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Abstract The spatiotemporal evolution of various proteins during the endo-
mesodermal specification of the sea urchin embryo in the form of an expanding torus
has been known experimentally for some time, and the regulatory network that con-
trols this dynamic evolution of gene expression has been recently partially clarified.
In this paper we construct a relatively simple mathematical model of this process that
retains the basic features of the gene network and is able to reproduce the spatiotempo-
ral patterns observed experimentally. We show here that a mathematical model based
only on the gene-protein interactions so far reported in the literature predicts the origin
of the behaviour to lie on a delayed negative feed-back loop due to the protein Blimp1
on the transcription of its corresponding mRNA. However though consistent with
earlier results, this contradicts recent findings, where it has been established that the
dynamical evolution of Wnt8 protein is independent of Blimp1. This leads us to offer
a modified version of the original model based on observations in similar systems,
and some more recent work in the sea urchin, assuming the existence of a mechanism
involving inhibitory loop on wnt8 transcription. This hypothesis leads to a better match
with the experimental results and suggests that the possibility of the existence of such
an interaction in the sea urchin should be explored.
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1 Introduction

The developmental process in a living organism is controlled by the sequential expres-
sions of a series of genes (Adimy et al. 2006). This sequential expression of genes in
turn is governed by the developmental gene regulatory network (GRN) which precisely
describes the interactions between transcription factors and cis-regulatory modules
that control the expression of genes required for the developmental process. Therefore
the genomic code that controls interactions that lead to the specification of embryonic
territories, and its subsequent subdivision and differentiation, is largely governed by
the GRN (Davidson 2006).

In this context the sea urchin embryo presents an interesting case study (Smith and
Davidson 2008). Most of the key elements present in the genetic regulatory network
of the sea urchin embryo have already been identified with their roles in the network
known. This allows us to look for an overall understanding of how development works
in this system as has recently been illustrated for the network that determines spec-
ification and differentiation of the skeletogenic micromere lineages or skeletogenic
mesoderm (SM) of this embryo. In this paper we concentrate on another striking
feature of the endo-mesodermal specification, viz. the concentrically expanding pro-
gression of notch and wnt signaling which, after being initiated in the SM, sweeps
outward across the vegetal domains of the embryo.

Recent studies on the sea urchin embryo have claimed to reveal the entire sequence
of regulatory gene activity in the vegetal domains of the embryo that entrains a set
of genes in an expanding torus-like pattern of gene expression. Smith et al. (2007)
showed that the regulatory circuitry underlying this phenomenon is a double feed-
back loop linking the wnt8 and the blimp1 regulatory genes. (The reader may find
reference to Fig. 1 useful in following this discussion). cis-Regulatory studies show
that the wnt genes require input from both β-catenine–Tcf and from Blimp1 pro-
tein for expression. Conversely, blimp1 requires input from the same wnt8/Tcf sig-
naling system as well as from another ubiquitous protein Otx (Minokawa et al.
2005; Davidson 2002). However, the blimp1 gene also contains auto-repression sites
which, after some hours when the Blimp1 protein attains a sufficiently high con-
centration, shuts down its own expression, and therefore that of wnt8 as well (Livi
and Davidson 2006). In the meantime Wnt8 has diffused outward to the next ring
of cells and activated the feedback circuit there. The consequence is that follow-
ing their initial expression in the centrally located SM territory, expression of these
genes disappears from the SM and is activated in the non-skeletogenic micromere
(NSM). However, after a few hours these genes are inactivated in the NSM and
becomes activated in the next outer rings of prospective endoderm cells, produc-
ing an expanding torus-like pattern of gene expression. However it has been recently
reported that although mutation of Blimp1-binding sites lowers the activity of a small
wnt8 cis-regulatory construct18, this does not affect expression of a bacterial artificial
chromosome expression construct containing the whole genomic wnt8 cis-regulatory
system (Peter and Davidson 2011). Also it is always seen that the expression of
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Dynamic spatial pattern formation

Fig. 1 The gene regulatory
network corresponding to the
wnt8–blimp1 sub circuit. The
lines with arrowheads denote
activation and the ones with
blunt heads denote inhibition

wnt8 starts in veg2-derived cells long before the initiation of blimp1b expression
in these cells. More over a recent publication suggests Notch protein may be in
some way involved in the clearance of Wnt8 from the mesodermal domain during
endo-mesodermal specification (Sethi et al. 2012). This might be indicative of the
presence of some other feedback loop responsible for the clearance of Wnt8 from
the SM.

Thus this system presents an interesting example of dynamic pattern formation
due to a coupling between activator–inhibitor kinetics and diffusion. In the following
sections we propose two variations of a same general model. One suggests the phe-
nomena can be looked at as a delay induced propagation of traveling wave while the
other interprets it in terms of local structure formation and its consequent effect on the
immediate neighborhood. Our approach in the present paper is to start with a mathe-
matical model for the temporal behavior of this process based on the simplest form of
the architecture of the gene network that incorporates all of the essential experimental
findings, and then to look at the spatio-temporal behavior when diffusive effects are
taken into account.

The outline of the paper is as follows. In Sect. 2 we develop the full mathematical
model based entirely upon the gene regulatory circuitry reported in the literature (Smith
et al. 2007). Following some general remarks in Sect. 2.1 we turn to a development of
the temporal evolution equations for the blimp1–wnt8 in Sect. 2.2.

Due to the relative complexity of the model there are a number of parameters, and
in Sect. 2.3 we minimize their number by scaling. The estimation of the remaining
parameters is given in Appendix A. Section 3 presents the numerical results, first for
the temporal behavior alone in Sect. 3.1 and then for the full spatio-temporal behavior
in Sect. 3.2. Because of the uncertainty of many of the parameters, in Sect. 3.3 we
have carried out a sensitivity analysis. The analysis reveals that the auto inhibitory
feed back loop due to Blimp1 protein on the transcription of corresponding mRNA is
crucial for generating the instability required for the basic phenomena of evolution of
proteins from the center. This matches well with the initial experimental finding which
suggests Blimp1 protein has a pivotal role in Wnt8 evolution and subsequent clearance
(Smith et al. 2007). But a later study (Peter and Davidson 2011) refutes this earlier
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proposal and shows that the clearance of blimp1 expression from the mesodermal
domain may not be essential for the clearance of wnt8 expression from the same
region. This leads us to a qualitative modification of the original model in Sect. 4 where
we have assumed a negative feedback loop involving Wnt8 protein and its mRNA.
This assumption is based on observations in similar systems (Meinhardt 2012) and if
verified experimentally could be of help in elucidating the exact mechanism by which
Wnt8 works in many other biochemical pathways. A possible variation of this negative
feed back loop involving notch signaling too has been explored. This is motivated by
a very recent revelation regarding the role of Notch in the clearance of Wnt8 from
the mesodermal domain (Sethi et al. 2012). The paper concludes in Sect. 5 where we
discuss in detail how recent experimental observations in the sea urchin embryo forces
us to modify our modeling approach and go beyond the existing regulatory network.

