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Abstract 

In this chapter we briefly review how the study of dynamic hematological diseases 
with mathematical modeling tools has led to a better understanding of the origin of 
some types of cytopenia and to improved treatment strategies. Dynamical 
hematological diseases include a wide range of diseases that are characterized by 
predictable oscillations in one or more cellular elements of the bloods. The 
dynamics of the hematopoietic system have been instrumental in guiding the 
development of a multiplicity of mathematical models. This chapter introduces a 
set of delay differential equation models obtained from an age-structured model by 
the characteristic line method. This set of equations describe the dynamics of four 
cell linages, including the hemopoietic stem cells and three differentiated cell lines, 
leukocytes, erythrocytes, and platelets. Applications of this model to the study of 
cyclical neutropenia (CN) are extensively reviewed. In particularly, origin of CN, 
chemotherapy induced CN, and G-CSF administration in the treatment of CN 
induced by chemotherapy are discussed. Discussions in the chapter show that 
mathematical models have offer a potentially exciting opportunity to insight from 
mathematics to better the delivery of medical care for those needing it. 
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1. Introduction 

All blood cells arise from a common origin in the bone marrow, the hematopoietic 
stem cells (HSC). HSC are morphologically undifferentiated cells which can either 
proliferate or differentiate to produce all types of blood cells (erythrocytes, 
neutrophils and platelets). The proliferation of stem cells and progenitor cells is 
controlled by a negative feedback system mediated by hematopoietic cytokines. 
Erythropoietin (EPO) is the hormone that mediates the red blood cell (RBC) 
production, granulocyte colony stimulating factor (G-CSF) controls the regulation 



of neutrophils, and thrombopoietin (TPO) known as c-mpl ligand or 
megakaryocyte growth and development factor, is the primary regulator of 
thrombopoiesis. 

Hematopoiesis is a homeostatic system and, consequently, most disorders of its 
regulation lead to transient or chronic failures in the production of either all or 
only one blood cell type. Among the wide rage of diseases affecting the blood cell 
populations, there are some which are characterized by predictable oscillations in 
one or more cellular elements of the blood. They are called periodic or dynamical 
diseases [1]. The investigation of their dynamic character offers an opportunity to 
enrich our knowledge about the regulatory processes controlling blood cell 
production and can suggest better therapeutic strategies [2]. Cyclical neutropenia 
[3, 4, 5, 6], periodic chronic myelogenous leukemia [3, 7], periodic autoimmune 
hemolytic anemia [8] and cyclical thrombocytopenia [9, 10] are some of classical 
examples of dynamical hematological diseases. Diseases like periodic chronic 
myelogenous leukemia (PCML) and cyclical neutropenia (CN), which involve 
fluctuations in all major blood cell lines with the same period on a given subject, 
are believed to arise in the stem cell compartment in the bone marrow. Since in 
cyclical thrombocytopenia (CT) or periodic autoimmune hemolytic anemia 
besides oscillations in one type of cell count the patient hematological profile have 
been consistently normal, a destabilization of a peripheral control mechanism 
might play an important role in the genesis of these disorders. 

2. Dynamic hematological disease 

2.1. Cyclical neutropenia 

Neutrophils are critical for the immune response, and low absolute neutrophil 
counts in the blood can lead to infections. Neutropenia is a term that designates a 
low number of neutrophils, thus indicating that the individual is less effective at 
fighting infections. The severity of neutropenia in patients can be classified based 
on the absolute neutrophil count (ANC) [11]: mild neutropenia (1.0 ≤ ANC < 1.5 
× 109cells/L) with minimal risk of infection, moderate neutropenia (0.5 ≤ ANC < 
1.0 × 109cells/L) with moderate risk of infection, and severe neutropenia (ANC < 
0.5×109cells/L) with severe risk of infection. Patients with severe neutropenia are 
often seen with symptoms such as mouth ulcers, fever, pharyngitis, sinusitis, otitis 
and other infections, some of which can sometimes be life-threatening. 

Cyclical neutropenia (CN) is characterized by oscillations in the number of 
neutrophils from normal to very low levels (less than 0.5 × 109cells/L, also called 
severe neutropenia). The period of these oscillations is usually around 3 weeks for 
humans, although periods up to 45 days have been observed [6]. One major 



characteristic of CN is that the oscillations are not only present in neutrophils, but 
also in platelets, monocytes and reticulocytes [4]. For CN patients, the period of 
severe neutropenia usually lasts for about 3-5 days within every 3 week period [5, 
12]. 

Cyclical neutropenia also occurs in grey collies with the same characteristics as in 
humans and with oscillation periods on the order of 11 to 16 days [4, 6, 13]. This 
animal model has provided extensive experimental data that would be difficult, if 
not impossible, to obtain in humans. 

Cyclical neutropenia was first reported as an inherited disease by Reimann [14], 
and later confirmed in the study of Australian families by Morley et al. [15]. In 
these families, the severity of symptoms and the severity of neutropenia vary 
among each other. Furthermore, the disease is more severe in children and is 
ameliorated by unknown factors as they grow older [16]. Through family studies 
and linkage analysis, mutations in the gene encoding neutrophil elastase (ELA2) 
are recognized as a trigger causing cyclic neutropenia [17]. 

