
J. Math. Anal. Appl. 470 (2019) 931–953
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The combined effects of Feller diffusion and 

transcriptional/translational bursting in simple gene networks

Mateusz Falfus a, Michael C. Mackey b, Marta Tyran-Kamińska c,∗

a Institute of Mathematics, University of Silesia in Katowice, Bankowa 14, 40-007 Katowice, Poland
b Departments of Physiology, Physics & Mathematics, McGill University, 3655 Promenade Sir William 
Osler, Montreal, QC H3G 1Y6, Canada
c Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 April 2018
Available online 17 October 2018
Submitted by U. Stadtmueller

Keywords:
Stochastic modeling
Diffusion with jumps
Invariant density
Stochastic semigroup
Gene regulation

We study a stochastic model of biosynthesis of proteins in generic bacterial operons. 
The stochasticity arises from two different processes, namely from ‘bursting’ 
production of either mRNA and/or protein (in the transcription/translation 
process) and from standard diffusive fluctuations. The amount of protein follows the 
Feller diffusion, while the bursting introduces random jumps between trajectories 
of the diffusion process. The combined effect leads to a process commonly known 
as a diffusion process with jumps. We study existence of invariant densities and the 
long time behavior of distributions of the corresponding Markov process, proving 
asymptotic stability in the evolution of the density.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The operon concept for the regulation of bacterial genes, which was first put forward in [24], has had an 
astonishing and revolutionary effect on the development of understanding in molecular biology. In the operon 
concept, transcription of DNA produces messenger RNA (mRNA, denoted M). Then through the process 
of translation of mRNA, intermediate protein (I) is produced which is capable of controlling metabolite (E) 
levels that in turn can feed back and affect either/or transcription and/or translation. A typical example 
would be in the lactose operon where the intermediate is β-galactosidase and the metabolite is allolactose. 
These metabolites are often referred to as effectors, and can, in the simplest case, be either stimulatory (so 
called inducible) or inhibitory (or repressible) to the entire process.

Mathematical treatments of the operon concept appeared rapidly after the idea was embraced by biolo-
gists. Thus, [18] gave the first analysis of operon dynamics which had been formulated in [17]. These first 
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attempts were swiftly followed by Griffith’s analysis of a simple repressible operon [19] and an inducible 
operon [20], and these and other results were nicely summarized in [51] and [44].

For a generic operon with a maximal level of transcription b (in concentration units), the dynamics are 
given by [18–20,34,44]

dM

dt
= bϕ(E) − γMM, (1.1)

dI

dt
= βIM − γII, (1.2)

dE

dt
= βEI − γEE. (1.3)

It is assumed here that the rate ϕ of mRNA production is proportional to the fraction of time the operator 
region is active, and that the rates of protein and metabolite production are proportional to the amount 
of mRNA and intermediate protein respectively. All three of the components (M, I, E) are subject to 
degradation, and the function ϕ is as determined in [29].

Identifying fast and slow variables can give considerable simplification and insight into the long term 
behavior of the system. A fast variable in a given dynamical system relaxes much more rapidly to an 
equilibrium than a slow one [21]. Differences in degradation rates in chemical and biochemical systems lead 
to the distinction that the slowest variable is the one that has the smallest degradation rate. Typically 
the degradation rate of mRNA is much greater than the corresponding degradation rates for both the 
intermediate protein and the effector (γM � γI , γE) so in this case the mRNA dynamics are fast and we 
have γMM � bϕ(E). If γM � γI � γE so that the effector is the slowest variable, then the three variable 
system describing the generic operon reduces to a one dimensional system

dE

dt
= −γEE + bβIβE

γIγM
ϕ(E) (1.4)

for the relatively slow effector dynamics. If instead the effector qualifies as a fast variable so that γM �
γE � γI then the intermediate protein is the slowest variable and

dI

dt
= −γII + bβI

γM
ϕ

(
βEI

γE

)
. (1.5)

Defining dimensionless variables, both equations (1.5) and (1.4) are seen to be of the form

dx

dt
= −γx + ϕ(x) (1.6)

and this will be our starting point in the examination of the effects of noise on the dynamics.
In cellular and molecular biology, as experimental techniques have allowed investigators to probe temporal 

behavior at ever finer levels, even to the level of individual molecules, the question has arisen about whether 
the fluctuations observed in data are measurement noise or are playing a role in the operation of the 
molecular regulatory process. Experimentalists and theoreticians alike who are interested in the regulation 
of gene networks are increasingly focused on trying to access the role of various types of fluctuations on the 
operation and fidelity of both simple and complex gene regulatory systems. Recent reviews [25,38,47] give 
an interesting perspective on some of the issues confronting both experimentalists and modelers.

Typically, the discussion seems to focus on whether fluctuations can be considered as extrinsic to the 
system under consideration [45,32,33], or whether they are an intrinsic part of the fundamental processes 
they are affecting (e.g. bursting, see below). The dichotomy is rarely so sharp however, but [10] has proposed 
an elegant experimental technique to distinguish between the two, see also [40], while [43] and [50] have 
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laid the groundwork for a theoretical consideration of this question. One issue that is raised persistently in 
considerations of the role of fluctuations or noise in the operation of gene regulatory networks is whether or 
not they are “beneficial” [4] or “detrimental” [13] to the operation of the system under consideration. This 
is, of course, a question of definition and not one that we will be further concerned with here.

From a modeling perspective there have been a number of studies attempting to understand the effects 
of noise on gene regulatory dynamics. The now classical [26] laid much of the ground work for subsequent 
studies by its treatment of a variety of noise sources and their effect on dynamics. In [30] the effects of 
either bursting or Gaussian noise on both inducible and repressible operon models were examined. A recent 
monograph [29] gives extensive background information for the history of modeling of the effects of noise in 
gene regulation.

Here, we consider the density of the molecular distributions in generic bacterial operons in the presence 
of ‘bursting’ (commonly known as intrinsic noise in the biological literature) as well as inherent (extrinsic) 
noise using an analytical approach. Our work is motivated by the well documented production of mRNA 
and/or protein in stochastic bursts in both prokaryotes and eukaryotes [5,7,8,16,37,48,53], and follows other 
contributions by, for example, [26], [14], [6] and [46].

