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Abstract This paper considers adiabatic reduction in a model of stochastic gene
expression with bursting transcription considered as a jump Markov process. In this
model, the process of gene expression with auto-regulation is described by fast/slow
dynamics. The production of mRNA is assumed to follow a compound Poisson process
occurring at a rate depending on protein levels (the phenomena called bursting in mole-
cular biology) and the production of protein is a linear function of mRNA numbers.
When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA
degradation than that of protein) we prove that, with appropriate scalings in the burst
rate, jump size or translational rate, the bursting phenomena can be transmitted to the
slow variable. We show that, depending on the scaling, the reduced equation is either
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a stochastic differential equation with a jump Poisson process or a deterministic ordi-
nary differential equation. These results are significant because adiabatic reduction
techniques seem to have not been rigorously justified for a stochastic differential sys-
tem containing a jump Markov process. We expect that the results can be generalized
to adiabatic methods in more general stochastic hybrid systems.

Keywords Adiabatic reduction · Piecewise deterministic Markov process ·
Stochastic bursting gene expression · Quasi-steady state assumption · Scaling limit

Mathematics Subject Classification (2000) 92C45 · 60Fxx · 92C40 · 60J25 ·
60J75

1 Introduction

The adiabatic reduction technique is often used to reduce the dimension of a dynamical
system when known, or presumptive, fast and slow variables are present. Adiabatic
reduction results for deterministic systems of ordinary differential equations have been
available since the work by Fenichel (1979) and Tikhonov (1952). This technique has
been extended to stochastically perturbed systems when the perturbation is a Gaussian
distributed white noise (Berglund and Gentz 2006; Gardiner 1985; Stratonovich 1963;
Titular 1978; Wilemski 1976). More recently, separation of time scales in discrete pure
jump Markov processes were performed, using a master equation formalism (Santillán
and Qian 2011) or a stochastic equation formalism (Kang and Kurtz 2013; Crudu et al.
2012). These papers show that a fast stochastic process can be averaged in the slow time
scale, or can induce kicks to the slow variable. However, to the best of our knowledge,
this type of approximation has never been extended to the situation in which the (fast)
perturbation is a jump Markov process in a piecewise deterministic Markov process.

Jump Markov processes are often used in modelling stochastic gene expressions
with explicit bursting in either mRNA or proteins (Friedman et al. 2006; Golding et al.
2005), and have been employed as models for genetic networks (Zeiser et al. 2008)
and in the context of excitable membranes (Buckwar and Riedler 2011; Pakdaman
et al. 2012; Riedler et al. 2012). Biologically, the ‘bursting’ of mRNA or protein
is simply a process in which there is a production of several molecules within a
very short time. In the biological context of modelling stochastic gene expression,
explicit models of bursting mRNA and/or protein production have been analyzed
recently, either using a discrete (Shahrezaei and Swain 2008) or a continuous formalism
(Friedman et al. 2006; Lei 2009; Mackey et al. 2011) as even more experimental
evidence from single-molecule visualization techniques has revealed the ubiquitous
nature of this phenomenon (Elf et al. 2007; Golding et al. 2005; Ozbudak et al. 2002;
Raj and van Oudenaarden 2009; Raj et al. 2006; Suter et al. 2011; Xie et al. 2008).

Traditional models of gene expression are often composed of at least two variables
(mRNA and protein, and sometimes the promoter state). The use of a reduced one-
dimensional model (protein concentration) has been justified so far by an argument
concerning the stationary distribution by Shahrezaei and Swain (2008). However, it is
clear that the two different models may have the same stationary distribution but very
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different dynamic behavior (for an example, see Mackey et al. 2011). The adiabatic
reduction technique has been used in many studies (Hasty et al. 2000; Mackey et al.
2011) to simplify the analysis of stochastic gene expression dynamics, but without a
rigorous mathematical justification.

The present paper gives a theoretical justification of the use of adiabatic reduction
in a model of auto-regulation gene expression with a jump Markov process in mRNA
transcription. We adopt a formalism based on density evolution (Fokker–Planck like)
equations. Our results are of importance since they offer a rigorous justification for the
use of adiabatic reduction to jump Markov processes. The model and mathematical
results are presented in Sect. 2. Proof of the results are given in Sect. 3, with illustrative
simulations in Sect. 4.

2 Model and results

2.1 Continuous-state bursting model

A single round of expression consists of both mRNA transcription and the translation of
proteins from mRNA. The mRNA transcription occurs in a burst like fashion depending
on the promoter activity. In this study, we assume a simple feedback between the end
product (protein) which binds to its own promoter to regulate the transcription activity.

