eqs. (25)
and (26). We know that

∑∞
k=0 y

k = 1/(1 − y) for |y| < 1, then

lim
n−→∞ x (p)(Δn) = −βU + a

(1 − e−σ )

(1 − e−Tp )
e−α = ¯x

(p),

and

lim
n−→∞ x (p)(Δn + σ) = −βU + a

(1 − e−σ )

(1 − e−Tp )
= x̄ (p).

(ii): Using that x(0) = ϕ(0) = ¯x
(p) and Δ0 = 0, for t ∈ [0, σ ] the solution is given

by
x (p)(t) = −βU + a + (¯x

(p) + βU − a)e−t ,

once that x(t − τ) = ϕ(t) � 0. So x (p)(t) is increasing, since (¯x
(p) + βU − a) =

ae−α(1 − e−σ )/(1 − e−σ−α) − a < 0, and

x (p)(σ ) = −βU + a +
(
¯x

(p) + βU − a
)
e−σ ,

= −βU + a(1 − e−σ ) + a
(1 − e−σ )

(1 − e−Tp )
e−Tp = x̄ (p).

Using that x (p)(σ ) = x̄ (p), for t ∈ [σ,Δ1] we have

x (p)(t) = −βU +
(
x̄ (p) + βU

)
e−(t−σ),

so x (p)(t) is decreasing, since (x̄ (p) + βU ) = a(1 − e−σ )/(1 − e−Tp ) > 0, and

x (p)(Δ1) = −βU +
(
x̄ (p) + βU

)
e−α,

= −βU + a
(1 − e−σ )

(1 − e−Tp )
e−α = ¯x

(p).

Furthermore, once x (p)(Δ1) = ¯x
(p), for t ∈ [Δ1,Δ1 + σ ] it follows that

x (p)(t) = −βU + a + (¯x
(p) + βU − a)e−(t−Δ1),
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and thus x (p)(Δ1 + σ) = x̄ (p). For t ∈ [Δ1 + σ,Δ2] we have

x (p)(t) = −βU +
(
x̄ (p) + βU

)
e−(t−Δ1−σ).

Hence, repeating this process for t ∈ [Δ2,Δ2 + σ ], [Δ2 + σ,Δ2], [Δ3,Δ3 + σ ] and
so forth we see that the solution x (p)(t) is given by (27). The proof is completed by
checking that the Principle of Mathematical Induction holds for (27) with n = 1, 2, 3
and Δn = nTp + Δ0. ��
Proof of Proposition 4.3 Consider the maximum (29) and define an initial perturba-
tion phase Δl such that x (p)(Δl) = ¯x

(p). The solution for the initial pulse is given
by (41) (Mackey et al. 2017, Section 5.3) with x (Δ)(Δ) = −βU + βU ez̃2−Δ. Thus
x (p)(Δl) = −βU + βU ez̃2−Δl = ¯x

(p). This with ¯x
(p) � 0, since a � a1, gives

Δl = z̃2 + ln

(
βU

βU + ¯x
(p)

)
� z̃2. (62)

The proof is divided between the four cases shown in Fig. 9, where each Δ0 interval
is given by: (a) (z̃1, tmax ), (b) [tmax ,Δl), (c) [Δl , z̃2), (d) [z̃2, T̃ + z̃1].

First, we prove case (b) by showing that for Δ0 ∈ [tmax ,Δl) the points x (p)(Δn)

converge to (28) and the points x (p)(Δn + σ) converge to (29). For this case
x (p)(tmax ) � x (p)(Δ0) > ¯x

(p) � 0 and x (p)(Δ0 − τ) � 0. Thus for t = Δ0 we
have

x (p)(Δ0) = −βU + βU e
z̃2−Δ0 .

For t ∈ [Δ0,Δ0 + σ ] the solution is given by x (p)(t) = −βU + a + (x (p)(Δ0) +
βU − a)e−(t−Δ0), so

x (p)(Δ0 + σ) = −βU + a +
(
x (p)(Δ0) + βU − a

)
e−σ .

For t ∈ [Δ0 + σ,Δ1] we have x (p)(t) = −βU + (x (p)(Δ0 + σ) + βU )e−(t−Δ0−σ),
then

x (p)(Δ1) = −βU +
(
x (p)(Δ0 + σ) + βU

)
e−α.