Jump Markov processes are often used in modeling stochastic gene expressions with explicit bursting in 
either mRNA or proteins [14,16], and have been employed as models for genetic networks [54]. Biologically, 
the ‘bursting’ of mRNA or protein is simply a process in which there is a production of several molecules 
within a very short time. In the biological context of modeling stochastic gene expression, explicit models 
of bursting mRNA and/or protein production have been analyzed recently, either using a discrete [46] or 
a continuous formalism [14,28,30] as even more experimental evidence from single-molecule visualization 
techniques has revealed the ubiquitous nature of this phenomenon [9,16,35,39,37,49,52].

We consider the situation in which there is both bursting production of molecules and fluctuations in 
the degradation rate of molecules, which we left unsolved in [30]. The amount of protein follows the Feller 
diffusion on (0, ∞) defined as the solution of the one dimensional Ito stochastic differential equation

dXt = −γXtdt + σ
√

XtdWt, X0 = x ∈ (0,∞), (1.7)

where γ, σ > 0 and {Wt : t ≥ 0} is a one-dimensional standard Wiener process (Brownian motion). There is 
existence and pathwise uniqueness of the solution of (1.7) until the exit time ζ = inf{t > 0 : Xt /∈ (0, ∞)}. 
Moreover, the process is absorbed at 0 a.s. in the sense that if τ0 = inf{t > 0 : Xt = 0} is the first hitting 
time of 0 for the process {Xt : 0 ≤ t < ζ} then

Pr(τ0 = ζ < ∞|X0 = x) = Pr(lim
t↑ζ

Xt = 0|X0 = x) = 1 for all x > 0.

Consequently, for x > 0 and t ≥ τ0 we can define Xt = 0, so that for every x > 0 the process starting at x
is defined for all times and has values in [0, ∞). Since the unique solution X of (1.7) starting at X0 = 0 is 
Xt = 0, t ≥ 0, we can extend the state space to [0, ∞).

The random degradation of molecules described by the Feller diffusion is interrupted at random times

0 < t1 < t2 < . . .

which occur at rate ϕ(x) dependent on the current amount of molecules. At each tk a random amount of 
protein molecules is produced according to a distribution with density h, independently of everything else. 
Consequently, the model follows Feller diffusion with additive jumps, which can be defined as a Markov 
process Z = {Zt}t≥0 solving the following stochastic differential equation

Zt = Z0 − γ

t∫
Zs−ds + σ

t∫ √
ZsdWs +

t∫ ∞∫ ∞∫
z1{r≤ϕ(Zs−)}N(ds, dz, dr) (1.8)
0 0 0 0 0
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where N(ds, dz, dr) is a Poisson random measure on (0, ∞) × [0, ∞)2 with intensity dsh(z)dzdr, h is a 
probability density function on (0, ∞), and ϕ is a Borel measurable function locally bounded on [0, ∞). We 
study the process Z as in (1.8) on the state space E = [0, ∞).

The process Z is an example of a jump-diffusion process with jumps from the boundary and we study 
asymptotic properties of such process with the help of stochastic semigroups. Diffusion processes on bounded 
domains with random jumps from the boundary have fine ergodic and spectral properties [3,36]. Yet, a dif-
ferent approach is given in [2], where the authors study extinction.

The outline of this paper is as follows. Section 2 collects together some basic material including definitions 
and necessary concepts. Section 3 treats some elementary properties of the Feller diffusion, while Section 4
develops the semigroup for the Feller diffusion and properties of the semigroup that we will later need. 
Section 5 gets to the heart of the matter by treating the combined diffusion and jump processes for the 
specific case of transcriptional and/or translational bursting. We prove in Section 5.1 that there is a unique 
invariant density of the molecular distribution and that it is asymptotically stable. In Section 5.2 we explicitly 
assume that the distribution of transcriptional/translational bursts is exponentially distributed (as often 
found experimentally) and derive the differential equation that the stationary density satisfies. Section 5.3
gives an explicit solution for the invariant density in the special case that the bursting rate ϕ is constant. 
We conclude in Section 6 with a brief summary of extant problems and directions for future research.

2. Preliminaries

In this section we collect some preliminary material. Let (X , ‖ · ‖) be a Banach lattice, it will be either 
an L1 space of integrable functions or a subspace of the space of bounded measurable functions with the 
supremum norm. The domain of a linear operator A will be denoted by D(A). A linear operator A is said to 
be positive if Af ≥ 0 for all f ∈ D(A) such that f ≥ 0. A bounded linear operator A is called a contraction 
if ‖A‖ ≤ 1. If for some real λ the operator λ −A := λI −A is one-to-one, onto, and (λ −A)−1 is a bounded 
linear operator, then λ is said to belong to the resolvent set ρ(A) and R(λ, A) := (λ − A)−1 is called the 
resolvent at λ of A.

A family of positive (contraction) operators {S(t)}t≥0 on X is called a positive (contraction) semigroup, 
if it is a C0-semigroup, i.e.,

(1) S(0) = I (the identity operator);
(2) S(t + s) = S(t)S(s) for every s, t ≥ 0;
(3) for each f ∈ L1 the mapping t 	→ S(t)f is continuous: for each s ≥ 0

lim
t→s

‖S(t)f − S(s)f‖ = 0.

The infinitesimal generator of {S(t)}t≥0 is by definition the operator A with domain D(A) ⊂ X defined as

D(A) = {f ∈ X : lim
t↓0

1
t
(S(t)f − f) exists},

Af = lim
t↓0

1
t
(S(t)f − f), f ∈ D(A).

The generator A of a C0-semigroup is closed with D(A) dense in X , see e.g. [11, Theorem II.1.4]. If A is 
the generator of the positive contraction semigroup {S(t)}t≥0 then (0, ∞) ⊂ ρ(A) and we have the integral 
representation

R(λ,A)f =
∞∫
e−λsS(s)f ds for f ∈ X .
0
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The operator λR(λ, A) is a positive contraction and R(μ, A)f ≤ R(λ, A)f for μ > λ > 0, f ∈ X , f ≥ 0. For 
the semigroup theory we refer to [11].

Let the triple (E, E , m) be a σ-finite measure space and let L1 = L1(E, E , m) with norm denoted by ‖ ·‖1. 
A linear operator P on L1 is called substochastic (stochastic) if Pf ≥ 0 and ‖Pf‖1 ≤ ‖f‖1 (‖Pf‖1 = ‖f‖1) 
for all f ≥ 0, f ∈ L1. We denote by D the set of all densities on E, i.e.