Let X and Y denote the concentrations of mRNA and protein respectively. A simple
mathematical model of a single gene expression with feedback regulation and bursting
in transcription is given by

d X

dt
= −γ1 X + N̊ (h, ϕ(Y )), (1)

dY

dt
= −γ2Y + λ2 X. (2)

Here γ1 and γ2 are degradation rates for mRNA and proteins respectively, λ2 is the
translational rate, and N̊ (h, ϕ(Y )) describes the transcriptional burst that is assumed
to be a compound Poisson white noise occurring at a rate ϕ with a non-negative jump
size �X distributed with density h.

In the model Eqs. (1)–(2), the stochastic transcriptional burst is characterized by
the two functions ϕ and h. We always assume these two functions satisfy

ϕ ∈ C∞(R+,R+), ϕ and ϕ′ are bounded, i.e. ϕ ≤ ϕ, ϕ′ ≤ ϕ (3)

h ∈ C∞(R+,R+) and

∞∫

0

xnh(x) dx < ∞, ∀n ≥ 1. (4)

For a general density function h, the average burst size is given by

b =
∞∫

0

xh(x) dx . (5)
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Remark 1 Hill functions are often used to model self-regulation in gene expression,
so that ϕ is given by

ϕ(y) = ϕ0
1 + K yn

A + Byn

where ϕ0, A, B, K and n are positive parameters (see Mackey et al. 2011 for more
details).

An exponential distribution of the burst jump size is often used in modelling gene
expression, in agreement with experimental findings by Xie et al. (2008), so that the
density function h is given by

h(�X) = 1

b
e−�X/b,

where b is the average burst size.
The two functions ϕ and h here satisfy the assumptions (3)–(4).

2.2 Scalings

The Eqs. (1)–(2) are nonlinear, coupled, and analytically not easy to study. This paper
provides an analytical understanding of the adiabatic reduction for Eqs. (1)–(2) when
mRNA degradation is a fast process, i.e., γ1 is “large enough” (γ1 � γ2) but the
average protein concentration remains normal. Rapid mRNA degradation has been
observed in E. coli (and other bacteria), in which mRNA is typically degraded within
minutes, whereas most proteins have a lifetime longer than the cell cycle (≥30 min
for E. coli) (Taniguchi et al. 2010).

In Eqs. (1)–(2), when γ1 is large, other parameters have to be adjusted accordingly
to maintain a normal level of protein. When there is no feedback regulation to the
burst rate, the function ϕ is independent of Y (therefore ϕ is a constant), and thus the
average concentrations of mRNA and protein in a stationary state are

Xeq := lim
t→∞ E[X (t)] = bϕ

γ1
, (6)

Yeq := lim
t→∞ E[Y (t)] = λ2

γ2
Xeq = bϕλ2

γ1γ2
. (7)

From Eq. (7), when γ1 is large enough (γ1 � γ2) and Yeq remains at its normal level,
one of the three quantities, b, ϕ, or λ2 must be a large number as well. This observation
holds even when there is a feedback regulation of the burst rate. Thus, in general, we
have three possible scalings (as γ1 → ∞), each of which is biologically observed:

(S1) Fast promoter activation/deactivation, so that the rate function ϕ is a large
number. In this case, if γ1 → ∞, we assume the ratio ϕ/γ1 is independent of
γ1.
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(S2) Fast transcription, so that the average burst size b is a large number. From Eq.
(5), this scaling indicates that the density function h changes with the parameter
γ1 in a form h(�X) = 1

γ1
h0(

�X
γ1
) with h0(·) independent of γ1.

(S3) Fast translation, so that the translational rate λ2 is a large number. In this case,
if γ1 → ∞, we assume the ratio λ2/γ1 is independent of γ1.

These scalings are associated with different types of genes that display different
types of kinetics (Schwanhäusser et al. 2011; Suter et al. 2011), and mathematically
lead to different forms of the reduced dynamics. In this paper we determine the effective
reduced equations for Eqs. (1)–(2) for each of the scaling conditions (S1)–(S3). Our
main results are summarized below.