Repeating the previous steps for t ∈ [Δ1,Δ1 + σ ], t ∈ [Δ1 + σ,Δ2] and so
forth, we see that for t ∈ [Δn,Δn + σ ] and n ∈ N>0 the solution is given by
x (p)(t) = −βU + a + (x (p)(Δn) + βU − a)e−(t−Δn), so

x (p)(Δn + σ) = −βU + a +
(
x (p)(Δn) + βU − a

)
e−σ , (63)

and for t ∈ [Δn +σ,Δn+1] and n ∈ N>0 we have x (p)(t) = −βU + (x (p)(Δn +σ)+
βU )e−(t−Δn−σ), then

x (p)(Δn+1) = −βU +
(
x (p)(Δn + σ) + βU

)
e−α. (64)
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From (63), (64) and Tp = α + σ it follows that

x (p)(Δn+1) = −βU + ae−α(1 − e−σ ) +
(
x (p)(Δn) + βU

)
e−Tp . (65)

Equation (65) is recursive and can be rewritten as

x (p)(Δn) = −βU + ae−α(1 − e−σ )

n−1∑
k=0

e−kTp +
(
x (p)(Δ0) + βU

)
e−nTp . (66)

It is known that
∑∞

k=0 y
k = 1/(1 − y) for |y| < 1, thus taking the limit n −→ ∞

of (66) gives

lim
n−→∞ x (p)(Δn) = −βU + a

(1 − e−σ )

(1 − e−Tp )
e−α = ¯x

(p), (67)

and taking the limit n −→ ∞ of (63) and using (67) yields

lim
n−→∞ x (p)(Δn + σ) = −βU + a

(1 − e−σ )

(1 − e−Tp )
= x̄ (p).

Then in the limit n −→ ∞we see that the solution of (21) converges to the limit cycle
given by (27).

For case (c) the proof is the same as the case (b), but with Δ0 ∈ [Δl , z̃2) and hence
x (p)(Δl) � x (p)(Δ0) > x (p)(z̃2) � 0.

To prove case (a) we first note that x (p)(t − τ) < 0 for t ∈ (z̃1, tmax ). Given an
initial perturbation phaseΔ0 ∈ (z̃1, tmax ), the solution on (z̃1, tmax ) alternates between
x (p)(t) = βL + a + (x (p)(Δn) − βL − a)e−(t−Δn) for [Δn,Δn + σ ] and x (p)(t) =
βL + (x (p)(Δ0 + σ) − βL)e−(t−Δ0−σ) for [Δn + σ,Δn] with n = 0, 1, 2, . . . , k,
where the k-th index is such that Δk−1 < tmax � Δk . Along the interval (z̃1, tmax )

the solution x (p)(t) might have a maximum point if it reaches the value (βL + a) in
the intervals [Δn,Δn + σ ] or if it reaches the value βL in the intervals [Δn + σ,Δn],
otherwise, it will be strictly increasing for t ∈ (z̃1, tmax ), as is in the examples of
Fig. 9a. For t � tmax the proof is the same as the case (b), but using x (p)(tmax ) as
initial point x (p)(Δ0).

For case (d)weneed to distinguish it between two subcases, the interval t ∈ [Δ0, T̃ ],
for which x (p)(t−τ) � 0, and the interval t ∈ (T̃ , z p,1+τ), where x (p)(t−τ) < 0 and
z p,1 is the first zero of x (p)(t)with t > Δ0. For the first interval the solution alternates
between x (p)(t) = −βU + a + (x (p)(Δn) + βU − a)e−(t−Δn) for [Δn,Δn + σ ]
and x (p)(t) = −βU + (x (p)(Δ0 + σ) + βU )e−(t−Δ0−σ) for [Δn + σ,Δn] with n =
0, 1, 2, . . . , k, where the k-th interval is such that Δk−1 < (z p,1 + τ) � Δk . For the
second interval, the solution alternates between x (p)(t) = βL +a+ (x (p)(Δn)−βL −
a)e−(t−Δn) for [Δn,Δn + σ ] and x (p)(t) = βL + (x (p)(Δ0 + σ) − βL)e−(t−Δ0−σ)

for [Δn + σ,Δn] with n = 0, 1, 2, . . . , k, where the k-th index is such that Δk−1 <

(T̃ + z̃1) � Δk . Along the interval [Δ0, T̃ ] the solution x (p)(t) might oscillate if it
reaches the value (a−βU ) in the intervals [Δn,Δn +σ ] or if it reaches the value−βU
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in the intervals [Δn + σ,Δn], otherwise, it will be strictly increasing for t ∈ [Δ0, T̃ ],
as is in the examples of Fig. 9d. For t > (z p,1 + τ) the proof is the same as the case
(a), but using x (p)(z p,1 + τ) as initial point x (p)(Δ0). ��
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