D = {f ∈ L1 : f ≥ 0, ‖f‖1 = 1},

so that a stochastic operator transforms a density into a density. A semigroup {P (t)}t≥0 of linear operators 
on L1 is called substochastic (stochastic) if it is a C0-semigroup and for each t > 0 the operator P (t) is 
substochastic (stochastic). A density f∗ is called invariant or stationary for {P (t)}t≥0 if f∗ is a fixed point 
of each operator P (t), P (t)f∗ = f∗ for every t ≥ 0.

3. Feller diffusion

In this section we study the semigroups on the spaces of continuous functions related to the Feller diffusion 
introduced in Section 1. Let X = {Xt}t≥0 be the Feller diffusion as in (1.7) defined on [0, ∞) and let Px be 
the law of the process X starting at X0 = x ≥ 0. We denote by Ex the expectation with respect to Px.

Lemma 1. Let τ0 = inf{t > 0 : Xt = 0}. For all x > 0, t > 0 and all bounded Borel measurable functions f
on [0, ∞) we have

Ex(f(Xt)1{t<τ0}) =
∞∫
0

pt(x, y)f(y)dy,

where

pt(x, y) = ct

√
eγtx

y
e−ct(x+eγty)I1(2ct

√
eγtxy), t, x, y > 0, (3.1)

I1 is the modified Bessel function of the first kind

I1(x) =
∞∑
k=0

1
k!(k + 1)!

(x
2

)2k+1
and ct = 2γ

σ2(eγt − 1) .

Moreover,

Px(t < τ0) =
∞∫
0

pt(x, y)dy = 1 − e−ctx, x > 0, t > 0, (3.2)

and

Ex(e−λτ0) = λ

∞∫
0

e−λt
Px(τ0 ≤ t)dt = λ

γ

∞∫
0

e−
2γ
σ2 xs s

λ
γ −1

(s + 1)
λ
γ +1

ds, x > 0, λ > 0. (3.3)

Proof. The process X can be represented as (see e.g. [41, Section XI.1])

Xt = e−γtYr(t), where r(t) = 1

2ct
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and Y = {Yt}t≥0 is the unique strong solution of the equation

dYt = 2
√

YtdWt, Y0 = x ≥ 0,

called the square of the Bessel process of dimension 0. The transition probabilities for Y are given by ([41, 
Corollary XI.1.4])

Pr(Yt ∈ B|Y0 = x) = exp
{
− x

2t

}
δ0(B) +

∫
B

q0
t (x, y)dy, x > 0,

for every Borel measurable set B ⊂ [0, ∞), where δ0 is the Dirac measure at 0 and

q0
t (x, y) = 1

2t

√
x

y
exp

{
−x + y

2t

}
I1

(√
xy

t

)
, x, y > 0.

Thus the process X satisfies

Px(Xt ∈ B) = Pr(Yr(t) ∈ eγtB|Y0 = x)

for all Borel measurable sets B ⊂ [0, ∞). Hence, we conclude that pt(x, y) = eγtq0
r(t)(x, yeγt) for x, y > 0. 

Since Px(t < τ0) = Ex(1{t<τ0}), we also obtain (3.2). The last formula follows by making the substitution 
eγt = 1 + 1/s under the integral. �
Remark 1. Since

I1(x) ∼
√
x/2, as x → 0, and I1(x) ∼ ex/

√
2πx, as x → ∞,

we obtain

pt(0, y) := lim
x→0

pt(x, y) = 0 and pt(∞, y) := lim
x→∞

pt(x, y) = 0 for all t, y > 0.

Observe also that

∞∫
0

pt(x, y)e−rydy = exp
{
−rxe−γtct

ct + r

}
, x, t, r > 0, (3.4)

which is a direct consequence of the following formula (see [41, Section IX.1, p. 441])

∞∫
0

q0
t (x, y)e−rydy = exp

{
− rx

1 + 2rt

}
.

We identify C[0, ∞] with the space of bounded continuous functions on (0, ∞) for which f(0) :=
limx→0+ f(x) and f(∞) := limx→∞ f(x) exist and are finite. Let C0(0, ∞] denote the subspace of C[0, ∞]
consisting of functions vanishing at 0. We consider both spaces with the supremum norm.

Lemma 2. For f ∈ C[0, ∞] and t > 0 define

T (t)f(x) =
∞∫
pt(x, y)f(y)dy, x ≥ 0, (3.5)
0
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where pt is as in (3.1). Then T (t)f ∈ C0(0, ∞] for f ∈ C[0, ∞] and {T (t)}t≥0 is a positive contraction 
semigroup on C0(0, ∞].

Proof. Each operator T (t) is a positive contraction on C0(0, ∞]. It follows from (3.4) that

lim
t→0

T (t)f(x) = f(x), x > 0, (3.6)

for each function f ∈ C0(0, ∞] of the form f(x) = 1 − e−rx, where r > 0. Since every function from 
C0(0, ∞] can be approximated by linear combinations of such exponentials, we infer that (3.6) holds for 
all f ∈ C0(0, ∞]. This and standard arguments (see e.g. [41, Proposition III.2.4]) show that {T (t)}t≥0 is a 
positive contraction semigroup on the Banach space C0(0, ∞]. �

The generator of the semigroup {T (t)}t≥0 as in (3.5) is the second order differential operator [12,31,23]

Lf(x) = 1
2σ

2xf ′′(x) − γxf ′(x), x > 0, (3.7)

defined on

D(L) = {f ∈ C0(0,∞] ∩ C2(0,∞) : Lf ∈ C0(0,∞]}.

The point 0 is an exit boundary point for the diffusion X and the point ∞ is a natural boundary point. 
This can be verified by invoking the Feller classification of boundary points [12]. To this end we need to 
recall the concept of the scale function s and the speed measure m. They are absolutely continuous with 
respect to the Lebesgue measure. If the generator is of the form

Lf(x) = β(x)f ′′(x) + α(x)f ′(x), x > 0,

then s and m are defined through their derivatives given by

s′(x) = exp

⎛⎝−
x∫

1

α(z)
β(z)dz

⎞⎠ and m′(x) = 1
β(x)s′(x) .

Thus we have

s′(x) = e
2γ
σ2 (x−1) and m′(x) = 2

σ2x
e−

2γ
σ2 (x−1).

The point 0 is an exit boundary if and only if s′m ∈ L1(0, 1) and sm′ /∈ L1(0, 1), while ∞ is a natural 
boundary point if and only if s′m /∈ L1(1, ∞) and sm′ /∈ L1(1, ∞). Observe that we can rewrite (3.1) as

pt(x, y) = p(t, x, y)m′(y), x, y > 0,

where

p(t, x, y) = 1
2σ

2cte
− 2γ

σ2
√
eγtxye−ct(x+y)I1(2ct

√
eγtxy), t, x, y > 0.