2 Model

A recent paper (Smith et al. 2007) summarizes the results of various experimental
studies in the sea urchin embryo and proposes a complex regulatory network for the
expression pattern of the genes during endo-mesodermal specification (Fig. 1).

2.1 General modeling comments

Below we present a mathematical model based on this architecture in order to under-
stand the spatio-temporal dynamics of gene expression observed experimentally.

In the formulation of our model equations, transcription of blimp1 gene to the
corresponding mRNA is positively regulated by the proteins Wnt8 and Otx, and the
transcription of wnt8 gene to wnt mRNA is activated by Blimp1 protein. In addition,
Blimp1 protein represses its own expression (i.e. the expression of blimp1 mRNA
from blimp1 gene). The system consisting of blimp1 and wnt8 is thus self contained.

We model the inhibitory and the activation feedback terms by Hill functions
(Santillan 2008) so that the feedback experienced by mRNA P from protein Q is
given by

G P Q (X) = Xn P Q

k
n P Q
P Q +Xn P Q

or

FP Q (X) = kn P Q

k
n P Q
P Q +Xn P Q

,

(1)

depending upon whether the interaction is activated or inhibited by the controlling
molecule X .

The translational rates are taken to be linearly related to the concentration of the cor-
responding mRNA. Further we assume random degradation for all the mRNAs and pro-
teins. Finally we assume each of the transcription and the translation processes involve
characteristic constant average delays. The delays arise in transcription because the
polymerase takes a finite time to transcribe the genes. In the case of the translation
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process the delay is due to the sum of the time required for movement of the mRNA to
the cytosol and the time for its translation. For any variable z the notation zτ ≡ z(t −τ)

will be used whenever the variable is delayed, where t denotes time.
In terms of diffusion effects, we assume that mRNA cannot diffuse between cells.

Furthermore, the only protein capable of diffusing between cells is Wnt8 and thus a
diffusion term must be included for this factor. When considering the spatial effects
due to diffusion, χ will denote the spatial independent variable (unscaled).

Throughout the paper we denote a protein X by pX while an mRNA X is denoted
by m X .

2.2 The blimp1–wnt8 circuit

We focus on the dynamics of the regulation of the blimp1–wnt8 module in accordance
with the network given in Fig. 1.

The blimp1 mRNA is denoted by m B and the Blimp1 protein by pB. pCt denotes
the concentration of the complex formed between β-catenin and T cS f The dynamics
of m B are described by the differential delay equation

dm B

dt
= κm B{[G BW (pCt) + G BO(pO)]FB B(pB)}τm B − γm Bm B. (2)

The first term reflects the increase in m B due to the positive feedback effects of the
β-catenin–T cs f complex as well as protein Otx (pO), and the negative feedback
effect of the Blimp1 protein on the production of the blimp1 mRNA. These effects
occur with a delay τm B due to the time required for transcription of the DNA. The last
term simply reflects the degradation of blimp1 mRNA. The dynamics of the Blimp1
protein are described by

dpB

dt
= κpB [m B]τpB − γpB pB, (3)

reflecting the assumption that the rate of production of pB is simply proportional to
the level of m B at a time τpB in the past, where τpB is the time required for translation
of the blimp1 mRNA, and that there is a concomitant degradation of the protein.

Remark 1 Whether the two regulatory inputs will be additive or multiplicative depends
on the molecular details of the interaction. Lacking such definite information we
instead checked and made sure that our qualitative results do not depend upon any
particular choice, and indeed our conclusions are the same even if we assume all the
activating and inhibitory inputs appear in a multiplicative or additive fashion. In the
text we described the case where two activating inputs are multiplicative while one
activating and a second inhibitory one are additive. The important issue from the point
of view of the qualitative dynamics is that the overall response of the combination to
different inputs must have the same qualitative form regardless of whether inputs are
additive or multiplicative.
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In describing the dynamics of the wnt8 mRNA (denoted by mW ) we have a similar
equation

dmW

dt
= κmW [GW B (pB) + GW W (pCt)]τmW

− γmW mW, (4)

reflecting the positive feedback exercised through both Blimp1 and β-catenin–Tcsf
complex, again delayed due to the transcription delay τmW required to produce mW ,
and a degradation of mW . As for the Blimp1 protein, we assume the dynamics of the
Wnt8 protein are determined by

∂pW

∂t
= κpW [mW ]τpW − γpW pW + DpW

∂2 pW

∂χ2 , (5)

τpW is the translation time and there is linear degradation of the Wnt8 protein. DpW

is the corresponding diffusion coefficient.
The dynamics of the nuclearization process can be expressed as

dpC

dt
= κpC GwC (pW ) − γpC pC. (6)

The first term on the right hand side of this equation represents the activation due
to protein pW which is assumed to follow Hill kinetics. β-catenin then functions as
co-activator with Tcsf (tcf). We assume that this involves a fast equilibrium process
and therefore the concentration of the complex pCt is proportional to both pC and tcf
SO

pCt = Keq · pC · tc f. (7)

2.3 Reduction of parameters and their estimation

The model formulated in Eqs. 2–7 of the previous section consists of six evolution
equations with numerous non-linearities and many parameters. Apart from the tran-
scriptional and translational delays, there are four categories of parameters in the
model: the degradation rates, the kinetic rate constants, the diffusion coefficient, and
the Hill exponents. Identities of all the variables and parameters could be found
in the Tables 1, 2 and 3. Ideally all the parameters in the model should be taken
from the biochemical literature. Then we could ask what behavior the model shows,
and thereby judge the degree to which it mimics the experimental results.

Unfortunately due to the lack of sufficient experimental data regarding the mRNAs
and proteins involved in the network, this approach is not feasible for the model.
Indeed, the estimation of all of these parameters would be a formidable task, if not
impossible. Consequently we have eliminated as many of these parameters as possible
through a judicious scaling of the equations.

We let mb, mw denote dimensionless concentrations of the mRNAs for blimp1
and wnt8 respectively, and pb, pw their corresponding proteins. There is no unique
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Table 1 This details the scaling that we have carried out on our model equations

mRNA Protein Hill parameters

mb = γm B
κm B

m B pb = γpBγm B
κpBκm B

pB kbw = γpBγm B
κpBκm B

K BW , kbo = γpO γmO
κpO κmO

K B O , kbb = γpBγm B
κpBκm B

K B B

mw = γmW
κmW

mW pw = γpW γmW
κpW κmW

pW kwb = γpBγm B
κpBκm B

KW B , kww = γpW γmW
κpW κmW

KW W

md = γpD
κm D

m D pd = γm Dγm D
κpDκm D

pD kdr = γpRγm R
κpRκm R

K DR , kdh = γpH γm H
κpH κm H

K DH

- pc = γmC
κpC

pC kcw = γpC
K pC

mn = γm N
κm N

m N pn = γpN γm N
κpN κm N

pN knu = γpU γmU
κpU κmU

KNU , knb = γpBγm B
κpBκm B

KN B

mh = γm H
κm H

m H ph = γpH γm H
κpH κm H

pH khu = γpU γmU
κpU κmU

K HU , khni = γpDγm DγpN γm N
κpDκm DκpN κm N .Keq

Khni

pc = γpC
κpC

pC kcw = γpW γmW
κpW κmW

KCW

pct = γpC
k pC

pCt

tc f = Keq T c f

Further we introduce dimensionless space coordinates x = χ/ l, and the scaled diffusion coefficient (of
the qth species) dq = Dq/ l2 (with l having units of mm). It follows from these definitions that all of the
variables and the parameters, except the degradation rates, time delays and the diffusion coefficients, are
dimensionless. The degradation rates and diffusion coefficients have units of min−1 and the time delays
are expressed in min