First, under the assumption (S1) (fast promoter activation/deactivation), Eqs.
(1)–(2) can be approximated by a deterministic ordinary differential equation

dY

dt
= −γ2Y + λ2ψ(Y ) (8)

where

ψ(Y ) = bϕ(Y )/γ1. (9)

Next, under the scaling relations (S2) (fast transcription) or (S3) (fast translation),
Eqs. (1)–(2) are reduced to a single stochastic differential equation

dY

dt
= −γ2Y + N̊ (h̄(�Y ), ϕ(Y )) (10)

containing a jump Markov process, and the density h̄ for the newly defined process is
given by h through

h̄(�Y ) =
(
λ2

γ1

)−1

h

((
λ2

γ1

)−1

�Y

)
. (11)

In particular, with the scaling (S2), we have

h̄(�Y ) = 1

λ2
h0

(
�Y

λ2

)
. (12)

These results can be understood with the following simple arguments. When γ1 →
∞, applying a standard quasi-equilibrium assumption we have

d X

dt
≈ 0,

which yields

X (t) ≈ 1

γ1
N̊ (h, ϕ(Y )). (13)
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In the case of the scaling (S1), the jumps occur with high frequency and an average
burst size b. Thus, X (t) approaches the statistical average (X (t) ≈ bϕ(Y )/γ1) for a
given value Y , which gives Eq. (8). Under scalings (S2) or (S3), substituting Eq. (13)
into Eq. (2) yields

dY

dt
≈ −γ2Y + λ2

γ1
N̊ (h, ϕ(Y ))

≈ −γ2Y + N̊ (h̄, ϕ(Y )).

Exact statements for the results and their mathematical proofs are given below.

2.3 Density evolution equations and main results

The main results are based on the density evolution equations, and show that the evolu-
tion equations obtained from Eqs. (1)–(2) and those from Eq. (8) or (10) are consistent
with each other when γ1 → +∞ under the appropriate scaling. The existence of den-
sities for such processes has been studied by Mackey and Tyran-Kamińska (2008),
Tyran-Kamińska (2009).

Let u(t, x, y) be the density function of (X (t), Y (t)) at time t obtained from the
solution of Eqs. (1)–(2). The evolution of the density u(t, x, y) is governed by (Mackey
and Tyran-Kamińska 2008)

∂u(t, x, y)

∂t
= ∂

∂x
[γ1xu(t, x, y)] − ∂

∂y
[(λ2x − γ2 y)u(t, x, y)]

+
x∫

0

ϕ(y)u(t, z, y)h(x − z) dz − ϕ(y)u(t, x, y) (14)

when (t, x, y) ∈ R
+ ×R

+ ×R
+. The corresponding density function of Y (t) is given

by

u0(t, y) =
∞∫

0

u(t, x, y) dx . (15)

In this paper, we prove that when γ1 → ∞ the density function u0(t, y) approaches
the density v(t, y) for solutions of either the deterministic equation (8) or the stochastic
differential equation (10) depending on the scaling. Evolution of the density function
for Eq. (8) is given by (Lasota and Mackey 1985)

∂v(t, y)

∂t
= − ∂

∂y
[−γ2 yv(t, y)+ λ2ψ(y)v(t, y)], (16)
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where

ψ(y) = bϕ(y)/γ1. (17)

Evolution of the density function for Eq. (10) is given by

∂v(t, y)

∂t
= ∂

∂y
[γ2 yv(t, y)] +

y∫

0

ϕ(z)v(t, z)h̄(y − z) dz − ϕ(y)v(t, y). (18)

Here h̄ is related to h through

h̄(y) = γ1

λ2
h

(
γ1

λ2
y

)
. (19)

We note that when ϕ and h satisfy assumptions (3)–(4), existence of the above den-
sities has been proved by Mackey and Tyran-Kamińska (2008) and Tyran-Kamińska
(2009). In particular, for a given initial density function

u(0, x, y) = p(x, y), 0 < x, y < +∞ (20)

that satisfies

p(x, y) ≥ 0,

∞∫

0

∞∫

0

p(x, y) dx dy = 1, (21)

there is a unique solution u(t, x, y) of Eq. (14) that satisfies the initial condition (20)
and

u(t, x, y) ≥ 0,

∞∫

0

∞∫

0

u(t, x, y) dx dy = 1 (22)

for all t ∈ R
+.

We can rewrite the Eqs. (16) and (18) in the form

∂v(t, y)

∂t
= T v(t, y), (23)

where T is a linear operator defined by the right hand side of Eq. (16) or (18).

Definition 1 A smooth function f : R
+ → R

+ is a test function if f (y) has compact
support and f (k)(0) = 0 for any k = 0, 1, 2, . . .. An integrable function v(t, y) :
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R
+ ×R

+ �→ R
+ is said to be a weak solution of Eq. (23) if for any test function f (y),

∞∫

0

(
∂v(t, y)

∂y
− T v(t, y)

)
f (y) dy = 0, ∀t > 0. (24)

Remark 2 It is obvious that any classical solution of Eq. (23) is also a weak solution.