If we fix λ > 0, then we may introduce the Green’s function Gλ as the Laplace transform of pt

Gλ(x, y) =
∞∫
e−λtpt(x, y)dt, x ≥ 0, y > 0.
0
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Define the operator Uλ : C[0, ∞] → C[0, ∞] by

Uλf(x) =
∞∫
0

Gλ(x, y)f(y)dy. (3.8)

The operator λUλ is a positive contraction on C[0, ∞] and for every f ∈ C[0, ∞] the function ψ = Uλf is a 
particular solution of the equation

λψ − Lψ = f. (3.9)

We recall from [12] that for each λ > 0 the equation

1
2σ

2xψ′′(x) − γxψ′(x) = λψ(x), x ∈ (0,∞), (3.10)

has two strictly positive continuous solutions ψ+(x) and ψ−(x) for x > 0 such that ψ+ is increasing, ψ− is 
decreasing, ψ+(0) = 0, ψ+(∞) = ∞, ψ−(0) = 1/λ, ψ−(∞) = 0. Any other continuous solution of (3.10) is 
a linear combination of ψ+ and ψ−. The Wronskian

wλ(x) := ψ′
+(x)ψ−(x) − ψ+(x)ψ′

−(x)

satisfies wλ(x) = wλ(1)s′(x) with wλ(1) > 0 (note that we can set s′(1) = 1). We have

Gλ(x, y) = 1
wλ(1)m

′(y)
{

ψ+(x)ψ−(y), if x ≤ y,

ψ+(y)ψ−(x), if y ≤ x.
(3.11)

Remark 2. If we divide equation (3.10) by σ2/2, we get

xψ′′(x) − θxψ′(x) = 2λ
σ2ψ(x), (3.12)

where θ = 2γ
σ2 . If we make the change of variables z = θx = 2γx/σ2 in (3.12), we find that ψ(x) = w(θx), 

where w is the solution of the Kummer differential equation

zw′′(z) − zw′(z) − μw(z) = 0, μ = 2λ
σ2θ

. (3.13)

The confluent hypergeometric function of the second kind

U(μ, 0, z) = 1
Γ(μ)

∞∫
0

e−zssμ−1(1 + s)−μ−1ds, μ, z > 0, (3.14)

is a positive decreasing solution of (3.13). We have U(μ, 0, 0) = 1/Γ(μ +1). The positive increasing solution 
of (3.13), independent of U(μ, 0, z) is given by the regularized confluent hypergeometric function

1F̃1(μ, 0, z) = μz1F1(μ + 1, 2, z),

where 1F1(a, b, z) is the confluent hypergeometric function of the first type, noted also M(a, b, z) or Φ(a, b, z), 
defined by

1F1(a, b, z) =
∞∑ (a)k zk

(b)k k! (3.15)

k=0
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and (c)k is the Pochhammer symbol defined by

(c)k = c(c + 1)(c + 2) . . . (c + k − 1), (c)0 = 1.

Consequently, the two strictly monotonic positive solutions of (3.10) are

ψ+(x) = 2λ
σ2 x1F1

(
λ

γ
+ 1, 2, 2γ

σ2 x

)
, ψ−(x) = Γ(μ)

γ
U

(
λ

γ
, 0, 2γ

σ2 x

)
.

For a bounded Borel measurable function f on [0, ∞) and t > 0, define

T0(t)f(x) = Ex(f(Xt)), x ≥ 0.

Since P0(τ0 = 0) = 1, Px(τ0 < ∞) = 1, and Xt = 0 for t ≥ τ0, we obtain that Ex(f(Xt)1{t≥τ0}) =
f(0)Px(t ≥ τ0). Thus, by Lemma 1,

T0(t)f(x) =
∞∫
0

pt(x, y)f(y)dy + f(0)e−ctx, x ≥ 0, t > 0. (3.16)

Note that each operator T0(t) is a positive contraction on C[0, ∞]. Now let f ∈ C[0, ∞]. We can write 
f = f0 + f(0), where f0 ∈ C0(0, ∞]. Then

T0(t)f(x) = T (t)f0(x) + f(0), x, t > 0,

and T0(t)f(0) = f(0). Thus, T0(t)f(x) −f(x) = T (t)f0(x) −f0(x). Hence, {T0(t)}t≥0 is a positive contraction 
semigroup on C[0, ∞] and its generator (L0, D(L0)) is given by L0f(0) = 0 and

L0f(x) = L(f − f(0))(x), x > 0, f ∈ D(L0) = {f ∈ C[0,∞] : f − f(0) ∈ D(L)}, (3.17)

where (L, D(L)) is the generator of {T (t)}t≥0 as in (3.7).

Lemma 3. Define the family of operators U0
λ : C[0, ∞] → C[0, ∞], λ > 0, by

U0
λf(x) = Uλf(x) + f(0)ψλ(x), f ∈ C[0,∞], (3.18)

where Uλ is as in (3.8) and ψλ is a positive decreasing solution of (3.10) satisfying ψλ(0) = 1/λ. Then U0
λ

is the resolvent at λ of the operator (L0, D(L0)) as defined in (3.17) and (3.7).

Proof. Let f ∈ C[0, ∞]. It follows from (3.16) and (3.3) that

∞∫
0

e−λtT0(t)f(x)dt =
∞∫
0

∞∫
0

e−λtpt(x, y)dtf(y)dy + f(0) 1
λ
Ex(e−λτ0).

We have ψλ = ψ− and ψλ(x) = 1
λEx(e−λτ0), by Lemma 1 and equation (3.14). Consequently,

U0
λf(x) =

∞∫
0

e−λtT0(t)f(x)dt

for all x ≥ 0. �



940 M. Falfus et al. / J. Math. Anal. Appl. 470 (2019) 931–953
4. Stochastic semigroup for the Feller diffusion

The diffusion process is not conservative on (0, ∞). Thus to identify the stochastic semigroup connected 
with the diffusion on [0, ∞) we have to consider the space L1(m) = L1([0, ∞), B([0, ∞)), m), where m is the 
measure on E = [0, ∞) equal to the sum of the Lebesgue measure on (0, ∞) and the Dirac measure δ0 at 0. 
We can identify L1(m) with the product space L1(0, ∞) ×R. Thus every element g ∈ L1(m) can be written 
as g = (u, v) with u ∈ L1(0, ∞) and v ∈ R, we write g(x) = u(x) for x > 0 and g(0) = v, and we have

∫
[0,∞)

g(x)m(dx) =
∞∫
0

g(x)dx + g(0).