Table 2 Identities of the variables (in the dimensionless form) that are used throughout the paper

pw, pb, pn pc Concentrations of proteins: Wnt8, Blimp1 and Notch and β-catenin

mw, mb, mn Concentrations of mRNAs: Wnt8, Blimp1 and Notch

tcs f Concentration of beta-catenin–tcsf complex

Table 3 Identities of the parameters used throughout the paper

τmb, τmw Transcriptional time delay (in min)

τpb , τpw Translational time delay (in min)

γmb, γmw Degradation constants for mRNAs (in min−1)

γpb , γpw , γpc , γpn Degradation constants for proteins (in min−1)

kbc , kbb , kwb , kww , kwc , kcw , kbw Hill rate constants

nbc , nbb , nwb , nww , nwc , ncw , ncw , nbw Hill coefficients

dpw , dpn , dz Diffusion coefficients (in min−1)

way of scaling a system like this, and the scaling we have chosen is given in Table 1.
With this scaling, our original equations take the somewhat simpler form (Tables 2, 3)

dmb

dt
= γmb{[(G BW (pCt) + G BO (po))FB B (pb)]τmb − mb} (8)

dpb

dt
= γpb(mbτpb − pb) (9)
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dmw

dt
= γmw{[GW B (pb) + GW W (pCt)]τmw − mw} (10)

∂pw

∂t
= γpw(mwτpw − pw) + dpw

∂2 pw

∂x2 (11)

dpc

dt
= γpc(GWC (pw) − pc) (12)

pct = Keq · pc · tc f. (13)

2.4 Parameter estimation

Even with the reduction in parameter numbers with the scaling we have chosen, the
number remaining to be estimated is large. The values that we have used in our simu-
lations are tabulated in Table 5 and their estimation is discussed in Appendix A. When
we were unable to find reliable sources to estimate given parameters (e.g. kinetic con-
stants and Hill coefficients) we elected to explore the corresponding parameter space
to look at the numerical behavior of the model, and then examined the dependence of
the results on these parameters through a sensitivity analysis (cf. Sect. 3.3).

3 Numerical results

The numerical calculations reported in Sect. 3 here have been carried out by solving
the dynamical equations usingXPPAUT. In examining the temporal dynamics we used
a fourth order Runge Kutta integration scheme with a time step of �t = 0.025. For
the spatiotemporal computations we used a forward Euler method with space step of
of �x = 0.1 and �t = 0.025 for simulations in both one and two dimensions (grid
size: 100 × 100 and zero flux boundary conditions).

3.1 Temporal evolution in the absence of diffusion

The temporal dynamics for the wnt8–blimp1 subsystem are determined by
Eqs. 8–13. To guide our selection of parameters we determined what parameter val-
ues lead to sustained temporal oscillations in the constituents of the wnt8–blimp1
subsystem. The results are tabulated in Table 4 which lists the threshold values of the
parameters above which Wnt8 and Blimp1 oscillate. This set of parameters defines the
boundary between stable and unstable (oscillatory) steady states and characterizes the
Hopf bifurcation boundary for the system. An important observation is that oscillatory
behavior is possible only if the total delay (transcription plus translation) exceeds a
critical threshold value. This issue of the delay inducing an instability in the system will
be taken up subsequently. The case of when oscillations in the wnt8–blimp1 system
are not important because of the existence of sustained oscillations in the experimental
data on the developing sea urchin embryo, but rather because within the context of
our model we need to know where the boundary for these oscillations is in parameter
space. In Appendices B and C we have examined the local stability of the reduced sys-
tem. If parameters are chosen at or very near to the boundary (in the stable region, with
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Table 4 Parameter values for
which sustained oscillations may
be observed in the
wnt8–blimp1 subsystem and
therefore defines the Hopf
boundary for the system

τmb + τpb >9 min

γmb >0.01 min−1

γmw >0.001 min−1

γpb >0.01 min−1

γpw >0.001 min−1

kbw 0.03–0.8

kbb 0.03–0.3

kwb , kbw , k pc , kcw , kbc , kwc >0.01

nbb >2

nbw , nwb , nww , ncw , nbc , nwc >0

Table 5 Parameter values
used in the computations
to produce Figs. 2, 3, 4 and 5

τmb, τmw 25 min (Santillan and Mackey 2008)

τpb 3 min (Rodriguez-Gonzalez et al. 2007)

τpw 1 min (Rodriguez-Gonzalez et al. 2007)

γmb, γmw 0.1 min−1

γpb , γpw , γpc 0.01 min−1

kbw, kbb , kwb , kww kwc ,
kbc , k pc

0.1

kwc 0.01

nbw, nwb, nww , ncw ,
nbc , nwc

3

nbb 1.2

1 < nbb < 2 and the rest of the parameters as in Table 5), strongly damped oscillations
are observed (Fig. 2). That this corresponds to the single pulse of gene expression as
observed experimentally (Materna et al. 2010) will be shown in the next section.

3.2 Spatiotemporal dynamics

Not unexpectedly, the model dynamics becomes richer when diffusion of protein
Wnt8 is also taken into account. The experimental studies with the sea urchin embryo
(Materna et al. 2010) suggest that the expression of the genes wnt8 and blimp1 is
initiated at the central region of the embryo. Very soon the protein Wnt8 diffuses out
to the next ring of cells and activates the circuit there, while when a large quantity
of Blimp1 protein has accumulated at the center, auto-repression of this protein shuts
down its own expression as well as of the Wnt8 in the same region. Consequently,
following their initial expression in the centrally located SM territory, expression of
these genes disappears from the SM and is then activated in the NSM. Again after
some hours, it is shut off in the NSM and activated in the next outer ring of developing
endoderm cells, producing an expanding torus-like pattern of gene expression.

To mimic these events we need to simulate the dynamical equations in both space
and time. We did simulations in both one and two spatial dimensions and the results
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Fig. 2 Results of simulation of the wnt8–blimp1 subsystem described by the set of Eqs. 8–13 (with the
diffusion term in pW dropped) using parameter values as given in Table 5

are presented in Figs. 3, 4 and 5. Ideally the diffusion coefficient should be taken from
biochemical literature, as we have pointed out previously, but we have been unable
to find reliable estimates so we used a scaled value of the order of 10−2 min−1 for
the diffusion coefficient of the protein Wnt8 (corresponding to an unscaled diffusion
coefficient on the order of 10−8 cm2 s−1). Again we found that variation of this
diffusion coefficient by even two orders of magnitude did not qualitatively alter the
numerical results. Here it is of utmost importance to note that in the system that we
are considering only Wnt8 protein has the capacity to diffuse.