The main result of this section, given below, shows that when γ1 is large enough, the
marginal density of Y (t), u0(t, y; γ1), as defined below in Eq. (26), gives an approxi-
mation of a weak solution of Eq. (16) or (18).

Theorem 1 Let u(0, x, y) = p(x, y) ∈ C∞(R+2
) and assume that p(x, y) satisfies

∞∫

0

xn p(x, y) dx < +∞, y > 0, n = 0, 1, 2, . . . . (25)

For any γ1 > 0, let u(t, x, y; γ1) be the associated solution of Eq. (14), and define

u0(t, y; γ1) =
∞∫

0

u(t, x, y; γ1) dx . (26)

Similarly,

p0(y) =
∞∫

0

p(x, y) dx .

(1) Under the scaling (S1), when γ1 → ∞, u0(t, y; γ1) approaches a weak solution
of Eq. (16) v(t, y) with initial condition v(0, y) = p0(y).

(2) Under the scaling (S2) or (S3), when γ1 → ∞, u0(t, y; γ1) approaches a weak
solution of Eq. (18) v(t, y) with initial condition v(0, y) = p0(y).

From Definition 1, Theorem 1 means that for any test function f (y),

lim
γ1→∞

∞∫

0

(
∂u0(t, y; γ1)

∂t
− T u0(t, y; γ1)

)
f (y) dy = 0, ∀t > 0. (27)

In the next section, we prove Eq. (27) for the three scalings respectively.

3 Proof of the main results

Before proving Theorem 1, we first examine the marginal moments under different
scalings.

123

Author's personal copy



Adiabatic reduction of jump Markov process

3.1 Scaling of the marginal moment

Proposition 1 Let (X (t), Y (t)) be the solution of Eqs. (1)–(2),μk(t) = E[X (t)k] and
νk(t) = E[Y (t)X (t)k]. Suppose μk(0) < ∞ and νk(0) < ∞, then μk(t) < ∞ and
νk(t) < ∞ for all t . Moreover, for any fixed t > 0:

1. If the scaling (S1) holds, both μk(t) and νk(t) are uniformly bounded above and
below when γ1 is large enough.

2. If the scaling (S2) holds, when γ1 is large enough, for k ≥ 1,

μk(t) ∼ γ k−1
1 , νk(t) ∼ γ k−1

1 , (28)

and ν0(t) is uniformly bounded above and below.
3. If the scaling (S3) holds, when γ1 is large enough, for k ≥ 1,

μk(t) ∼ γ−1
1 , νk(t) ∼ γ−1

1 , (29)

and ν0(t) is uniformly bounded above and below.

Proof For the two-dimensional stochastic differential equation (1)–(2), the associated
infinitesimal generator A is defined as (Davis 1984, Theorem 5.5)

Ag(x, y) = −γ1x
∂g

∂x
+ (λ2x − γ2 y)

∂g

∂y

+ϕ(y)
⎛
⎝

∞∫

x

h(z − x)g(z, y) dz − g(x, y)

⎞
⎠ (30)

for any g ∈ C1(R+ × R
+). The operator A is the adjoint of the operator acting on

the right hand side of the evolution equation of the density (14). Moreover, for any
g ∈ C1(R+ × R

+), we have

d

dt
Eg(Xt ,Yt ) = EA(g(Xt ,Yt )), (31)

provided both terms on the right hand side of Eq. (30) are finite. The proposition is
proved through calculations of Eq. (31).
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To obtain estimations for μk , a straightforward calculation from Eq. (30) yields

Axk = −γ1kxk + ϕ(y)

⎛
⎝

∞∫

x

h(z − x)(z − x + x)k dz − xk

⎞
⎠

= −γ1kxk + ϕ(y)
k−1∑
i=0

(
k

i

)
xi

∞∫

x

h(z − x)(z − x)k−i dz

= −γ1kxk + ϕ(y)
k−1∑
i=0

(
k

i

)
xi

E
k−i h,

where

E
j h =

∞∫

0

x j h(x) dx .