If μ is a probability distribution of a nonnegative random variable ξ which is absolutely continuous with 
respect to m, so that there is a nonnegative g ∈ L1(m) such that

μ(B) =
∫
B

g(x)m(dx), B ∈ B([0,∞)),

and μ([0, ∞)) = 1, then we say that g is the density of ξ with respect to m.
Let X = {Xt}t≥0 be the Feller diffusion as in (1.7) defined on [0, ∞) and {T0(t)}t≥0 be the semigroup 

defined by (3.16). We have the representation

T0(t)f(x) =
∫

[0,∞)

p0
t (x, y)f(y)m(dy), x ∈ [0,∞), t > 0,

for bounded Borel measurable functions, where

p0
t (x, y) =

{
pt(x, y), x ≥ 0, y > 0,
e−ctx, x ≥ 0, y = 0.

(4.1)

If μ0 is the distribution of X0 ≥ 0 then the distribution of Xt is given by

μt(B) := Pμ0(Xt ∈ B) =
∫

[0,∞)

T0(t)1B(x)μ0(dx), t > 0, B ∈ B([0,∞)).

Hence, if there is a nonnegative g ∈ L1(m) such that

μ0(B) =
∫
B

g(x)m(dx),

then

μt(B) =
∫

[0,∞)

∫
B

p0
t (x, y)m(dy)g(x)m(dx) =

∫
B

∫
[0,∞)

p0
t (x, y)g(x)m(dx)m(dy)

which shows that μt is absolutely continuous with respect to m and the density of Xt is given by

P0(t)g(y) =
∫

p0
t (x, y)g(x)m(dx), y ≥ 0. (4.2)
[0,∞)
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We now show that {P0(t)}t≥0 is a stochastic semigroup on L1(m) and we find its generator. To this end 
let us define the second order differential operator A by

Af(x) = d

dx

(
d

dx
(β(x)f(x)) − α(x)f(x)

)
, β(x) = σ2

2 x, α(x) = −γx, (4.3)

which is meaningful for any locally integrable function f for which βf and (βf)′ − αf are absolutely 
continuous. We consider A on the maximal domain

DM (A) = {f ∈ L1(0,∞) : Af ∈ L1(0,∞)}.

Since Af is integrable for f ∈ DM (A), the limits

n0(f) := lim
x→0+

((βf)′(x) − α(x)f(x)) and n∞(f) := lim
x→+∞

((βf)′(x) − α(x)f(x)) (4.4)

exist and are finite. Hence

∞∫
0

Af(x)dx = n∞(f) − n0(f), f ∈ DM (A).

Since s′, m′ /∈ L1(1, ∞), we have n∞(f) = 0 for f ∈ DM (A), see e.g. [1, Lemma 1.2].

Theorem 1. Let {P0(t)}t≥0 be defined as in (4.2). Then {P0(t)}t≥0 is a stochastic semigroup on L1(m) and 
its generator is the operator A0 defined by

A0g(x) = A(u)(x), x > 0, A0g(0) = n0(u) (4.5)

for g(x) = u(x) for x > 0 with u ∈ DM (A).

Proof. It is known (see e.g. [12, Theorem 15.2], [22, Theorem 8.5]) that the linear operator A : DM (A) →
L1(0, ∞) is the generator of a substochastic semigroup {S(t)}t≥0 on L1(0, ∞). The resolvent at λ > 0 of 
the operator (A, DM (A)) is given by

R(λ,A)f(y) =
∞∫
0

Gλ(x, y)f(x)dx,

where Gλ is as in (3.11). Thus

S(t)f(y) =
∞∫
0

pt(x, y)f(x)dx, f ∈ L1(0,∞).

Hence, for g with g(x) = u(x) for x > 0 and u ∈ L1(0, ∞) and g(0) = v with v ∈ R, we have

P0(t)g(y) = S(t)u(y), y ∈ (0,∞),

and

P0(t)g(0) =
∞∫
p0
t (x, 0)u(x)dx + p0

t (0, 0)v.

0
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From (4.1) and (3.2) it follows that

∞∫
0

p0
t (x, 0)u(x)dx =

∞∫
0

g(x)dx−
∞∫
0

∞∫
0

pt(x, y)dyu(x)dx,

which implies that

P0(t)g(0) =
∫

[0,∞)

g(x)m(dx) −
∞∫
0

S(t)u(y)dy.

We have

|P0(t)g(0) − g(0)| =

∣∣∣∣∣∣
∞∫
0

u(y)dy −
∞∫
0

S(t)u(y)dy

∣∣∣∣∣∣ ≤ ‖u− S(t)u‖.

Consequently, {P0(t)}t≥0 is a stochastic semigroup on L1(m).
Let (Ã0, D(Ã0)) be the generator of {P0(t)}t≥0. It remains to show that Ã0 = A0 and D(Ã0) = D(A0). 

Observe that

A0g(0) = −
∞∫
0

Au(y)dy

if g(x) = u(x) for x > 0 with u ∈ DM (A). Since the operator (A, DM (A)) is a generator, it is closed and we 
see that the operator (A0, D(A0)) is closed. We have

∞∫
0

∣∣∣∣S(t)u(x) − u(x)
t

−Au(x)
∣∣∣∣ dx → 0, as t → 0+,

for u ∈ DM (A). We also obtain

P0(t)g(0) − g(0)
t

= 1
t

⎛⎝ ∞∫
0

u(x)dx−
∞∫
0

S(t)u(x)dx

⎞⎠ → −
∞∫
0

Au(x)dx.

This shows that ∥∥∥∥P0(t)g − g

t
−A0(g)

∥∥∥∥
1
→ 0, as t → 0+

for all g ∈ D(A0). Hence D(A0) ⊆ D(Ã0) and A0g = Ã0g for g ∈ D(A0). Finally, since A is the generator of 
a substochastic semigroup, we have 1 ∈ ρ(A). It is easily seen that 1 ∈ ρ(A0), implying D(Ã0) = D(A0). �
Remark 3. Observe that

R(λ,A0)g(x) = R(λ,A)u(x), x ∈ (0,∞),

when g(x) = u(x) for x > 0, and
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R(λ,A0)g(0) = 1
λ

∫
[0,∞)

g(y)m(dy) −
∞∫
0

R(λ,A0)g(y)dy, g ∈ L1(m).