We set zero initial values for all the concentration variables at all of the total 100
sites except near the center, at the space points 45–55 where we have started with
values 0.1 for every variable. (Our results indicate that any arbitrary non-zero initial
value gives the same result.) The choice of such an initial condition is motivated by
the fact that maternally deposited mRNA and protein near the central region of the
embryo initially breaks the symmetry of the system. In our simulation we found that
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oscillations in concentrations of the protein and mRNA starting at this centrally located
region soon propagate outward at a finite speed, corresponding to a traveling wave.

Figure 3 depicts the temporal evolution of blimp1 mRNA concentration at different
spatial points while Fig. 4 illustrates the full spatiotemporal evolution of Blimp1
protein in one spatial dimension. Figure 5 shows the evolution pattern of Blimp1 in
two dimensional space at different times.

To see how well our numerical simulation results match with the experimental
behavior reference should be made to Figure 1 of Smith and Davidson (2008) which
we reproduce in Fig. 6. Figure 6a schematically describes how the proteins (Blimp1
or Wnt8) start getting expressed at the center and then travel outwards. Figure 6c
gives the expression of wnt8 and blimp1, visualized by WMISH. This can be nicely

 0
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 0  200  400  600  800  1000

m
B

lim
p1

time (min)

Fig. 3 Results of simulation of the system described by the set of Eqs. 8–13 in extended space (in one
dimension with a total number of spatial grids points = 100) using the model with the parameters given
as in Table 5. The solid, dashed and the dotted curves represent the temporal evolution of blimp1 mRNA
at spatial grid locations 40, 35 and 30 respectively. We took zero initial values for all the concentration
variables at every site except near the center for space points 45–55. Along the axis we started with initial
values 0.1 for every variable
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Fig. 4 The spatiotemporal
evolution of Blimp1 obtained by
simulating the system given by
the set of Eqs. 8–13 in extended
space (in one dimension with a
total number of spatial grids
points =100) using the model
with the parameters given as in
Table 5. Initial conditions as in
Fig. 3
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Fig. 5 The spatiotemporal evolution of Blimp1 obtained by simulating the full system given by Eqs. 8–13
in two dimensional space with 100 × 100 grid points and parameter values in Table 5 at a 10 min, b 30
min, c 50 min, d 70 min. Initial conditions as in Fig. 3
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Fig. 6 These two diagrams are reproduced from figure 1 of Smith and Davidson (2008). a schematically
describes how the proteins (Blimp1 or Wnt8) start being expressed at the center and then travel outwards.
c Gives the expression of wnt8 and blimp1, visualized by WMISH. This can be easily compared with the
expression pattern predicted by the model here (cf. the contour in Figs. 5 or 11)

compared with the expression pattern predicted by the model here (cf. the contours in
Figs. 5 or 11). The correspondence between the experimental data and the behavior
of the model is evident.

The dimensionless velocity of the wave pulses has been numerically determined to
be about 2.5×10−2 min−1 which corresponds to an actual velocity of 2.5×10−3 mm
min−1. Since the total length of an embryo is of the order several 100 micrometers
(Marzinelli et al. 2008) then the estimated time taken for the waves to propagate
between various regions of the embryo would be of the order of a few hours which is
comparable to that observed experimentally. Thus, in spite of the striking simplicity
of the model the agreement with the experimental observations is good.

3.3 Parameter sensitivity of the model

For parameters like degradation rates of mRNAs or proteins or the Hill exponents,
we have had to satisfy ourselves with estimating their approximate values by compar-
ing with experimental data available for similar systems. Whether the results depend
sensitively on these parameters should therefore be checked. Also the dependence
of the oscillation properties with respect to the different parameters can give us an
idea about the relative importance of various feedback loops in generating the basic
instability.

We have examined how the amplitude and period of the oscillation vary with the
parameters in a region where the decaying oscillation occurs at the four variables.
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Fig. 7 The variation of the oscillation amplitude solving the simplified set of Eqs. 30 in variables: a mb
versus nbb , b mb versus nwb . All other parameters except the one that is varied have values given by Table 5
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Fig. 8 The variation of the amplitude of oscillation obtained from the simulation of Eq. 30 measured in
the variables: a mb, b pb, c mw, d pW respectively against their respective degradation rates. All other
parameters except the one that has been varied have values given in Table 5

The variation of the amplitudes of the oscillations against the Hill coefficients is shown
in Fig. 7. It should be borne in the mind at this juncture that the oscillatory behavior
that we discuss here is transient in nature so amplitude or period may be assigned to the
system only at the initial phase. For uniformity we take the height of the first peak as
a measure of the amplitude and the distance between two successive peaks (of course
they are of dissimilar lengths) as that of the period. In general amplitude increases
with the Hill coefficient until it saturates at a value close to 1. However the variation
is most sensitive to changes in nbb. nww has no observable effect on the amplitudes of
any of the variables. Also we have found that none of these Hill coefficients influence
the period of oscillation in any significant way.

The effect of the degradation rates on the amplitude of oscillation is shown in Fig. 8.
The amplitude of a given variable increases and finally saturates as the degradation
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Fig. 9 The variation of the oscillation period obtained from the simulations of the Eq. 30 (measured for
the variable blimp1 mRNA) versus the degradation rates: a γmb , b γpb . All other parameters except the
one that is varied have values given in Table 5

rate of the corresponding variable increases. The degradation rate of blimp1 mRNA
and Blimp1 protein also affects the period of oscillation in lowering it to a limiting
value as shown in Fig. 9. As expected this effect on the period is not observed in the
case of the degradation rates corresponding to the other two variables.

We note the transient oscillatory behavior (which is essential for the generation
of single pulse wave akin to the single pulse of gene expression that is observed
experimentally in the sea urchin embryo) takes place for all the variables only if nbb

is above 1, with all the other exponents having any value whatsoever. Even if we
eliminate all other feedback loops except the auto-inhibitory one on mBlimp1, we still
obtain damped oscillations in the variables mb and pb for nbb ≥ 1. (The oscillations
are sustained at above nbb > 2, but since this leads to a continuous generation of
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traveling waves which is not relevant to the real biological observation it is outside the
scope of this paper). This suggests that the coupled blimp1 mRNA-Blimp1 protein
loop may oscillate autonomously and also that the auto inhibitory feed back loop due to
Blimp1 protein on the transcription of corresponding mRNA is crucial in generating
the instability. This mb–pb oscillation then entrains the wnt8 mRNA-Wnt protein
system at the mb–pb frequency when the mRNA-Wnt protein system is coupled with
it through a positive feedback loop involving the Blimp1 protein and wnt8 mRNA
(this is obvious since a non zero value of the coefficient nwb is sufficient for the mw,
pw to oscillate as long as nbb stays above 1). This model prediction is in accord with
earlier experimental results, but one recently published paper (Peter and Davidson
2011) contradicts this, claiming:

“Our results exclude an earlier model (23) proposing that clearance of blimp1b
expression from the mesodermal domain, is responsible for clearance of wnt8 expres-
sion from this domain, on the assumption that Blimp1 is a necessary driver of wnt8
expression. This could ultimately lead to the down regulation of most endodermal reg-
ulatory genes, by removal of the Tcf/β-catenin signal that activates them. However,
although mutation of Blimp1-binding sites reduces the activity of a small wnt8 cis-
regulatory con- struct18, the same mutation does not affect expression of a bacterial
artificial chromosome expression construct containing the whole genomic wnt8 cis-
regulatory system (Supplementary Fig. 7). In any case, the expression of Wnt8 begins
in veg2-derived cells long before the onset of blimp1b expression in these cells.”