2.1.1. Cyclical thrombocytopenia 

Platelets are blood cells whose function is to take part in the clotting process, and 
the term thrombocytopenia denotes a reduced platelet (thrombocyte) count. In 
cyclical thrombocytopenia (CT), platelet counts oscillate generally from very low 
values (1×109cells/L) to normal (150−450×109 platelets/L blood) or above normal 
levels (2000×109 cells/L) [9]. These oscillations have been observed with periods 
varying between 20 and 40 days [18]. In addition, patients may exhibit a variety of 
clinical symptoms indicative of impaired coagulation such as purpura, petechiae, 
epistaxis, gingival bleeding, menorrhagia, easy bruising, possibly premenstrually, 
and gastrointestinal bleeding [9]. There are two proposed origins of cyclical 
thrombocytopenia. One is of autoimmune origin and most prevalent in females. 
The other is of amegakaryocytic origin, more common in males. 

Autoimmune cyclical thrombocytopenia is characterized by a shortened platelet 
lifespan at the time of decreasing platelet counts [19]. This is consistent with 
normal to high levels of bone marrow megakaryocytes and with an increased 
destruction rate of circulating platelets [9]. Autoimmune CT has also been 
postulated to be a rare form of idiopathic (immune) thrombocytopenic purpura 
(ITP) [19]. 

The amegakaryocytic form of CT is characterized by oscillations in bone marrow 
megakaryocytes preceding the platelet oscillations [20, 21, 22, 23]. In this second 
type of CT, platelet oscillations are thought to be due to a cyclical failure in 



platelet production [18, 21, 22, 23, 24, 25]. The platelet lifespan is usually normal 
[25] and antibodies against platelets are not detected [24]. Although it has been 
suggested that the failure of platelet production could arise at the stem cell level 
[26], it is generally thought that the cycling originates at the megakaryocyte level 
[22, 24]. For a more detailed review of CT, see [9, 27]. 

It has been hypothesized that autoimmune and amegakaryocytic cyclical 
thrombocytopenia have different dynamic origins [27]. This is supported by 
Swinburne and Mackey [9], who noted that the patients diagnosed as having the 
autoimmune CT generally have shorter periods (13-27 days) than those classified 
as amegkaryocytic (27-65 days). Moreover, they reported that autoimmune 
patients typically show platelet oscillations from low to normal levels, whereas 
amegakaryocytic subjects generally show oscillations from above normal to below 
normal levels of platelets. 

2.2. Periodic anemia 

Examples of periodic anemia are relatively rare in clinical literatures, though there 
are a few well documented examples [28, 29]. Although periodic fluctuations of 
erythroid precursors in the bone marrow are well documented in cyclical 
neutropenia and some cases of periodic leukemia (see below), the rarity of reports 
of actual periodic anemia is presumably due to the extremely long lifespan of 
circulating erythrocytes in humans. There are, however, well documented 
examples of cyclical anemia in mice following either the administration of a single 

dose of 89Sr [30, 31, 32] or after whole body irradiation [33, 34]. 

Autoimmune hemolytic anemia (AIHA) results from an abnormality of the 
immune system that produces auto-antibodies, which attack red blood cells as if 
they were substances foreign to the body. It leads to an abnormally high 
destruction rate of the red blood cells. Periodic AIHA is a rare form of hemolytic 
anemia in humans characterized by oscillatory erythrocyte numbers about a 
depressed level [28]. The origin of this disease is unclear. Periodic AIHA, with a 
period of 16 to 17 days in hemoglobin and reticulocyte counts, has been induced 
in rabbits by using red blood cell auto-antibodies [35]. Mackey showed that the 
laboratory characteristics of this induced disorder were consistent with model 
predictions using a mathematical formulation like those explored in Section 3 [36]. 

2.3. Periodic leukemia 

Leukemia is a cancer of the blood or bone marrow characterized by an abnormal 
proliferation of blood cells, usually leucocytes. Chronic myelogenous leukemia 



(CML) is distinguished from other leukemias by the presence of a genetic 
abnormality in blood cells, called the Philadelphia chromosome, which is a 
translocation between chromosomes 9 and 22 that leads to the formation of the 
BcrAbl fusion protein [37]. This protein is thought to be responsible for the 
dysfunctional regulation of myelocyte growth and other features of CML [38]. 
(For more details about CML, see [39]). 

A dynamical disease of particular interest is periodic chronic myelogenous 
leukemia (PCML), characterized by oscillations in circulating cell numbers that 
occur primarily in leucocytes, but may also occur in the platelets and reticulocytes 
[7]. The leucocyte count varies periodically, typically between values of 30 and 
200 × 109 cells/L, with a periods ranging from 40 to 80 days. In addition, 
oscillations of platelets and reticulocytes may also occur with the same period as 
the leucocytes, around normal or elevated numbers [7, 40]. As in cyclical 
neutropenia, the hypothesis that the disease originates from the stem cell 
compartment is supported by the presence of oscillations in more than one cell 
lineage. 

3. Mathematical model development 

As is clear from the preceding section describing the periodic cytopenias, the 
hematopoietic system is capable of displaying interesting dynamical properties in 
pathophysiological situations. These dynamics have been instrumental in guiding 
the development of a multiplicity of mathematical models of hematopoietic 
dynamics. Many of these have been reviewed in [41] and [42]. 

3.1. Model description 

Although the regulation of blood cell production is complicated [4, 43], and its 
understanding constantly evolving, the broad outlines are clear. Figure 20.1 
contains a cartoon representation of hematopoiesis. 

There are four linages, including the hemopoietic stem cells and three 
differentiated cell lines, leukocytes, erythrocytes, and platelets. 