Thus, Eq. (31) yields

dμk(t)

dt
= −γ1kμk(t)+

k−1∑
i=0

(
k

i

)
E[ϕ(Yt )X (t)

i ]Ek−1h. (32)

We then obtain, with the assumption (3),

ϕ

k−1∑
i=0

(
k

i

)
μi (t)E

k−i h ≤ μ̇k(t)+ γ1kμk(t) ≤ ϕ

k−1∑
i=0

(
k

i

)
μi (t)E

k−i h. (33)

Now, we can obtain estimations of μk for different scalings from inequalities (33).
1. Assume the scaling (S1) so that both ϕ/γ1 and ϕ/γ1 are independent of γ1 when

γ1 is large enough. Applying Gronwall’s inequality to inequalities (33) with k = 1
yields, for all t > 0,

ϕ b

γ1
+

[
μ1(0)− ϕ b

γ1

]
e−γ1t ≤ μ1(t) ≤ ϕ b

γ1
+

[
μ1(0)− ϕ b

γ1

]
e−γ1t .

Thus, μ1(t) is uniformly bounded above and below when γ1 is large enough.
Iteratively, for all t > 0 and k > 1, there are constants c̄k, ck > 0 independent of

γ1 such that

ϕ ck

kγ1
+

[
μk(0)− ϕ ck

kγ1

]
e−kγ1t ≤ μk(t) ≤ ϕ ck

kγ1
+

[
μk(0)− ϕ ck

kγ1

]
e−kγ1t ,

and hence μk(t) is uniformly bounded above and below when γ1 is large enough.
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2. Assume the scaling (S2) so that E
k−i h ∼ γ k−i

1 when γ1 is large enough. We note
μ0(t) = 1, and therefore inductively, for any t and k ≥ 1,

ϕ E
kh

kγ1
+ O(γ k−2

1 ) ≤ μk(t) ≤ ϕ E
kh

kγ1
+ O(γ k−2

1 ).

Thus, we have μk(t) ∼ γ k−1
1 when γ1 is large enough.

3. Assume the scaling (S3) so that λ2/γ1 is independent of γ1 when γ1 is large
enough. Calculations similar to those in case (S1) gives μk(t) ∼ γ−1

1 .
Analogous results for νk(t) are obtained with similar calculations with g(x, y) =

xk y in Eq. (30). Namely, we have

A xk y = −(γ1k + γ2)x
k y + λ2xk+1 + ϕ(y)

k−1∑
i=0

(
k

i

)
xi yE

k−i h.

Thus, when k = 0, we have

ν̇0 = −γ2ν0 + λ2μ1,

and for k ≥ 1,

−(γ1k + γ2)νk(t)+ λ2μk+1 + ϕ

k−1∑
i=0

(
k

i

)
νi (t)E

k−i h

≤ ν̇k(t) ≤ −(γ1k + γ2)νk(t)+ λ2μk+1 + ϕ

k−1∑
i=0

(
k

i

)
νi (t)E

k−i h.

Then ν0 is uniformly bounded for each scaling (S1), (S2), and (S3). Then, iteratively
using the inequalities for ν̇k , the scaling of μk+1 and Gronwall’s inequality yields the
desired result for each scaling.

Remark 3 Define the marginal moments

uk(t, y) =
∞∫

0

xku(t, x, y) dx, (34)

then

μk(t) =
∞∫

0

uk(t, y) dy.

Hence the integrals
∫ ∞

0 uk(t, y)dy satisfy the same scaling as μk(t) when γ1 → ∞.
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Remark 4 From inequalities (33), when γ1 → ∞ the moments μ̇k(t) have the same
scaling asμk(t). Moreover, the same scalings are valid for the integrals

∫ ∞
0

∂uk (t,y)
∂t dy.

3.2 Proof of Theorem 1

Proof Throughout the proof, we omit γ1 in the solution u(t, x, y; γ1) and in the mar-
ginal density u0(t, y; γ1), and keep in mind that they are dependent on the parameter
γ1 through Eq. (14).

First, from the results in Sect. 3.1 and assumption (25), the marginal moments

un(t, y) =
∞∫

0

xnu(t, x, y) dx, (35)

are well defined for t > 0, y > 0 and n ≥ 0. Hence

lim
x→∞ xnu(t, x, y) = 0, ∀t, y, n > 0.

lim
x→0

xnu(t, x, y) = 0, ∀t, y, n ≥ 1.
(36)

From Eq. (14), we multiply by xn and integrate on both sides. By Eq. (36), we have

∂un

∂t
= −nγ1un − λ2

∂un+1

∂y
+ γ2

∂(yun)

∂y

+
∞∫

0

x∫

0

ϕ(y)xnu(t, z, y)h(x − z) dz dx − ϕ(y)un . (37)

Since

∞∫

0

x∫

0

ϕ(y)xnu(t, z, y)h(x − z) dz dx =
n∑

j=0

(
n

j

)
ϕ(y)un− j E

j h,

we have

∂un

∂t
= −nγ1un − λ2

∂un+1

∂y
+ γ2

∂(yun)