This observation thus suggests that wnt8 expression is independent of the protein
Blimp1. But with our original model the exact expression profile of Wnt8 is seen to
critically depend upon the Blimp1 negative feedback loop. This leads us to wonder
whether some other kind of feedback loop may be present that enables Wnt8 to sus-
tain its own evolution even without the presence of Blimp1. Also to correspond to the
experimental situation of a single pulse of gene expression (Materna et al. 2010) the
parameters have to be chosen at or very near to the boundary (in the stable region, with
1 < nbb < 2 and the rest of the parameters as in Table 5). Such stringent conditions
on the parameters can be taken as a potential indication that our original hypothe-
sis must be missing something. On this premise we offer a variation of the above
model.

4 Modification of the model

As mentioned earlier we have to modify the above model based on the assumption
that there is an additional feedback loop involving one of the proteins. This hypothesis
is inspired by analogy of the spatial expression profile during embryogenesis of sea
urchin with pattern formation during Hypostome, tentacle and foot formation in hydra.

At this point a few words on the pattern forming mechanism in hydra are appropriate.
A recent model proposed by Meinhardt (2012) reproduces the positional information
scheme required for the generation of head, tentacle and foot of hydra by a set of
hierarchically coupled pattern forming systems. According to this scheme a structure
generates the precondition of a second structure in the immediate neighborhood but
excludes the second structure locally. The mechanism for pattern formation in the var-
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ious regions (head, foot and tentacles) are determined by separate activator–inhibitor
systems coupled together by a source density. The formation of this source density is
activated by the head activator, in turn, the source density activates the head activator
production. The foot activator has the opposite effect in that it inhibits source density
production while the source density suppresses its own transcription. The head and
the foot activators grow in different regions of space excluding the other one locally
and themselves in the neighborhood. However, unlike hydra, the sea urchin system is
not known to involve a diffusing inhibitor. The only diffusible protein present here is
Wnt8 which acts as activator, which excludes the possibility of any kind of Turing-
like structure formation. However there is some recent evidence suggesting Wnt8 may
act as inhibitor in many systems similar to the sea urchin embryo. Meinhardt (2012),
based on very recent observations, proposes a mechanism which suggests that Wnt
molecules are re-processed from a slowly lipid-binding variety to a variety bound to
small lipid particles that diffuse more rapidly. It is not yet known whether the differ-
ently processed Wnt’s have different functions. The proposal is that the slow Wnt’s act
as activators and obtain inhibitory functions after the re-processing. Based on these
observations we offer a modification of our modeling and then investigate whether
or not the new model predictions tally with the experimental results. We assume that
Wnt8 undergoes a reaction of (currently) unknown type which produces a species that
inhibits Wnt8 production from the corresponding mRNA. The set of model equations
would then look like

dmb

dt
= γmb{[(Gbw (pw) + Gbo (po))Fbb (pb)] − mb} (14)

dpb

dt
= γpb(mb − pb) (15)

dmw

dt
= γmw{[Gwb (pb) + Gww (pw)]Fwz(z) − mw} (16)

∂pw

∂t
= γpw(mw − pw) + dpw

∂2 pw

∂x2 (17)

dz

dt
= γz(pw2 − z) + dz

∂2z

∂x2 (18)

Here z is the hypothetical intermediate that Wnt8 produces through the unknown
reaction and which diffuses at a rate faster than Wnt8 (Meinhardt 2012). The rate of its
formation is enhanced due to Wnt8 and it has a natural first-order decay. This modified
Wnt8 now inhibits the transcription of mWnt8. Thus we assume an inhibiting role of
the diffusible protein Wnt8 (the new network circuitry now contains an additional
negative self inhibition loop as shown in Fig. 10). Now, the model involves short
range activation versus long range diffusion, a necessary precondition for a Turing
mechanism to be operative. This dramatically alters the results.

The results of the simulation with Eqs. 14–18 are given in Fig. 11. (The simulations
are performed by simple Euler finite difference technique in a 100 × 100 grid size
with a time step of 0.001 and space interval of 1, boundary condition zero flux). The
expanding ring like pattern is similar in nature to the one obtained with the former
model, but as discussed above there are basic differences which we elaborate below.
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Fig. 10 The gene regulatory
network corresponding to the
wnt8–blimp1 sub circuit with
the additional negative feedback
loop (shown in dotted line)
which that we have proposed.
The lines with arrowheads
denote activation and the ones
with bluntheads denote
inhibition
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Fig. 11 The spatiotemporal evolution of Wnt8 protein obtained by simulating the system given by
Eqs. 14–18 in two dimensional space and parameter values as given in Table 6 with 100×100 grid points at
a 5, b 10, c 15, d 20 min respectively. Initial conditions as in Fig. 3

Table 6 Parameter values used
in the computations to produce
Fig. 11

γmb, γmw ,γz 0.1 min−1

γpb , γpw 0.01 min−1

kbw , kbb , kww , kwz 0.1

kwb 1.0

nwz ,nww ,nwb ,ncw ,nbc ,nwc 2

nbb ,nbw 1

dpw 0.5 min−1

dz 1.0 min−1

1. With the model of Sect. 2 the protein progression starts only once there is a Hopf
bifurcation and therefore can be interpreted as the propagation of a traveling wave.
In the modified version protein progression starts before such a bifurcation has
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taken place and so must be looked at from a different point of view. Initiation of
expression at the central part is due to an activating feedback from Wnt8, but soon
the activating influence of Wnt8 is overcome by the inhibiting role of the same
protein and therefore the structure becomes locally suppressed. But now Wnt8 has
already diffused out to the next layer creating a condition of similar evolution at this
next higher ring. Thus here too, like in hydra, a structure generates the precondition
for another in the immediate neighborhood but excludes the structure locally.

2. We checked that even if we eliminate all transcriptional and translational delays
and take the system away from the Hopf bifurcation region the ring like pattern
still appears above the threshold values of each of the two Hill coefficients of
the two feedback loops, one positive and the other negative due to Wnt8. With
the previous model the expanding ring appears only within the Hopf region. Near
the bifurcation boundary it is possible to obtain only one cycle of such a pattern, but
if one goes deep into the region past the Hopf bifurcation the pattern repeats itself
and this contradicts experimental observation of single pulse of gene expression.
Therefore, as we earlier mentioned, the experimental parameters must remain close
to the bifurcation boundary. At this point therefore the modified version has the
edge over the original in being much more robust to parameter changes.