5. Diffusion with jumps

Let Z = {Zt}t≥0 be a jump-diffusion Markov process as given by the solutions of the equation (1.8). 
The process Z has values in [0, ∞) and it is strong Markov. For a general approach to the problem of 
existence and nonnegativity of solutions to equations such as (1.8) we refer the reader to [15]. We first 
provide a heuristic description of a construction of solutions of (1.8). Let {εk}k≥1 be a sequence of positive 
independent random variables with probability density function h, which are also independent of Z0 and of 
Brownian motion {Wt}t≥0. We assume that ϕ is a nonnegative, continuous and bounded function defined 
on E = [0, ∞). We define the process

Λt =
t∫

0

ϕ(Xs)ds,

where X is the Feller diffusion, and we assume that it is such that

Px( lim
t→∞

Λt = ∞) = 1, x ≥ 0. (5.1)

We can construct the process Z in (1.8) as follows. Let t0 = 0 and Z0 = x. Given the solution Xt of (1.7)
with initial condition X0 = x, we let t1 = t0 + Δt1, where Δt1 is a random variable such that

Pr(Δt1 > t|X0 = x) = Ex(e−Λt).

Starting from Z0 = x we define Zt to be Xt for t < t1 and

Zt1 = Xt1 + ε1. (5.2)

We restart the process from X0 = Zt1 by following the path of the diffusion up to the next jump time 
t2 = t1 +Δt2 and at the jump time t2 we add ε2, and so on. In this way we define a sequence of jump times 
(tn)n≥1 such that Zt = Xt−tn for t ∈ [tn, tn+1), where Xt is the Feller diffusion starting at X0 = Ztn and

Ztn+1 = Xtn+1−tn + εn+1, n ≥ 0.

Observe that if ϕ(0) > 0 then (5.1) holds, since Px(τ0 < ∞) = 1 and Xt = 0 for t > τ0.
Recall that an operator L̃ is the extended generator of the E-valued Markov process Z as in (1.8), if its 

domain D(L̃) consists of those measurable f : E → R for which there exists a measurable f̃ : E → R such 
that for each z ∈ E, t > 0,

Ez(f(Zt)) = f(z) + Ez

⎛⎝ t∫
0

f̃(Zs) ds

⎞⎠
and

t∫
Ez(|f̃(Zs)|)ds < ∞,
0
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in which case we define L̃f = f̃ . It follows from (1.8) and the generalized Itô formula that

L̃f(x) = 1
2σ

2xf ′′(x) − γxf ′(x) +
∞∫
0

(f(x + y) − f(x))ϕ(x)h(y)dy (5.3)

for f ∈ C2[0, ∞) satisfying

Ez

⎛⎝∑
tn≤t

|f(Ztn) − f(Zt−n
)|

⎞⎠ < ∞ (5.4)

for all t > 0 and z.
We now show that there is a stochastic semigroup {P (t)}t≥0 on L1(m) such that for any Borel set F ⊂ E

and any density g ∈ L1(m) we have∫
E

Pz(Zt ∈ F )g(z)m(dz) =
∫
F

P (t)g(x)m(dx), t ≥ 0. (5.5)

Note that if ξ and ε are independent random variables, ξ has the distribution with density g ∈ L1(m) and 
ε is distributed with density h on (0, ∞)

∞∫
0

h(y)dy = 1,

then the distribution of ξ + ε has the density Pg ∈ L1(m) of the form

Pg(x) =
∫

[0,x]

h(x− y)g(y)m(dy) = g(0)h(x) +
x∫

0

h(x− y)g(y)dy. (5.6)

The probability density function h of the random variable ε can be formally extended to [0, ∞) by setting 
h(0) = 0, so that h ∈ L1(m) represents a density. Note that P is a stochastic operator on L1(m), since

∫
[0,∞)

Pg(x)m(dx) = g(0) +
∞∫
0

x∫
0

h(x− y)g(y)dydx = g(0) +
∞∫
0

g(y)dy.

Theorem 2. Assume that ϕ ∈ C[0, ∞] and ϕ(0) > 0. Suppose that Z0 has a density g with respect to m. 
Then the distribution of Zt has a density P (t)g with respect to m, where {P (t)}t≥0 is a stochastic semigroup 
on L1(m) with generator

Gg = A0g − ϕg + P (ϕg), g ∈ D(A0), (5.7)

the operator (A0, D(A0)) is as in Theorem 1 and P is the stochastic operator as in (5.6).

Proof. Since ϕ ∈ C[0, ∞], ϕ is bounded and we can write

Gg = A0g − λg + λPλg, g ∈ D(A0),
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where λ > 0 is any positive constant such that λ > supx ϕ(x), and Pλ is a stochastic operator of the form

Pλg =
(
1 − ϕ

λ

)
g + P

(ϕ
λ
g
)
.

From the Phillips perturbation theorem [27, Theorem 7.9.1] it follows that (G, D(A0)) is the generator of 
the stochastic semigroup {P (t)}t≥0 given by

P (t)g = e−λt
∞∑

n=0
λnSn(t)g, (5.8)

where S0(t) = P0(t) with P0(t) defined as in (4.2) and

Sn+1(t)g =
t∫

0

S0(t− s)PλSn(s)g ds, n ≥ 0.

It follows from Lemma 3 and Theorem 1 that∫
[0,∞)

f(x)A0g(x)m(dx) =
∫

[0,∞)

L0f(x)g(x)m(dx)

for all f ∈ D(L0) and g ∈ D(A0), which implies that∫
[0,∞)

f(x)Gg(x)m(dx) =
∫

[0,∞)

(L0f(x) − λf(x) + λP ∗
λf(x))g(x)m(dx),

where

P ∗
λf(x) =

(
1 − ϕ(x)

λ

)
f(x) + ϕ(x)

λ

∞∫
0

f(x + y)h(y)dy

for all bounded and measurable functions. Since P ∗
λ(C[0, ∞]) ⊆ C[0, ∞], we conclude that the operator 

Lf = L0f − λf + λP ∗
λf is the generator of a positive contraction semigroup on C[0, ∞]. Observe that for 

f ∈ D(L0) we have Lf(x) = L̃f(x) for x ≥ 0, where L̃ is the extended generator as in (5.3). This implies 
that