Hemopoietic stem cells are classified as either proliferating or resting-phase [45]. 
The proliferating stem cells undergo mitosis at a fixed time after entry into 
proliferating state, and are lost randomly during the proliferation [46]. Each 
normal cell generates two resting-phase cells at the end of mitosis. The 
resting-phase cells can either re-enter the proliferative phase at a rate involving a 
negative feedback, or develop to mixed myeloid progenitor cell, which further 
differentiate into precursors of any of the three cell lines, leukocytes (white blood 
cells (WBC)), erythrocytes (red blood cells (RBC)), or thrombocytes (platelets). 



The rates of differentiation into these three lines depend on the numbers of 
circulating cells of the relevant type that encapsulate the feedback between the 
circulating cell numbers and the production. The feedback is always negative so 
when the number of circulating mature cells of a given line falls, the relevant 
differentiation rate has a corresponding compensatory increase. 

There are two stages for each of the circulating cell lines after the differentiation, 
first the amplification/maturation of precursor cells in the bone marrow, and next 
circulation of mature cells throughout the whole body. In the stage of 
amplification/maturation, the precursor cells undergo many stages of cell division 
and randomly die so that the number of precursors increases rapidly in a period: 
one stem cell is capable of producing about 106 mature blood cells after 20 cell 
divisions [47]. In the circulation stage, mature blood cells are removed randomly 
at a fixed rate. In additional, the circulating erythrocytes and platelets are actively 
destroyed at a fixed time from the entry into the circulating compartment [48, 49]. 

The proliferation and differentiation of hematopoietic cells and the function of 
mature blood cells are regulated by a variety of cytokines, including erythropoietin 
(EPO) [50], which mediates the regulation of erythrocyte production, granulocyte 
colony stimulating factor (G-CSF) [51], which regulates neutrophil number, and 
thrombopoietin (TPO) [52, 53], which regulates production of platelets and other 
cell lineages. 

For the red blood cells, EPO mediates a negative feedback loop that helps to 
regulate erythrocyte production [50, 54]. A decrease in the numbers of circulating 
erythrocytes leads to a decrease in tissue pO2 levels, which in turn triggers the 
production and release of EPO by renal macula cells. This elevation of EPO 
increases the net production of primitive erythroid precursors (CFU-E) and, 
ultimately, an increase in the number of circulating erythrocytes and hence the 
tissue pO2 levels. 

The regulation of platelet production (thrombopoiesis) involves similar feedback 
mechanisms mediated by TPO [55]. A decrease in circulating platelet counts 
results in an increased level of thrombopoietin, which then stimulates maturation 
of the platelet progenitor cells (colony-forming units-megakaryocyte (CFU-Meg)), 
and eventually leads to an increase in platelet production. 

There are three types of leucocytes, namely the lymphocytes, the granulocytes and 
the monocytes. Here we focus on granulopoiesis (production of granulocytes) and 
more specifically on neutrophils. The mechanisms of regulating granulopoiesis 
involve G-CSF, which is the main regulator of neutrophil production [56]. It 
stimulates the formation of neutrophils from hematopoietic stem cells, accelerates 



the formation of neutrophils in bone marrow and stimulates their release from the 
bone marrow into the blood. Although the exact mechanisms by which G-CSF 
acts is still unclear, it has been shown that the neutrophils regulate their own 
production through a negative feedback [51]: An increase (decrease) in the 
number of circulating neutrophils would induce a decrease (increase) in the 
production of neutrophils through the adjustment of the granulocyte colony 
stimulating factor levels. Several studies have shown an inverse relationship 
between the serum levels of G-CSF and the number of circulation neutrophils [57, 
58, 59, 60]. 

3.2. Formulation 

In the last several decades, different mathematical tools have been used in 
hematological modeling, including differential equations (partial, ordinarily or 
delay), stochastic processes, Boolean networks, Bayesian theory, multivariate 
statistics, decision trees, etc. For reviews, see [41, 61, 62]. The choice of the 
mathematical tools often depends on the desired level of description of the model. 
Here, we focus on models that originate from age-structured models, which offer a 
natural way to model hematopoietic dynamics, and are widely used in the study of 
dynamical blood diseases [3, 10, 44, 63, 64, 65]. 

3.2.1. Age-structured model 

We refer the model illustrated in Figure 20.1. Variables used in the following 
equations and typical values for hematologically normal individuals are 
summarized in Table 20.1. 

Let ( )Q t  (cells/kg) denotes the population of resting-phase stem cells, and ( , )s t a  

(cells/kg) the population of stem cells in the proliferating phase, with age 0a =  
for their time of entry into the proliferative state. For the other three cell lines, let 

( , )n t a , ( , )r t a , and ( , )p t a  (cells/kg) represent the populations of leukocytes, 

erythrocytes, and platelets, respectively, with age 0a =  for the time point of 
differentiating from stem cells. Let 

( ) = ( , ) , ( ) ( , ) , ( ) ( , ) ,Rsum Psum

N R P

N t n t a da R t r t a da P t p t a da
t t

t t t

+∞
= =∫ ∫ ∫  

which are the populations of circulating cells. Hereinafter we set 

,Rsum R RS Psum P PSt t t t t t= + = + . Moreover, the differentiation rates Nκ , Rκ  and Pκ  

(1) 



are assumed depending on circulating cell populations through negative feedback 

functions denoted by ( )N Nκ , ( )R Rκ  and ( )P Pκ , respectively. 