3. Here we note that the patterned structure critically depends only upon two of the
many feedback loops: the activating and inhibitory ones, due to Wnt8, on its own
formation. We noted the corresponding two Hill coefficients nwz and nww have to
be greater than 1.5 and 1.8 respectively. If either of these two loops are removed
the pattern never appears. This is in contrast to the original model in which the
key step was the negative feedback loop due to Blimp1 on blimp1 transcription.
But as we have emphasized before a recently published paper rejects an earlier
claim by the same group regarding the quintessential role of Blimp1 protein in the
evolution of Wnt8. With the inclusion of the Wnt8 negative feedback in the model
now the expression of wnt8 is seen to be entirely independent of Blimp1, since the
feedback loops due to Wnt8 can alone bring about the entire sequence of protein
expressions and their observed spatial profile.

In the case of Hydra, one pattern forming system that is initially present becomes
inhibited by a second one that dominates and displaces the first into an adjacent
position. Therefore there is a shift, but no oscillations. The displacement of the signal
is actually determined by the concentration of the source density (the source density
concentration being a function of head activator concentration was actually breaking
the over all symmetry of the system). In the case of the sea urchin a similar shift is
brought about by the indirect inhibitory influence of Wnt8 through the hypothetical
intermediate z.

However the role that Wnt8 plays here in this mechanism may also be played
by some other diffusing inhibitor present in the system. A very recent investigation
(Sethi et al. 2012) claims that Notch, which is known to have an inhibitory influence
on the transcription of Wnt8, plays crucial role in the removal of Wnt8 during endo-
mesodermal specification. Numerically we explored this possibility by replacing the
dynamics of hypothetical ‘z’ with that of Notch. The dynamical system is then given
as
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Fig. 12 The spatiotemporal evolution of Wnt8 protein obtained by simulating the system given by Eqs. 19–
24 in two dimensional space and parameter values as given in Table 7 with 100 × 100 grid points at
a 10, b 40 min respectively. Initial conditions as in Fig. 3

Table 7 Parameter values used
in the computations to produce
Fig. 12

γmb, γmw ,γmn ,γpn 0.1min−1

γpb , γpw 0.1 min−1

kbw , kbb , kww , kwn 0.1

kwb 1.0

nwn ,nww ,nwb ,ncw ,nbc ,nwc 2

nbb ,nbw 1

dpw 0.5 min−1

dn 1.0 min−1

dmb

dt
= γmb{[(Gbw (pw) + Gbo (po))Fbb (pb)] − mb} (19)

dpb

dt
= γpb(mb − pb) (20)

dmw

dt
= γmw{[Gwb (pb) + Gww (pw)]Fwz(z) − mw} (21)

∂pw

∂t
= γpw(mw − pw) + dpw

∂2 pw

∂x2 (22)

dmn

dt
= γmn(Fnu(pu)Gnb(pb) − mn) (23)

dpn

dt
= γpn(mn − pn) + dpn

∂2 pn

∂x2 (24)

(The production term reflects activation via ubiquitously present Unk and repression
mediated through protein Blimp1 (Davidson 2006)).

As can be seen from the simulation results (Fig. 12) once again there is a strong
qualitative agreement with the experimental situation. Further it can be checked that
the positive and the negative feedback loops on Wnt8, due to Wnt8 itself and the Notch
protein (below a value of 0.8 for both the coefficient nww and nwn the progression
pattern vanishes) respectively are sufficient to bring about the entire sequence of gene
expressions.

123



Dynamic spatial pattern formation

5 Discussion and concluding remarks

The gene-regulatory network of the developing sea-urchin embryo provides a rare
opportunity to study the spatio-temporal progression of signaling waves. In this devel-
opmental system, the expression of the gene blimp1 starts at the center and then move
outwards in the form of a traveling wave front. In three dimensions this would give
rise to an expanding torus-like pattern.

Next we introduced a negative feedback loop (due to Wnt8 protein) to the model
noting a similar effect is present in some similar models. This dramatically alters the
consequences. The phenomena of shifting of expression center now takes place even
in the non-Hopf region suggesting that the occurrence could be interpreted in terms
of local structure formation and its consequent effect on the immediate neighborhood.
Though the feedback loop is not yet known to exist in sea urchin, its presence in
other similar systems gives strong reasons to believe it to be present here as well.
Furthermore,

1. The modification renders the system more robust in terms of parameter values. The
parameter space where the phenomenon occurs need no longer be confined along
the Hopf boundary. The only criteria now is that the Hill coefficient of any of the
two loops (the negative or the positive one, involving wnt8 on its own transcription)
has to be above a threshold value.

2. Though not demonstrated to date in the case of the sea urchin, the fact that Wnt8
may inhibit its own production has been demonstrated in many similar systems
(Meinhardt 2012)

3. As mentioned earlier in a recently published paper Peter and Davidson (2011)
withdraw their earlier claim that the clearance of blimp1b expression from the
mesodermal domain is responsible for clearance of wnt8 expression from this
domain, noting that though mutation of Blimp1-binding sites lowers the activ-
ity of a small wnt8 cis-regulatory construct18, the same mutation could not affect
expression of a bacterial artificial chromosome expression construct containing the
whole genomic wnt8 cis-regulatory system. Also the expression of wnt8 starts in
veg2-derived cells long before the initiation of blimp1b expression in the cells.
These observation suggests that Wnt8 expression could continue even in absence
of blimp1. But with our original model the exact expression profile of wnt8 is
seen to critically depend upon the Blimp1 negative feedback loop. However now
with Wnt8 negative feedback included in the extended model it seems plausible
that the expression of wnt8 could be entirely independent of Blimp1, since the
feedback loops due to Wnt8 can alone bring about the entire sequence of protein
expressions and their observed spatial profile. Yet another recent publication sug-
gests the possibility of the involvement of Notch in the clearance of Wnt8 from
the mesodermal domain (Sethi et al. 2012). This possibility has been explored too
as a variation of the more general model.

All these factors point toward the presence of a negative feedback loop on the
transcription of wnt8. This may either involve part of Wnt8 protein itself or a Notch
protein. However a more detailed experimental investigation along this line is required
to ascertain whether such a feedback really exists and exactly which species it involves.
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(If the role of Wnt8 is verified experimentally, this would definitely strengthen the
hypothesis regarding the inhibiting effect of Wnt8 and may contribute to the elucidation
of its exact mechanism and therefore has strong implications beyond just the sea urchin
system.)

Finally it should be kept in mind that with time as the number of cells increases
(due to cell division) the situation becomes more complex and the nature of the wave
progression at these later stages of development may not follow the simple dynamical
course as illustrated here. However at the initial stages we feel that this effect may be
ignored and the model developed here may be used to study the origin and evolution
of these traveling waves.

5.1 Specific model predictions

Starting with a general structure of a model that is based completely on existing GRN
we suggested a modification to it aiming at explaining experimental results more
faithfully. The modification predicts a completely different mechanism compared to
the original one and with the current stage of experimental data available it is really
difficult to ascertain which of the mechanisms is actually operative. However our
inclination is towards the modified version for reasons which have been discussed
earlier.

However there are implications from the model presented here that can be tested
experimentally with the use of suitable mutants which might lead us to conclude which
of the mechanism is operative.