∂y
+ ϕ(y)

n∑
j=1

(
n

j

)
un− j E

j h. (38)

In particular, when n = 0,

∂u0

∂t
= −λ2

∂u1

∂y
+ γ2

∂(yu0)

∂y
, (39)
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and when n ≥ 1,

1

γ1

∂un

∂t
= −nun − λ2

γ1

∂un+1

∂y
+ γ2

γ1

∂(yun)

∂y
+ 1

γ1
ϕ(y)

n∑
j=1

(
n

j

)
un− j E

j h. (40)

Thus, for any n ≥ 1,

un = − λ2

nγ1

∂un+1

∂y
+ γ2

nγ1

∂(yun)

∂y

+ 1

nγ1
ϕ(y)

n∑
j=1

(
n

j

)
un− j E

j h − 1

nγ1

∂un

∂t
. (41)

Now, we are ready to prove the results for the three scalings by iteratively calculating
u1 from Eq. (41).

For the scaling (S1) so ϕ(y) ∼ γ1, and (here b = Eh)

u1 = bϕ(y)

γ1
u0 + 1

γ1

[
∂

∂y
(γ2 yu1 − λ2u2)− ∂u1

∂t

]
. (42)

Substituting Eq. (42) into Eq. (39), we obtain

∂u0

∂t
= ∂

∂y
[γ2 yu0 − λ2ψ(y)u0] − λ2

γ1

∂

∂y

[
∂

∂y
(γ2 yu1 − λ2u2)− ∂u1

∂t

]
, (43)

where ψ(y) = bϕ(y)/γ1. Now, we only need to show that for any test function f (y),

lim
γ1→∞

λ2

γ1

∞∫

0

f (y)
∂

∂y

[
∂

∂y
(γ2 yu1 − λ2u2)− ∂u1

∂t

]
dy = 0, ∀t > 0. (44)

We note that the integral

∞∫

0

f (y)
∂

∂y

[
∂

∂y
(γ2 yu1 − λ2u2)− ∂u1

∂t

]
dy = −

∞∫

0

f ′(y)∂u1

∂t
dy

+
∞∫

0

f ′′(y)(γ2 yu1 − λ2u2) dy

is uniformly bounded when γ1 is large enough, and Eq. (44) is straightforward from
the Remarks 3 and 4. Thus, we conclude that u0(t, y) approaches a weak solution of
Eq. (16) and point (1) of Theorem 1 is proved.

For the scaling (S2) so that E
j h ∼ γ

j
1 when γ1 → ∞, let

b j = γ
− j
1 E

j h, ( j = 0, 1, . . .) (45)
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which are independent of γ1 when γ1 → ∞. Hence, from Eq. (41) and Proposition 1,
we have

γ
−(n−1)
1 un = −λ2

n

∂(γ−n
1 un+1)

∂y
+ γ2

nγ1

∂(yγ−(n−1)
1 un)

∂y
+ 1

n
ϕ(y)u0bn

+ 1

nγ1
ϕ(y)

n−1∑
j=1

(
n

j

)
γ

−(n− j−1)
1 un− j b j − 1

nγ1

∂(γ
−(n−1)
1 un)

∂t

= 1

n
bnϕ(y)u0 − λ2

n

∂(γ−n
1 un+1)

∂y
+ 1

nγ1
Cn(t, y),

where

Cn(t, y) = γ2
∂(yγ−(n−1)

1 un)

∂y
+ ϕ(y)

n−1∑
j=1

(
n

j

)
γ

−(n− j−1)
1 un− j b j − ∂(γ

−(n−1)
1 un)

∂t
.

Therefore,

u1 = b1ϕ(y)u0 − λ2
∂

∂y
[γ−1

1 u2] + 1

γ1
C1(t, y)

= b1ϕ(y)u0 − λ2
∂

∂y

[
1

2
b2ϕ(y)u0 − λ2

2

∂(γ−2
1 u3)

∂y
+ 1

2γ1
C2(t, y)

]
+ 1

γ1
C1(t, y)

= b1ϕ(y)u0 − b2
λ2

2!
∂

∂y
(ϕ(y)u0)+ λ2

2

2!
∂2

∂y2

[
1

3
b3ϕ(y)u0 − λ2

3

∂(γ−3
1 u4)

∂y
+ 1

3γ1
C3(t, y)

]

+ 1

γ1
C1(t, y)− λ2

2!γ1

∂

∂y
C2(t, y)

· · · · · · · · · · · ·
=

∞∑
k=1

(−λ2)
k−1

k! bk
∂k−1

∂yk−1 (ϕ(y)u0)+ 1

γ1

∞∑
k=1

(−λ2)
k−1

k!
∂k−1

∂yk−1 Ck(t, y).