Using the above notations, the age-structured model of hematopoiesis is then 
described by the following partial differential equations [44] 

( , ) ( ) ( , ) ( 0,0 )

2 ( , ) ( ( ) ( ) ( ) ( )) ( 0)

( , ) ( , ) ( 0,0 )
( , )
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( 0,0 )( , ) ( , )
( , )

( 0,( , ) ( , )

S S

S N R P

N N

N N

RR

R RsuR

s t a t s t a t a
dQ s t Q N R P Q t
dt

t a n t a t a
n t a

t a n t a t a

t at a r t a
r t a

t at a r t a

γ t

t β κ κ κ

η t
γ t

tη
t tγ

∇ = − > ≤ ≤

= − + + + >

> ≤ ≤
∇ = − > ≤

> ≤ ≤
∇ =  > ≤ ≤− )

( 0,0 )( , ) ( , )
( , )

( 0, )( , ) ( , )

m

PP

P PsumP

t at a p t a
p t a

t at a p t a
tη

t tγ
> ≤ ≤

∇ =  > ≤ ≤−

 

Where 
t a
∂ ∂

∇ = +
∂ ∂

. The negative feedback functions are represented by Hill 

functions [64]:  

1 2

31 1 2 2 4

1 2
0 0

1 2

( ) , ( ) , ( ) , ( ) .
1 1

s s
pr

N R Pss s s s p
r p

N f Q k R P
N Q K P K P

κθ θ κκ β κ κ
θ θ

= = = =
+ + + +

 

Typical parameter values are given in Table 20.2. 

The boundary conditions at  0a =  are given by 

( ,0) ( ( )) ( ),
( ,0) ( ( )) ( ),
( ,0) ( ( )) ( ),
( ,0) ( ( )) ( ),

N

R

P

s t Q t Q t
n t N t Q t
r t R t Q t
p t P t Q t

β
κ
κ
κ

=
=
=
=

 

according to the negative feedback loops. Moreover, we have 

lim ( , ) 0.
a

n t a
→∞

=  

(2) 

(3) 

( 0)t ≥  
(4) 

(5) 



The initial conditions are 

0

(0, ) ( ), (0 )
(0)

(0, ) ( ), (0 )
(0, ) ( ), (0 )
(0, ) ( ), (0 )

S S

N

R Rsum

P Psum

s a g a a
Q Q

n a g a a
r a g a a
p a g a a

t

t
t

= ≤ ≤
=
= ≤ ≤ +∞
= ≤ ≤
= ≤ ≤

 

where ( )Sg a , ( ),Ng a ( )Rg a  and ( )Pg a  give the initial population distributions of 

proliferating-phase stem cells, and the precursors of neutrophils, erythrocytes, and 
platelets, respectively. 

The equations (1)-(6) define the initial-boundary value problem for the 
age-structured model of hematopoietic regulation, and is the basis of the following 
simplified model and analysis. 

3.2.2. Delay differential equation model 

In hematological modeling, we are mainly interested at the dynamics of circulating 

blood cell populations ( ), ( )N t R t and ( )P t . This can be modeled by delay 

differential equations obtained from the above age-structured model. We assume 

the apoptosis rates , ,N R Pγ γ γ  are constants. Applying the method of characteristic 

line to model equation (2), and using the boundary conditions (4) and (5), we 

obtain the following equations when max   max{ , , , }S N Rsum Psumt t t t t t> = : 

ˆ ( )

ˆ ( )

ˆˆ ( )( )

ˆ ( )

2 ( ) ( ( ) ( ) ( ) ( )) ,

( ) ,

( ) ( ) ,

( )

S S S

S S

N N N

N N

R RS R R RsumR R R

R R Rsum Rsum

P PSP P P

P P

t
N R P

t
N N

tt
R R R

t
P P

dQ e Q Q Q N R P Q
dt
dN N e N Q
dt
dR R e R Q e e R Q
dt
dP P e P Q e
dt

t γ t
t t

t η t
t t

γ t t η tt η t
t t t t

γ tt η t
t t

β β κ κ κ

γ κ

γ κ κ

γ κ

− −

−

− −−
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= − + + +

= − +
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t
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where 

(6) 

(7) 



0 0

1 1ˆ ˆ( ) , ( ) ( , ) , ( , , ).S k

S S k k
S k

t s ds t t s s ds k N R P
t t

γ γ η η
t t

= + = + =∫ ∫  

Here, the subscripts on the dependent variables indicate delayed arguments, i.e., 

( )
S SQ Q tt t= − . 

The delay differential equations (7) determine the dynamic behaviour for the 

circulating blood cell populations. Here we note that when maxt t<  the equation 

(7) is not equivalent to the original age-structured model equation (2). In this case, 
the initial conditions (6) have to be involved into the dynamical equation. Refer to 
[44] for a detailed discussion of this point. 

For hematologically normal individuals, we assumed the apoptosis rate Sγ  and 

amplification rates , ( , , )k k N R Pη =  are constants, and hence ,ˆ ˆ ,S S k kγ γ η η= =  

( , , )k N R P= . Thus, we obtain the following delay differential equations 
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The equations (9) were first presented in [64], and have been used to study 
different types of dynamical blood diseases [3, 10, 44, 64]. 

In order to study the effects of clinical treatments, such as chemotherapy and 
G-CSF administration, which are known to affect hematopoiesis in the bone 
marrow, we further divide the amplification/maturation compartment of each cell 
line into two sub-compartments, corresponding to amplification and maturation, 
respectively. Let 

, ( , , )k kP kM k N R Pt t t= + =  

(8) 

(9) 

(10) 



where kPt  are durations of the amplification stages, and kMt  are durations for the 

maturation stages. The amplification rates , ( , , )k k N R Pη =  are defined separately 

within the two stages: 

( ) 0
( , )

( )
kP kP

k
kM kP k

t a
t a

t a
η t

η
γ t t

≤ ≤
= − ≤ ≤

 

where kPη  are amplification rates in the amplification stage, and kMγ  are 

apoptosis rates in the maturation stage, and are assumed to be independent to the 

age a . Therewith, ˆkη  defined by equation (8) can be rewritten as 

0

1ˆ ( ) ( ) .kP k

kP
k kP kM

k

t s ds t s ds
t t

t
η η γ

t
 = + − +  ∫ ∫  

For hematologically normal individuals whose rates kPη  and kMγ  are constants, 

we have 

( ) / , ( , , ).k kP kP kM kM k k N R Pη η t γ t t= − =  

Parameters for the neutrophil compartment can be referred to [66], and parameters 
for the erythrocyte compartment and platelet compartment are not known yet. 