Lf(x) = lim
t→0

Exf(Zt) − f(x)
t

, x ≥ 0,

for f ∈ D(L0). Consequently, we obtain∫
[0,∞)

f(x)P (t)g(x)m(dx) =
∫

[0,∞)

Ex(f(Zt))g(x)m(dx)

for all f ∈ C[0, ∞] and g ∈ L1(m). Since an indicator function of a closed set can be approximated by 
globally Lipschitz continuous functions, equality (5.5) holds for all closed sets, implying that (5.5) holds for 
all Borel subsets of [0, ∞) and completing the proof. �
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5.1. Long term behavior of the solutions

We now study the long term behavior of the semigroup {P (t)}t≥0 with generator G as in (5.7). Let 
u(t, x) = P (t)g(x) for x > 0 and v(t) = P (t)g(0). Then

∂u(t, x)
∂t

= σ2

2
∂2(xu(t, x))

∂x2 + γ
∂(xu(t, x))

∂x
− ϕ(x)u(t, x)

+ h(x)ϕ(0)v(t) +
x∫

0

h(x− y)ϕ(y)u(t, y)dy,

dv(t)
dt

= lim
x→0+

(
σ2

2
∂(xu(t, x))

∂x
+ γxu(t, x)

)
− ϕ(0)v(t).

(5.9)

Theorem 3. If the function ϕ ∈ C[0, ∞] is such that ϕ(0) > 0 and if 
∫∞
0 xh(x)dx < ∞, then there exists a 

unique invariant density g∗ for the semigroup {P (t)}t≥0, g∗ is strictly positive and the semigroup {P (t)}t≥0
is asymptotically stable, i.e.,

lim
t→∞

∫
[0,∞)

|P (t)g(x) − g∗(x)|m(dx) = 0

for all densities g ∈ L1(m).

Proof. It follows from (5.8) that

P (t)g(x) ≥
∫

[0,∞)

k(t, x, y)g(y)m(dy)

for all nonnegative g ∈ L1(m), where

k(t, x, y) = e−λtp0
t (y, x), x, y, t ≥ 0.

We first show that either {P (t)}t≥0 is asymptotically stable or it is sweeping from compact subsets of [0, ∞), 
i.e.,

lim
t→∞

∫
F

P (t)g(z)m(dz) = 0 (5.10)

for all compact sets F ⊂ E and all densities g ∈ L1(m). To this end we need to check, by [42, Corollary 5.4], 
that the semigroup {P (t)}t≥0 satisfies condition

(K) for every y0 ≥ 0 we can find δ > 0, t > 0 and a measurable nonnegative function η defined on [0, ∞)
such that 

∫
[0,∞) η(x)m(dx) > 0 and

k(t, x, y) ≥ η(x)1B(y0,δ)(y) for all x, y ≥ 0,

where B(y0, δ) is an open ball in the space [0, ∞) with center y0 and radius δ,

and that {P (t)}t≥0 is irreducible, i.e., 
∫∞
0 P (t)g(x)dt > 0 for almost all x ∈ [0, ∞) and any density g. 

To check condition (K) observe that for every t > 0 the function (x, y) 	→ pt(x, y) is strictly positive and 
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continuous on (0, ∞) × (0, ∞). Thus for every y0 > 0 and t > 0 we can find constants δ > 0 and c > 0
such that k(t, x, y) ≥ c for all (x, y) ∈ (y0 − δ, y0 + δ)2. For y0 = 0 there exists δ > 0 such that we have 
k(t, x, y) ≥ η(x) for y ∈ [0, δ), where η(x) = 0 for x > 0 and η(0) = e−ctδ−λt. We now show that {P (t)}t≥0
is irreducible. Note that for any t > 0 and any density g we have

P0(t)g(0) =
∫

[0,∞)

e−ctxg(x)m(dx) > 0,

since e−ctx > 0 and g �= 0. Thus P (t)g(0) > 0 for all t > 0. If m{x > 0 : g(x) �= 0} > 0, then P (t)g(x) > 0
for almost all x > 0 and all t > 0, since k(t, x, y) > 0 for all t, x, y > 0. It remains to check positivity of 
P (t)g when g(x) = 0 for all x > 0. Observe that S0(s)g(0) = g(0) and Pλg(x) ≥ ϕ(0)g(0)h(x)/λ. Thus,

S1(t)g(x) =
t∫

0

S0(t− s)Pλ(S0(s)g)(x)ds ≥ ϕ(0)g(0)
λ

t∫
0

∫
[0,∞)

p0
t (y, x)h(y)dyds > 0

for all t > 0 and x > 0. This together with (5.8) implies that P (t)g(x) > 0 for all t > 0 and x > 0, 
completing the proof of irreducibility.

Next, we show that the process is not sweeping from compact subsets of [0, ∞). Suppose, contrary to our 
claim, that the process is sweeping. It follows from (5.10) that for every compact set F and every density g
we have

lim
t→∞

1
t

t∫
0

∫
E

Pz(Zs ∈ F )g(z)m(dz)ds = 0.

The Chebyshev inequality implies that

Pz(Zt ∈ Fa) ≥ 1 − 1
a
EzV (Zt)

for all t > 0, z ∈ E, and a > 0, where V is a nonnegative measurable function and Fa = {z ∈ E : V (z) ≤ a}. 
To get a contradiction it is enough to show that

lim sup
t→∞

1
t

t∫
0

∫
E

EzV (Zs)g(z)m(dz)ds < ∞

for a density g and a continuous function V such that each Fa is a compact subset of E for all sufficiently 
large a > 0. It follows from (5.3) and (5.4) that for V (x) = x we have

L̃V (x) = −γV (x) + ϕ(x)
∞∫
0

yh(y)dy, x > 0. (5.11)

Since the function ϕ is bounded, there exists a constant c > 0 such that L̃V (x) ≤ −γV (x) + c for x > 0. 
Hence, we obtain

0 ≤ EzV (Zt) ≤ z + Ez

t∫
(−γV (Zs) + c)ds.
0
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Consequently,

1
t

t∫
0

EzV (Zs)ds ≤
z

γt
+ c

γ
.

Now, if we take a density g ∈ L1(m) such that 
∫∞
0 zg(z)dz < ∞, then the claim follows, which completes 

the proof. �
5.2. Limiting behavior of solutions with exponentially distributed bursting

We now look for an equation for a stationary density g∗ when h is given by

h(x) = 1
b
e−x/b1(0,∞)(x), (5.12)

with b > 0. We have selected the exponential form for h because of the well documented [5,7,8,16,37,48,53]
exponential distribution of burst amplitudes in experimental studies.