1. If the wnt8 gene is silenced in a mutant species, the primitive model suggests
that this should not hinder the pattern of expression of Blimp1 But according to
the modified model this should lead to disappearance of the entire pattern of gene
expression.

2. On the other hand if in a mutant the blimp1 gene is silenced the spatio-temporal
patterns in both proteins Blimp1 and Wnt8 should be lost according to the initially
proposed model but in case with the modified version this should not disturb the
expression pattern of W nt8.
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Appendix A: Parameter estimation

Apart from the transcriptional and translational delays, three categories of parameters
are involved in our model: the degradation rates, the kinetic rate constants and the Hill
exponents.

• The length scale l is taken to be l = 0.1 mm which corresponds to a diffusion
coefficient on the order of 10−4 mm2 min−1. However as mentioned earlier vari-
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ation even by a few orders of magnitude does not change the numerical results
qualitatively. Since experimental studies (Smith et al. 2007) do not indicate any
temporal or spatial variation in the concentrations of the ubiquitously present fac-
tors Otx, Unk, Ub and Runx, we take their concentrations to be constant. The Hill
terms containing these factors then may be replaced by constant quantities, and
we have used Gbo = Ghu = Gnu = Gdr = 0.01.

• Time delays due to transcription and RNA processing prior to translation are
approximately estimated by adding the time it takes for the polymerase to tran-
scribe a gene (with a speed of around 15–20 nucleotides per second) plus 4–5 min
to account for the time elapsed between the completion of the splicing and the
emergence of the matured RNA in the cytosol. Thus we took τmb = τmw = 25
min and τmn = τmd = τmh = 15 min for the transcriptional delays for these genes.
Translational delays were calculated using a translation speed of 6 nucleotides per
second. Therefore we compute τpb = 3 min, τpw = 1 min, and for the proteins
we have used the values: τpn = τpd = τph = 3 min.

• Monk (2003), Giudicelli and Lewis (2004), Hirata et al. (2004) and Bernard et
al. (2006) report half-lives for different proteins of the Hes family and their cor-
responding mRNA of about 25 min (which corresponds to a degradation rate of
about 0.03 min−1). We have taken similar degradation rates for the mRNAs cor-
responding to the genes that belong to the Notch signaling pathway, viz. notch,
hes1 and delta: γmn = γmd = γmh = 0.03 min−1

• Since generally proteins degrade more slowly than mRNA we have assumed γpn =
γpd = γph = 0.003 min−1 we were unable to find equivalent data for genes in the
wnt signalling pathway and so we assumed γmw = 0.1 = γmb = 0.1 min−1. For
the proteins we took γpw = γpb = 0.01 min−1. However we have checked that
the results do not sensitively depend upon the value of degradation rates chosen.
Increasing the degradation rates only increases the amplitude of oscillation until
it reaches a limiting value as discussed in Sect. 3.3

We were unable to find reliable experimental sources to estimate the rest of the
parameters, namely the kinetic constants and the Hill coefficients, so we decided to
explore the model parameter space to ask what regions of parameter space host what
types of dynamic behavior. We have discussed in detail in Sect. 3.3 how the variation
in the Hill exponents affects the results.

Appendix B: Stability analysis

Here we consider the stability of a homogeneous steady state of the reduced two
variable system describing the wnt8–blimp1 system under the assumption that the
corresponding mRNA are in a quasi steady state. Thus we are considering the
system

dpb

dt
= γpb[(G BW (pwτ ) + G BO(po))FB B(pbτ ) − pw]

∂pw

∂t
= γpw[GW W (pwτ ) + GW B(pbτ ) − pb] + dpw

∂2 pw

∂x2 ,

(25)
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again with τ = τmb + τpb. Also we now replace G BO with some constant value, say k
as discussed earlier. The homogeneous steady state (pb∗, pw∗) is given by the solution
of these equations under the assumption that both temporal and spatial derivatives are
zero, or explicitly by

0 = γpb[(G BW (pw∗) + k FB B(pb∗) − pw∗]
0 = γpw[GW W (pw∗) + GW B(pb∗) − pb∗]. (26)

Define deviations u(x, t) and v(x, t) from the homogeneous steady state by
u(x, t) = pb(x, t)− pb∗ and v(x, t) = pw(x, t)− pw∗. Then, under the assumption
that u, v are both sufficiently small so we may linearize the system in the vicinity of
p f ∗, pw∗ the deviations u, v will be given by the solutions of the pair of equations

du

dt
= γpb[F

′∗
B B G∗

W Buτ + F
′∗
B Bkuτ − u + F∗

B B G
′∗
W Bvτ ]

∂v

∂t
= γpw[G ′∗

W W uτ + G
′∗
BW vτ ] − γpwv + dpw

∂2v

∂ X2 .

(27)

(Here we have used the notation F∗ to denote evaluation of the function F at the steady
state, while F

′∗ is the partial derivative of F (with respect to the argument) evaluated
at the steady state.)

If we assume the spatiotemporal perturbations u(x, t) and v(x, t) have the form of
traveling waves

u(t) = u0ex+λt and v(x, t) = v0ex+λt , (28)

(in general λ is a complex number) then substitution into the linearized equations 27
yields, after some algebra, the characteristic equation:

λ2 + β1λ + β2 + [β3λ + β4] exp(−λ ∗ τ) + β5 exp(−2λτ) = 0 (29)

wherein the coefficients βi are given by

β1 = γpb + γpw + dpw

β2 = γpb(γpw + dpw) + γpw(γpw + dpw)F
′∗
B B G∗

W W G
′∗
BW

−γpb(γpw + dpw)k F
′∗
B B G∗

BW + (γpw + dpw)G
′∗
W W F∗

B B G
′∗
BW

β3 = −[γu F
′∗
B B G∗

W W + (γpw + dpw)G
′∗
BW + γpBk F

′∗
B B]

β4 = −[γpB(γpw + dpw)G∗
BW + γpb(γpw + dpw)G

′∗
W B

β5 = γpbγpw F
′∗
B B G∗

BW G
′∗
W B − γpwγpbk F

′∗
B B G∗

W B + γpwG
′∗
W W F∗

B B G
′∗
BW .

Positivity of the real part of λ signals the appearance of an instability and once it
becomes positive its magnitude can be taken as an approximate measure of the ensuing
wave velocity.
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Appendix C: The wnt8–bl imp1 system without diffusion

We first consider the temporal dynamics for the wnt8–blimp1 system in the absence
of diffusion.

We observed numerically that sustained oscillations are observed only when the
combined transcription plus translation delay of the wnt8–blimp1 system crosses a
threshold value. The origin of the temporal instability that induces the oscillations can
be traced to a delay induced supercritical Hopf bifurcation of the system (Adimy et al.
2006) as we outline in the remainder of this section. Very near to the Hopf bifurcation
boundary strongly damped oscillations occurs, and it is then possible to generate a
single pulse of gene expression in response to a transient central stimulus.