4. Cyclical neutropenia 

4.1. Modeling of cyclical neutropenia 

Although it is a rare disorder, cyclical neutropenia is probably the most 
extensively studied periodic hematological disorder due to its interesting dynamics 
and its clinical and laboratory manifestations. A number of mathematical models 
have been put forward in an attempt to understand this disorder, and these fall into 
two major categories according to the origin of cyclical neutropenia (see Figure 
20.1 to place them in perspective). For other reviews, see [4, 41, 67, 68, 69]. 

The first group of models identifies the origin of cyclical neutropenia with a loss 
of stability in the peripheral control loop. Typical examples are [70, 71, 72, 73, 74, 

( , , )k N R P=  

(11) 

(12) 

(13) 



75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85], all of which have postulated an 
alteration in the feedback on immature precursor production from the mature cell 
population number. However, the work of [86] cast doubt on this explanation, by 
showing that any alternations of parameters in the peripheral control system 
consistent with the extant laboratory and clinical data on cyclical neutropenia are 
unable to reproduce either the characteristics of clinical cyclical neutropenia or its 
laboratory counterpart in grey collies [43, 86]. 

The second group of models builds upon the existence of oscillations in many of 
the peripheral cellular elements (neutrophils, platelets, and erythroid precursors, 
see Figure 20.1) and postulates that the origin of cyclical neutropenia is in the 
common hematopoietic stem cell (HSC) population. Mackey has suggested that 
the oscillations originate in a loss of stability in the HSC [45]. This hypothesis 
allowed the quantitative calculation of the period of oscillation when the stability 
was lost due to an abnormally large cell apoptosis rate within the proliferating 
compartment. Some mathematical models coupled a stem cell compartment with 
the peripheral loop for granulocytes [4, 6, 87], whereas others present a more 
complex model showing the stem cells coupled to all major cell lines [3, 44, 88]. 
For recent reviews, see [65] and [67]. 

Here, we introduce several models, from simple to sophisticated, that have given 
significant insights into the origin and dynamical features of cyclical neutropenia. 
Then we show how these models have been used to understand and improve the 
effects of CN treatments. 

4.1.1. Origin of cyclical neutrophenia 

Mackey presented the following delay differential equation [45] 

( ( ) ) 2 ( )S S

S S

dQ Q Q e Q Q
dt

γ t
t tβ κ β−= − + +  

for the resting phase HSC populations, which is obtained from equation (9) by 
omitting the cell lines of neutrophil, erythrocyte, and platelet, and writing κ  the 
total HSC differentiation rate. 

The equation (14) is sufficiently simple that it is possible to perform a complete 
bifurcation analysis [45]. There are two possible steady states. One corresponds to 

the state of no cells ( 0 0Q = ) and is stable if it is the only steady state. The other 

one is a positive steady state *Q  and exists for small HSC apoptosis rate Sγ . The 

(14) 



stability of the positive steady state depends on the value of Sγ . When 0Sγ = , this 

steady state cannot be destabilized to produce oscillatory dynamics of cyclical 

neutropenia. For 0Sγ > , increases in Sγ  lead to a decrease in the hematopoietic 

stem cell numbers, and destabilize the steady state when a critical value of 

,1S critγ γ=  is reached and a supercritical Hopf bifurcation occurs. When Sγ  is 

further increased, a reverse bifurcation occurs at a critical value ,2S critγ γ= , where 

the positive steady state becomes stable, and approaches the zero steady state as 

Sγ  increases. For all values of Sγ  satisfying ,1 ,2crit S critγ γ γ< < , there is a periodic 

solution of equation (14) whose period is in good agreement with those seen in 
cyclical neutropenia [45]. These results suggest that cyclical neutropenia might be 
related to defects, possibly genetic, within the hematopoietic stem cell population, 
that lead to an abnormal apoptotic loss of cells from the proliferative phase in cell 
cycle. 

Bernard et al. [87] presented a two variables delay differential equation model that 
couples the above HSC population model with the neutrophil compartment 
dynamics: 

2 ( ) ( ( ) ( )) ,

( ) ,

S S

S S

N N

N N

N

N N

dQ e Q Q Q N Q
dt
dN N e N Q
dt

t γ
t t

t η
t t

β β κ

γ κ

−= − +

= − +
 

where 
1 2

1 1 2 2

1 2
0 0

1 2

( ) , ( ) .
s s

N s s s sN f Q k
N Q

θ θκ β
θ θ

= =
+ +

 

This model is derived from equation (9) by simply neglecting the compartments 
for the erythrocytes and platelets. First, we note that this model has a unique 

positive steady state for Q  and N  if 

0 0 (2 1).S Sf k e γ t−< −  

This condition states that the rate of HSC differentiation must be smaller than the 
increase rate due to cell division [87]. Using a combination of mathematical 

(15) 

(16) 



analysis and computations, [87] showed that the origin of cyclical neutropenia is 

probably due to an increased apoptosis rate in the stem cell compartment ( Sγ ) and 

in the neutrophil precursors (which leads to a decrease in Nη ), leading to a 

destabilization of the hematopoietic stem cell compartment through a supercritical 
Hopf bifurcation. Consequently, oscillations in the HSC population are generated. 
This result was in accordance with previous modeling studies [6] and agrees with 
experimental data on grey collies. Moreover, numerical analysis showed that the 
equations (15) have bistability, i.e., coexistence of a stable steady state and a 

stable oscillatory solution when Sγ  and Nη  take values from a certain range. 