Proposition 1. Suppose that ϕ ∈ C[0, ∞] is such that ϕ(0) > 0. The stationary positive integrable solution 
of (5.9) is given by

u(x) = e−x/b y(x)
x

, x > 0, v = n0(u)/ϕ(0), (5.13)

where y is a positive solution of the differential equation

y′′(x) − θy′(x) = 2ϕ(x)
σ2x

y(x) with θ = 1
b
− 2γ

σ2 (5.14)

such that

n0(u) = σ2

2 lim
x→0

(y′(x) − θy(x)) �= 0.

Proof. To find g with g(x) = u(x) for x > 0 and g(0) = v we need to solve the equation Gg = 0, where G
is the generator of the semigroup {P (t)}t≥0 given by (5.7). We have

Gg(x) = Au(x) − ϕ(x)u(x) +
x∫

0

ϕ(y)u(y)1
b
e−(x−y)/bdy + ϕ(0)v 1

b
e−x/b = 0 (5.15)

for x > 0 and Gg(0) = n0(u) − ϕ(0)v = 0, where A is as in (4.3). Since

Au(x) = d

dx

1
s′(x)

d

dx
(β(x)s′(x)u(x)), where s′(x) = e−

∫ x α(z)
β(z) dz

and α(x) = −γx, β(x) = σ2x/2, we get

x∫
0

Au(z)dz = 1
s′(x)

d

dx
(β(x)s′(x)u(x)) − n0(u).

Observe that
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x∫
0

⎛⎝ z∫
0

ϕ(y)u(y)1
b
e−(z−y)/bdy − ϕ(z)u(z)

⎞⎠ dz = −
x∫

0

ϕ(y)u(y)e−(x−y)/bdy.

This together with (5.15) gives

1
s′(x)

d

dx
(β(x)s′(x)u(x)) −

x∫
0

ϕ(y)u(y)e−(x−y)/bdy − n0(u)e−x/b = 0

for x > 0. Hence we obtain

Au(x) − ϕ(x)u(x) + 1
b

1
s′(x)

d

dx
(β(x)s′(x)u(x)) = 0 (5.16)

and, multiplying (5.16) by ex/b, leads to

d

dx

(
ex/b

s′(x)
d

dx
(β(x)s′(x)u(x))

)
= ϕ(x)u(x)ex/b. (5.17)

If we take

s′1(x) = e−x/bs′(x), f(x) = ex/bu(x),

then equation (5.17) becomes

d

dx

(
1

s′1(x)
d

dx
(β(x)s′1(x)f(x))

)
= ϕ(x)f(x).

Let

A1f(x) = d

dx
((β(x)f(x))′ − α1(x)f(x)) , α1(x) = α(x) + 1

b
β(x) = (σ

2

2b − γ)x.

Then we have

A1f(x) = ϕ(x)f(x).

Taking y(x) = xf(x) and dividing by σ2/2, leads to (5.14). Finally, observe that

σ2

2 (e−x/by(x))′ + γe−x/by(x) = e−x/bσ
2

2 (y′(x) − θy(x)) ,

whence the formula for n0(u) is also valid. �
5.3. Constant burst rate ϕ

If ϕ is constant on (0, ∞) and equal to κ ≥ 0 then the general solution of (5.14) with θ > 0 is y(x) = w(θx)
with w of the form (see Remark 2)

w(z) = c1z1F1(μ + 1, 2, z) + c2U(μ, 0, z), μ = 2κ
,

σ2θ
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where 1F1, U are the confluent hypergeometric functions of the first and the second type, respectively, and 
c1, c2 are constants. Since both Kummer functions with given parameters are bounded near 0, the integrable 
u in (5.13) has to be of the form

u(x) = c0e
−x/b

1F1(μ + 1, 2, θx), x > 0, (5.18)

where c0 is a constant. Note that if θ < 0 then, by the Kummer transformation

1F1(a1, b1, z) = ez1F1(b1 − a1, b1,−z),

we get

u(x) = c0e
−2γx/σ2

1F1(1 − μ, 2,−θx).

Since we have n0(u) = c0σ
2/2 and n0(u) = ϕ(0)v, we obtain that

v = σ2

2ϕ(0)c0,

where the constant c0 should be chosen such that

∫
[0,∞)

g(x)m(dx) =
∞∫
0

u(x)dx + v = 1.

Consequently, we take c0 satisfying

σ2

2ϕ(0)c0 + c0c = 1,

where the normalization constant c can be determined analytically, and is

c =
∞∫
0

e−x/b
1F1(μ + 1, 2, θx)dx =

{
1
b 2F1(μ + 1, 1; 2; bθ), if θ > 0
2γ
σ2 2F1(1 − μ, 1; 2;− 2γ

σ2 θ), if θ < 0,

with 2F1 being Gauss’ hypergeometric function

2F1(a1, a2; b1; z) =
∞∑

n=0

(a1)n(a2)n
(b1)n

zn

n! .

When θ = 0 then equation (5.14) has a solution of the form

y(x) = 2κ
σ2 x

∞∑
n=0

( 2κ
σ2x)n

(n + 1)!n! .

Thus

u(x) = c0e
−x/b

0F1(2,
2κ
σ2 x),

where 0F1 is the confluent hypergeometric limit function
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0F1(b1, z) =
∞∑
k=0

zn

(b1)nn! = lim
a1→∞ 1F1(a1, b1, z/a1).

The constant c is now

c =
∞∫
0

e−x/b
0F1(2,

2κ
σ2 x)dx.

6. Discussion and future directions

Here we have treated, in great generality, the combined effects of both transcriptional/translational 
bursting as well as diffusive fluctuations on the dynamics of simple gene regulatory networks. We have 
proved, under very mild conditions, the existence and uniqueness of a stationary density of molecular 
concentration as well as its asymptotic stability, and were able to provide an explicit expression for this 
density when the burst rate ϕ is constant.

In [29] it has been argued, based on molecular interactions, that in general repressible and inducible 
systems the function ϕ should have the form, cf. also [30],

ϕ(x) = λ
1 + ΘxN

Λ + ΩxN
≡ λf(x), (6.1)

where λ, Λ, Ω, N are positive constants and Θ ≥ 0. All of these constants are determined by the reaction 
rate constants for molecular binding and unbinding, and ideally we would like to be able to offer an explicit 
solution in this case but we have been unable to do so. We have explored various avenues, and conclude 
that this must remain an avenue for further research.
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