The six variable model describing the blimp1–wnt8 dynamics can be further sim-
plified by dropping the dynamics of nuclearized β-catenin or the complex β-catenin–
T cs f . The effect of the complex then could be incorporated in the model by replacing
the term for complex with protein Wnt8. The system of Eqs. 8–13 (in the absence of
diffusion) then becomes

dmb

dt
= γmb([G BW (pwτm + G BO(pO))FB B(pbτm ) − mb])

dpb

dt
= γpb[mbτp − pb]

dmw

dt
= γmw([GW W (pwτm ) + GW B(pbτm ) − mw]

dpw

dt
= γpw[mwτp − pw].

(30)

The numerical results obtained by solving this simpler system are equivalent to the
original six dimensional model, and thus it is possible to obtain insight into the dynam-
ics by considering this simpler version of the model.

To simplify further we assume the transcriptional and translational delays to be the
same for both the components of the wnt8–blimp1 species and write τmb = τmw = τm

and τpb = τpw = τp. Because of their higher degradation rates (cf. Appendix A),
mw and mb equilibrate rapidly compared to their corresponding proteins, so we may
assume a quasi-steady state for mw and mb to obtain

dpb

dt
= γpb[(G BW (pwτ ) + G BO(O))FB B(pbτ − pw],

dpw

dt
= γpw[GW W (pwτ ) + GW B(pbτ ) − pb],

(31)

wherein τ = τm + τp.
As shown in Appendix B, linearization of Eq. 31 about their steady state values

leads to a characteristic (eigenvalue) equation given by

λ2 + b1λ + b2 + [b3λ + b4]e−λτ + b5e−2λτ = 0 (32)
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The eigenvalue equation

λ2 + b1λ + b2 + [b3λ + b4]e−λτa + b5e−λτb = 0 (33)

has been studied for a system in which there are two different delays in the system
(Adimy et al. 2006). It has been shown there that if

(b2 + b5)
2 − b2

4 > 0 and (34)

(b2
1 − 2(b2 + b5) − b2

3) > 0 (35)

are simultaneously satisfied, then the real part of the eigenvalue remains negative for
any τa > 0 if τb is zero. If both τa and τb are non-zero, as is the case here (τ = τa

and 2τ = τb), above a threshold value of τb the system may lose its stability through
a supercritical Hopf bifurcation.

The parameter range of Table 4 satisfies these conditions, and therefore since both
the delay terms are non-zero (one is twice the other) we expect a delay-induced super-
critical Hopf bifurcation as τ is increased (2τ crosses the required threshold).

Also it should be noted that the two delays (translational plus transcriptional) do not
appear separately in the eigenvalue equation but rather as a sum. While numerically
solving the original equations we found, as expected, that there is a threshold value of
the sum of the two delays (around 9) above which sustained oscillations exist.

Traveling wave behavior

Our analysis with the original model based on experimentally observed interactions
identifies the origin of the temporal instability in this system with the existence of
a Hopf bifurcation, induced by a delay which is intrinsically present in the system
due to translational and transcriptional time lags. On a spatial domain, at the Hopf
bifurcation region, the instability results in the generation of traveling waves which
originates at the center and sweeps outwards. Very near to the bifurcation boundary
strongly damped oscillatory behavior is obtained on the spatial domain which has the
signature as single pulse of wave similar to the experimentally observed single pulse of
gene expression. Examples of delay-induced Hopf bifurcations leading to limit cycle
oscillations are well known in biology. Thus, the role of delays is pivotal in generat-
ing the instabilities that are the hallmark of various periodic hematological disorders
(Adimy et al. 2006; Foley and Mackey 2009). Transcriptional and translational delays
play a central role in inducing the segmentation clock to generate oscillations that
interact with the progressive chemical wave front to produce the somites (Rodriguez-
Gonzalez et al. 2007; Santillan and Mackey 2008).

The uniqueness of the current study is that here the delay induces a Hopf bifurcation
which finally imparts its signature on the extended space in generating pulses of
expression activity that propagate spatially in time. Thus the phenomena can be looked
upon as a delay induced generation of traveling waves. The role of delays in slowing
down traveling wave fronts in reaction-diffusion systems has been demonstrated earlier
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(Xingfu 2002). Also the existence of traveling wave solutions in connection with a
population genetics model, with distributed delay kernel, at small average delay, has
been reported (Guojian and Yuan 2006). In contrast to the later study we consider
a fixed delay, and see that above a certain threshold value for the delays, when the
system crosses a boundary in the multidimensional parameter space the system loses
stability and exhibits limit cycle oscillations which finally gives rise to the generation
of propagating wave pulses. On or very near to the bifurcation boundary strongly
damped oscillations result and then it is possible to generate a single pulse of gene
expression in response to a transient central stimulus, consistent with the experimental
finding (Materna et al. 2010). This is the important situation to be considered for the
sea urchin pattern of development. The velocity of the traveling wave can be calculated
numerically by noting the distance a point on the wave, with a given phase, travels in
a given time. The value can be then be compared with the real situation. In this section
however we have computed the velocity approximately at a given temporal frequency
using a linear analysis to check the consistency of our numerics.

As before we confine our considerations to the simplified version of the coupled
wnt8–blimp1 system described by Eq. 30. Employing the quasi-steady state approx-
imation used in Appendix B then leads us to consider the reduced two variable system
of equations given by

dpb

dt
= γpb[(G BW (pwτ ) + G BO(po))FB B(pbτ ) − pw(t)]

∂pw

∂t
= γpw[GW W (pwτ ) + GW B(pbτ ) − pb(t)] + dpw

∂2 pw

∂x2 ,

(36)

where, again, τ = τmb + τpb. As we have shown in Appendix B, linearizing these two
equations near the steady state (pb∗, pw∗) and assuming the the deviation away from
the steady state is of the form of a traveling wave with constant velocity λ leads to an
eigenvalue equation of form

λ2 + β1λ + β2 + [β3λ + β4] exp(−λτ) + β5 exp(−2λτ) = 0. (37)

Now in general λ is a complex number so we write

λ = λR + iω, λR = Reλ,

to obtain an equation for λR

λ2
R − ω2 + β1λR + β2 + [β3λR + β4] exp(−λRτ)

cos(ωτ) + β5 cos(2ωτ) exp(−2λRτ)

+β3ω sin(ωτ) exp(λRτ) = 0. (38)

A positive value of λR signals the presence of an instability and once λR becomes
positive its magnitude is an approximate measure of the velocity of the wave.

The eigenvalue equation is then iteratively solved for λR for a given value of ω. We
found that at a value of ω � 0.04 min−1 (calculated numerically) above a threshold
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value of τ (at τ = 9 min), λR becomes positive. Interestingly, in our simulations
the generation of a traveling wave front also starts at the same value of τ at which
oscillations ensue in the absence of diffusion. The magnitude of the wave velocity
calculated in the two cases however differs. For the parameter range in Table 5 the wave
velocity calculated from the eigenvalue equation is about 2 × 10−2 min−1. In contrast
the value found numerically for the same parameter values is around 6.0×10−3 min−1.
Thus the agreement between the simulation results and the values predicted from
the linearized system is qualitatively similar in spite of the approximations involved
regarding the separation of time scales.
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