This bistability is essential for understanding the diverse effect of G-CSF 
treatment on cyclical neutropenia as we can see in the next section. 

A more sophisticated model developed by [3, 64] includes not only the neutrophils 
and HSC, but also the platelets and red blood cells (Figure 20.1). This model 
combines a number of compartmental models: the stem cell and neutrophil 
dynamics [87], and the erythrocyte and platelet compartment models [48, 89]. The 
circulating cells couple to each other via their common origin in the stem cell 
compartment. This model consists of a set of four coupled delay differential 
equations as given by equation (9). 

In [3], the authors used an approach of simulated annealing to fit clinical and 
laboratory data (from both humans and dogs) to estimate the model parameters 
that can reproduce the CN characteristics. The results supported the hypothesis on 
the origin of CN proposed in [87] that realistic CN oscillations in neutrophils and 
platelets are originated from an increased apoptosis rate in the neutrophil 
precursors. Furthermore, in order to mimic the data, it was also necessary to 
decrease the differentiation rate of HSC into the neutrophil line, and changes of 
the apoptosis rate of stem cells in the proliferative phase. 

In [44], the authors further investigate the model numerically for possible 
solutions of the model equations 9 with respect to changes in parameters as well as 
initial conditions. The results confirmed the findings in [3] that decreasing the 
proliferation rate of neutrophil precursors or increasing the stem cell death rate are 
two possible mechanisms to induce CN, and the periods of the resulting 
oscillations are independent of the changed parameters. In particular, these results 

suggested that either decreasing the neutrophil precursor proliferation rate to 3-15% 

less than the normal value or increasing the HSC apoptosis rate to 40-100% larger 



than the normal value it is possible to induce oscillations reminiscent of those in 
CN patients. Furthermore, simulations with varying initial conditions showed that 
the hematopoietic system possesses multistability over a wide range of parameter 
values, including typical values representing a healthy state. In this parameter 
region of multistability, the hematopoietic system can display coexistence of a 
stable steady state along with an oscillatory state. This result is crucial for 
understanding the effects of CN patient treatment. Because of the multistability, 
CN originated from changes in system parameters may not recover to the healthy 
state even if the changed parameters are taken back to their normal values by 
therapy, for example through G-CSF treatment. 

4.1.2. Modeling of chemotherapy induced cyclical neutropenia 

Before introducing models for studying different G-CSF treatment strategies for 
CN in the next section, we show how a simple model can be used to explore 
neutrophil dynamics in response to chemotherapy. 

Chemotherapy is frequently accompanied by hematopoietic side effects due to the 
myelosuppressive character of the drugs used. These side effects commonly 
include neutropenia and, to a lesser extent, thrombocytopenia and/or anemia. In 
[66] and [90], the authors presented a two compartment mathematical model of the 
combined dynamics of the HSC and the differentiated neutrophil progeny, 
modified from the model in [87] for the stem cell and neutrophil dynamics. 

The model equations in [66] and [90] contain the HSC compartment and the 
neutrophil compartment. The neutrophil compartment is further divided into three 
sub-compartments corresponding to proliferating, maturating, and circulating 
neutrophils, respectively. The erythrocytes and platelets are not included but 

assume a total rate  dκ  (days) of differentiating HSCs into these two cell lines. 

An illustration of this model is showed in Figure 20.2. The equations describing 
the cell dynamics can be obtained from equations (7) and (12), and are given 
below: 
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Chemotherapy increases apoptosis in both proliferative HSCs and proliferative 

neutrophil precursors leading to an increase in Sγ and a decrease in NPη  [91]. 

Chemotherapy is often administered with a fixed period T (days) so that the rates 

( )S tγ  and ( )NP tη  are periodic functions and dependent on the protocol of 

chemotherapy administration. There are many different chemotherapeutic drugs 
currently in use, and therefore different methods for modeling the 
pharmacokinetics. Here we present the simple model as in [90] in which the effect 
of chemotherapy is maintained for one day, and assume square wave temporal 

functions for the apoptosis rate Sγ  and the neutrophil precursor proliferative rate 

NPη  of the following form: 

max if 0 1,
( )

otherwise.
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Here k  is an integer, and 0t =  for the starting time of the first chemotherapy 
period. An expanded model with more realistic chemotherapy dynamics is 
presented in [66]. 

Using a combination of simulation and mathematical analysis, Zhuge et al. [90] 
studied the neutrophil response to chemotherapy as a function of the period T . 

(18) 

(19) 



Simulations showed that the neutrophil amplitude varies with the period T of 
chemotherapy, with a peak at 21T = days, and the neutrophil nadir has a minimum 
at the same period (Figure 20.3). Figure 20.3b shows a computed time series for 
the neutrophils at two different periods of chemotherapy administration. The 
model predicts substantial differences in the dynamic response of the system as 
severe neutropenia was produced in the model at 21T =  days but not at 18T =  
days. 