Thus, denote

C(t, y) = −λ2
∂

∂y

[ ∞∑
k=1

(−λ2)
k−1

k!
∂k−1

∂yk−1 Ck(t, y)

]
=

∞∑
k=1

(−λ2)
k

k!
∂k

∂yk
Ck(t, y)

and from Eq. (45), we have

− λ2
∂u1

∂y
=

∞∑
k=1

(−λ2)
k

k! (γ−k
1 E

kh)
∂k

∂yk
(ϕ(y)u0)+ 1

γ1
C(t, y)

=
∞∑

k=1

1

k!
(

−λ2

γ1

)k
⎛
⎝

∞∫

0

xkh(x) dx

⎞
⎠ ∂k

∂yk
(ϕ(y)u0)+ 1

γ1
C(t, y)
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=
∞∫

0

h̄(x)

[ ∞∑
k=1

1

k! (−x)k
∂k

∂yk
(ϕ(y)u0)

]
dx + 1

γ1
C(t, y)

=
∞∫

0

h̄(x)(ϕ(y − x)u0(t, y − x)− ϕ(y)u0(t, y)) dx + 1

γ1
C(t, y)

=
∞∫

0

h̄(x)ϕ(y − x)u0(t, y − x) dx − ϕ(y)u0(t, y)+ 1

γ1
C(t, y)

= −
−∞∫

y

h̄(y − z)ϕ(z)u0(t, z) dz − ϕ(y)u0(t, y)+ 1

γ1
C(t, y)

=
y∫

0

h̄(y − z)ϕ(z)u0(t, z) dz − ϕ(y)u0(t, y)+ 1

γ1
C(t, y). (46)

Here we note ϕ(z) = 0 when z < 0.
For any test function f (y), similar to the argument in the scaling (S1), the integral

∞∫

0

C(t, y) f (y) dy

is uniformly bounded when γ1 is large enough, and hence

lim
γ1→∞

1

γ1

∞∫

0

C(t, y) f (y) dy = 0, ∀t > 0.

Therefore, from Eqs. (39) and (46), when γ1 → ∞, u0 approaches a weak solution
of Eq. (18), and point (2) in Theorem 1 is proved.

Now, we consider the scaling (S3) so λ2/γ1 is independent of γ1 when γ1 → ∞.
From Eq. (41) and Proposition 1, we have

un = −1

n

λ2

γ1

∂un+1

∂y
+ γ2

nγ1

∂(yun)

∂y
+ 1

nγ1
ϕ(y)u0E

nh

+ 1

nγ1
ϕ(y)

n−1∑
j=1

(
n

j

)
un− j E

j h − 1

nγ1

∂un

∂t

= 1

nγ1
ϕ(y)u0E

nh − 1

n

λ2

γ1

∂un+1

∂y
+ 1

nγ1
Rn(t, y),
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where

Rn(t, y) = γ2
∂(yun)

∂y
+ ϕ(y)

n−1∑
j=1

(
n

j

)
un− j E

j h − ∂un

∂t
.

Therefore,

u1 = 1

γ1
ϕ(y)u0E

1h − λ2

γ1

∂

∂y
u2 + 1

γ1
R1(t, y)

= 1

γ1
ϕ(y)u0E

1h − λ2

γ1

∂

∂y

[
1

2γ1
ϕ(y)u0E

2h − 1

2

λ2

γ1

∂

∂y
u3 + 1

2γ1
R2(t, y)

]

+ 1

γ1
R1(t, y)

= 1

γ1
ϕ(y)u0E

1h − 1

2!
λ2

γ 2
1

E
2h
∂

∂y
[ϕ(y)u0]

+ 1

2!
(
λ2

γ1

)2
∂

∂y

[
1

3γ1
ϕ(y)u0E

3h − 1

3

λ2

γ1

∂

∂u4

]

+ 1

γ1

3∑
k=1

1

k!
(

−λ2

γ1

)k−1
∂k−1

∂yk−1 Rk(t, y)

· · · · · · · · ·
= − 1

λ2

∞∑
k=1

1

k!
(

−λ2

γ1

)k

E
kh
∂k−1

∂yk−1 [ϕ(y)u0]

+ 1

γ1

∞∑
k=1

1

k!
(

−λ2

γ1

)k−1
∂k−1

∂yk−1 Rk(t, y).