According to [90], a possible reason for the occurrence of a significant peak in the 
amplitude and minimum in the nadir at a specific T is the resonance between the 
periodic perturbation to the system and the intrinsic characteristic frequency in the 
neutrophil production dynamics. This hypothesis is confirmed by comparing the 
amplitude response with the frequency response function obtained analytically 
from the linearizing the model equation (17) around the steady state (shown by a 
solid line in Figure 20.3a). The frequency response function has a maximum at 

21.8T =  days in agreement with the simulation results. Furthermore, an analysis 
of the linear response function predicts that the resonant period for the model is 

given by twice the average neutrophil lifetime (defined as the average time Nt  
spent in marrow proliferation and maturation following commitment from the 

HSC plus the average lifetime 1
Nγ
−

 in the circulation). If this simple relationship is 

found to hold clinically then it offers a way to tailor chemotherapy for individuals. 

Namely using the techniques employed by [51] to determine Nt  and Nγ  for a 

specific patient and then compute the resonant period T to be avoided in any 
delivery of myelosuppressive agents.  

We note that in Figure 20.3a, there is a peak in the amplitude response and 

minimum in the nadir at 4T =  days that cannot be explained by resonance. The 

mechanism for the occurrence of this peak remains unknown. 

4.1.3. Modeling of G-CSF administration 

Cyclical neutropenia in humans is often treated using G-CSF [92], which is known 
to interfere with apoptosis [93, 94, 95, 96], and it has the overall effect of 
decreasing the period of severe neutropenia by increasing the nadir and the 
amplitude of the oscillations as well as decreasing their period [4]. However, 
G-CSF is expensive (about $40,000 per year for a 70 kg adult treated daily) and 
may cause undesirable side effects [97, 98]. In this section, we show how 



mathematical modeling can illuminate the effects of different G-CSF treatment 
schemes. For another review, see [65]. 

In [87], five parameters in the model equation (15) are modified to mimic the 

effects of G-CSF in CN: decreased apoptosis in both the HSC (decrease Sγ ) and 

in the neutrophil precursor compartment (decrease Nη ), decrease in the duration 

of both the proliferative and differentiating phases ( Nt  and St ) as well as 

increasing the parameter 1θ  in the feedback function. Interesting dynamical 

features of the model were found. The bifurcation analysis agreed with the clinical 
aspects of G-CSF administration in that G-CSF can result in an increase of 
amplitude and a decrease in the period of neutrophil oscillations [6, 92]. In clinical 
observations, some cases have been reported that G-CSF treatment can abolish 
significant oscillations [4, 5, 92]. This is also seen in the model of [87], in which a 
stable steady state (corresponding to annihilation of oscillations) coexists with a 
stable large amplitude oscillation. This bi-stability is interesting since it suggests 
that it is possible to stabilize the neutrophil count by properly designing the 
treatment administration scheme and could potentially reduce the amount of 
G-CSF required in treatment. 

In [2], the model of [87] was explored to consider different G-CSF treatment 
protocols. The authors showed that, depending on the starting time of G-CSF 
treatment, the neutrophil count could either be stabilized or show large amplitude 
oscillations. This is also seen in the comprehensive model given by equation 9 that 
includes erythrocyte and platelet dynamics [44, 88]. Simulations showed that other 
G-CSF treatment schemes (such as administering G-CSF every other day) could 
be effective while using less G-CSF, hence reducing the cost of treatment and side 
effects for patients. 

In [88], the authors studied the comprehensive model as in [3] coupled with a 
two-compartment model for G-CSF pharmacokinetics. They fitted their model 
simulation with clinical data for neutrophils and platelets and explored the effects 
of different treatment schedules. The results showed that different initial 
conditions or temporary interventions may lead to dramatically different long-term 
behaviors. 

G-CSF is frequently used to deal with neutropenia induced by chemotherapy [65, 
97]. However, the clinical administration schedule of G-CSF after chemotherapy 
is typically determined by trial and error and it is not clear if there is an optimal 



way of giving G-CSF [99, 100]. In [65], the authors present a delay differential 
equation model for the regulation of neutrophil production that accounts for the 
effect of G-CSF. Using a combination of analysis and numerical simulations, the 
authors applied this model to study the effects of delivering G-CSF treatment 
following chemotherapy for two recombinant forms of G-CSF (filgrastim and 
pegfilgrastim). Simulations suggested that varying the starting day or the duration 
of G-CSF treatment can lead to different qualitative responses in the neutrophil 
count. 

In [90], the authors presented a simple model based on equation (17) that coupled 

changes in Sγ , NMγ , NPη and NMt due to one day G-CSF administration. They found 

that the neutrophil dynamics response to G-CSF is highly variable, depending on 
the time of G-CSF delivery after chemotherapy at each cycle. In particular, there 
are specific times in the chemotherapy cycle when G-CSF can have positive 
effects in terms of ameliorating or even eliminating severe neutropenia. However, 
there are also broad ranges of administration times that will lead to a worsening by 
G-CSF of the neutropenia induced by the chemotherapy. These results are in 
general agreement with results presented in [65], but await confirmation until 
more realistic G-CSF kinetic are included in the modeling (for example, refer to 
[66]). 

In summary, these studies have showed complicated dynamical properties of 
hematopoiesis after G-CSF treatment. Understanding the effects of G-CSF is 
difficult since G-CSF is known to affect the neutrophil maturation time in the bone 
marrow, whose detailed dependence is unknown, and further clinical 
investigations are needed to characterize this important facet of neutrophil 
regulation. 