Denote

R(t, y) =
∞∑

k=1

1

k!
(

−λ2

γ1

)k
∂k

∂yk
Rk(t, y),

and in a manner similar to the above argument, we have

− λ2
∂u1

∂y
=

∞∑
k=1

1

k!
(

−λ2

γ1

)k

E
kh
∂k

∂yk
[ϕ(y)u0] + R(t, y)

=
y∫

0

h̄(y − z)ϕ(z)u0(t, z) dz − ϕ(y)u0(t, y)+ R(t, y). (47)

Finally, we note μk(t) ∼ γ−1
1 in the scaling (S3), hence for any test function f (y),
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lim
γ1→∞

∞∫

0

R(t, y) f (y) = 0.

Thus, from Eqs. (39) and (47), when γ1 → ∞, u0 approaches to a weak solution of
Eq. (18), and point (3) in Theorem 1 is proved.

4 Illustration

We performed numerical simulations of the stochastic differential Eqs. (1)–(2) to
illustrate the results in previous sections. In our simulations, we took parameter values
so that γ1 increases with the scaling (S2). As the intensity of the jumps is bounded,
we used an accept/reject numerical scheme to simulate jump times, and used the exact
solution of the deterministic part of Eqs. (1)–(2) between the jumps (the equations
are linear between jumps). For a given set of parameters, we simulate a trajectory
for a sufficiently long time (a bound on the convergence rate can be obtained by
the coupling method, as proved by Bardet et al. 2013) so that the stochastic process
reaches its stationary state. We then computed its equilibrium density (as well as the
first and second moments) by sampling a large number of values (106) of the stochastic
process at random times. Finally, we compare the marginal density for Y (t) with the
analytic steady-state solution of the one-dimensional equation (18). To quantify the
differences, we used the L1, L2 and L∞ norms (the parameter values are taken such
that the asymptotic density is bounded).
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Fig. 1 Adiabatic reduction with the scaling (S2). Upper panels show the histograms for the first variable
X . Bottom panels show the histograms for the second variable Y . Dashed lines are obtained from the
one-dimensional equation (18). Functions ϕ(Y ) and h(�Y ) are given by Remark 1, and parameters used
are ϕ0 = 5, γ2 = 1, λ2 = 2, K = 1, A = 4, B = 1, n = 4, b = γ1/2 and, from left to right, γ1 =
0.1, 1, 10, 100
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Fig. 2 Adiabatic reduction with the scaling (S2). a The norm differences between the numerical marginal
density of Y (t) and the analytic steady-state solution of the one-dimensional equation (18). Results for
classical L1, L2 and L∞ norms are shown, as indicated in the legend. b Asymptotic moment values of
the second variable Y , as indicated on the legend. Dashed lines are obtained by the analytical asymptotic
moment values obtained from the one-dimensional equation (18). c The momentsμ1 andμ2 as functions of
γ1. d The moments ν1 and ν2 as functions of γ1. In c and d, the dashed lines have a slope of +1. Parameters
used are same as in Fig. 1

Results are shown in Figs. 1 and 2. First, Fig. 1 shows that as γ1 increased, the
marginal steady-state distribution approaches the analytical limit. Differences between
the distributions are quantified in Fig. 2, where we show norm differences between
the numerical and analytic distributions. We also show the behaviour of the moments.
Notice that the marginal moment of Y approaches the analytic moment of the one-
dimensional stochastic process as γ1 → ∞. Also, we verify the predicted behaviour of
the moment involving the first variable X, μk and νk for k = 1, 2, as in Proposition 1.
Results show good agreement with our theoretical predictions.

5 Summary

We have considered adiabatic reduction in a model of single gene expression with
auto-regulation that is mathematically described by a jump Markov process defined by
Eqs. (1)–(2). If mRNA degradation is a fast process, i.e., γ1 � γ2, we derived reduced
forms of the governing equations under the three scaling situations so that the stationary
protein level remains fixed when γ1 → ∞: (1) If the promoter activation/deactivation
is also a fast process, then the protein concentration dynamics can be approximated
by a deterministic ordinary differential equation (8), and the mRNA concentration is
approximately given by X = bϕ(Y )/γ1. (2) If either the transcription or the translation
is a fast process, then the protein concentration dynamics can be approximated by a
single stochastic differential equation (10) with jump Markov process. We expect that
these results may be generalized to justify adiabatic reduction methods in more general
stochastic hybrid systems of gene regulation network dynamics.
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