5. Discussion 

Here we have given a brief survey of how the study (using mathematical models) 
of dynamic hematological diseases in which there is a period cytopenia has given 
insight into not only the physiological origin of these diseases but also afforded 
investigators an opportunity to see how to better treat these diseases. As an 
unexpected by-product of these investigations which have extended over some 
four decades, mathematical biologists in collaboration with hematologists and 
oncologists are now starting to address the important question of “How can the 
severe side effects of myelosuppressive therapy on the hematopoietic system be 
either mitigated or avoided altogether?” This later question is, in our minds, one of 
the more important by-products of the modeling venture and offers a potentially 



exciting opportunity to use insight from mathematics to better the delivery of 
medical care for those needing it. 
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Table 20.1: Variables used in the model equations and typical value for hematologically normal individuals (44). 

Variable Definition Value Unit 
Stem cell compartment   

( )Q t  Population of resting-phase stem cells 1.12 106 cells/kg 
( , )s t a  Population of proliferating-phase stem cells − cells/kg 
β  Rate of re-entering the proliferative phase 0.0433 day−1 

St  Duration of mitosis 2.83 days 
Sγ  Apoptosis rate of proliferating stem cells 0.1013 day−1 

    
Neutrophil compartment   

( , )n t a  Population of neutrophils − cells/kg 
( )N t  Population of circulating neutrophils 5.59 108 cells/kg 

Nκ  Differentiation rate from stem cells to neutrophils 0.0077369 day−1 
Nη  Amplification rate of neutrophil precursor cells 2.2887 day−1 
Nt  Duration of neutrophil precursor amplification/maturation 12.6 days 
Nγ  Apoptosis rate of circulating neutrophils 2.4 day−1 

    
Erythrocyte compartment   

( , )r t a  Population of erythrocytes − cells/kg 
( )R t  Population of circulating erythrocytes 3.5 1011 cells/kg 
Rκ  Differentiation rate from stem cells to erythrocytes 0.005271 day−1 
Rη  Amplification rate of erythrocyte precursor cells 2.2 day−1 
Rt  Duration of erythrocyte precursor amplification/maturation 6 days 
Rγ  Apoptosis rate of circulating erythrocytes 0.001 day−1 
RSt  Life time of circulating erythrocytes 120 days 
Rsumt  

R RSt t+  126 days 
    
Platelet compartment   

( , )P t a  Population of platelets − cells/kg 
( )P t  Population of circulating platelets 1.3924 1010 cells/kg 
Pκ  Differentiation rate from stem cells to platelets 0.0087074 day−1 
Pη  Amplification rate of platelet precursor cells 1.79 day−1 
Pt  Duration of platelet precursor amplification/maturation 7 days 
Pγ  Apoptosis rate of circulating platelets 0.15 day−1 

PSt  Life time of circulating platelets 9.5 days 
Psumt  

P PSt t+  16.5 days 
         

       



 

Table 20.2: Parameters for the Hill functions equation 3 (44). 

Parameter Name Value Unit 
Function ( )Qβ    

0k  8.0 day−1 

2θ  0.0826 106 cells/kg 

2s  2 (none) 
   

Function ( )N Nκ  
  

0f  0.154744 day−1 

1θ  0.2942 108 cells/kg 

1s  1 (none) 
   

Function ( )R Rκ    

rκ  1.23744 day−1 

rK  0.0382 
311(10 cells/ kg) S−  

3s  6.96 day−1  

   

Function ( )P Pκ    

pκ  0.2802 day−1 

pK  20.343 
410(10 cells/ kg) S−   

4s  1.29 day−1  

  



Figure legends 
 
Figure 20.1: A cartoon representation of the age-structured model of 
hematopoiesis. See text for details and notations. Adapted from (44). 

 

Figure 20.2: A cartoon representation of the model of neutrophil production 
investigated here. The model dynamics include those of the hematopoietic stem 
cells (HSC) as well as differentiated cells committed to the neutrophil line. 

Quiescent (resting phase) HSCs can either remain in Q ,exit into the proliferative 

HSC phase at a rate β , or differentiate into the committed neutrophil 

compartment at a rate Nκ , or into the combined megakaryocyte/erhthrocyte lines 

at a rate dκ . Cells in the HSC proliferative phase are assumed to undergo 

apoptosis at a rate Sγ  and the duration of the proliferative phase is taken to be St . 

Cells in the neutrophil pathway are amplified by successive divisions for a 

time NPt , and then enter a purely maturation (no proliferation) compartment for a 

period of time NMt before they enter the circulation. The circulating neutrophils 

( N ) die at a random rate Nγ  so their average lifespan is 1
Nγ
− . The differentiation 

rate of HSC to neutrophils is controlled by the circulating neutrophil population 

through the differentiation rate Nκ , while the HSC proliferation is controlled by the 

resting HSC population with proliferation rate β . Adapted from (90). 

 

Figure 20.3: Numerical simulation results for the neutrophil compartment model 
with chemotherapy alone. (a) The amplitude (left hand ordinate) in neutrophil 
response (blue squares connected with a dashed blue line) as well as the nadir 
(right hand ordinate and green circles connected with a dashed green line) as a 
function of the period T of chemotherapy. The horizontal green dash-dot line 
indicates the level for severe neutropenia (0.63 × 108 cells/kg). Note that the major 
peaks in the amplitude coincide with the minima in the nadir. The solid blue line is 



the computed linear frequency response function (refer (90)) (rescaled to compare 
with the amplitude). (b) Simulated neutrophil levels from equation 17 in response 

to chemotherapy with a period of either 18T = days or 21 days. Neutrophil levels 

are in units of 108 cells/kg, the dashed-dot horizontal line again indicates the level 
for severe neutropenia, and the arrow shows the first neutrophil nadir. Adapted 
from (90). 


