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1. Introduction

P A L (–) was a Polish mathematician with
wide ranging interests in dynamical systems, probability theory and

ergodic theory who saw the inter-relationships between all three and who
successfully synthesized these apparently disparate fields. He used that
synthesis to both further mathematical research as well as to investigate
problems in biology. One of his over-riding interests was the way in which
seemingly “random” or “probabilistic” processes (in a mathematical sense)
could actually be thought of as equivalently coming from deterministic
dynamics.

How did we each come to know him and his work? MCM met Lasota in
Kraków in  through his collaborator Dr. Maria Ważewska-Czyżewska,
a hematologist and daughter of Prof. Tadeusz Ważewski. at meeting blos-
somed into an almost  year long friendship and collaboration in biomath-
ematics. MTK met Lasota during her mathematical studies at the University
of Silesia in Katowice in  and did her PhD under his supervision. H-OW

met Lasota during a year at Michigan State University, –, where
Pavol Brunovsky was also visiting, and they had all been brought together
by Shui-Nee Chow.

α is work was supported by the Natural Sciences and Engineering Research Council
(NSERC, Canada).
β is work was supported by the Polish MNiSW Grant No. N N .
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2. Dynamical systems and evolution of densities

Let (X,A) be a measurable space and S : X → X be a measurable
transformation. A normalized (probability) measure µ : A→ [0, 1] is said to
be invariant under S if

µ(S−1(A)) = µ(A) for all A ∈ A

and S is called a measure-preserving transformation on (X,A, µ). e trans-
formation S with invariant measure µ is called ergodic if any invariant set
A = S−1(A), A ∈ A, satisfies µ(A) = 0 or µ(A) = 1. Next in the hierarchy
is the stronger property of mixing: S is called mixing if

lim
n→∞
µ(A ∩ S−n(B)) = µ(A)µ(B) for all A,B ∈ A.

For a (non-invertible) transformation S, the strongest property is exactness:
S is called exact if S(A) ∈ A for all A ∈ A and

lim
n→∞
µ(Sn(A)) = 1 for all A ∈ A, µ(A) > 0.

We now recall the concept of a transfer operator. Let (X,A, µ) be a σ-
finite measure space and let D be the subset of L1 = L1(X,A, µ) containing
all densities

D =
{

f ∈ L1 : f ≥ 0, ∥ f ∥ = 1
}
.

If S is nonsingular on (X,A, µ), i.e., µ(S−1(A)) = 0 whenever µ(A) = 0 for
any A ∈ A, then the operator P : L1 → L1 defined by∫

A

P f (x)µ(dx) =
∫

S−1(A)

f (x)µ(dx) for A ∈ A, f ∈ L1, (1)

is called the Frobenius–Perron operator (or transfer operator) associatedwith S.
e operator P has an invariant density f∗ ∈ D, i.e., P f∗ = f∗, if and only if
the probability measure µ f∗

µ f∗(A) =

∫
A

f∗(x)µ(dx), A ∈ A,

is invariant under S.
If S is nonsingular on (X,A, µ) and the Frobenius–Perron operator P

has an invariant density f∗ then we write (S, f∗) to indicate that the measure
µ f∗ is invariant under S. If µ itself is a probability measure invariant under
S then S is nonsingular on (X,A, µ) and the constant function equal to 1
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is an invariant density for P. Using the Frobenius–Perron operator we may
reformulate the concepts of ergodicity, mixing, and exactness to classify
density evolution.

eorem 2.1 [23, eorem ..]. Let P be the Frobenius–Perron operator as-
sociated with S and let f∗ be an invariant density for P.
◦ (S, f∗) is ergodic if and only if the sequence

{
1
n
∑n−1

k=0 Pk f
}
is weakly conver-

gent to f∗ for all f ∈ D.
◦ (S, f∗) is mixing if and only if the sequence {Pn f } is weakly convergent to

f∗ for all f ∈ D.
◦ (S, f∗) is exact if and only if the sequence {Pn f } is strongly convergent to f∗

for all f ∈ D .

In , Lasota and Yorke [26] proved the existence of an absolutely
continuous invariant probability measure for piecewise expanding, C2-trans-
formations on a bounded interval. eir method turned out to be quite
general and can be described as follows. Suppose (V, ∥ · ∥V) is a Banach space
with norm ∥ · ∥V ≥ ∥ · ∥ such that V is densely embedded in L1, the unit ball
{ f ∈ V : ∥ f ∥V ≤ 1} is compact in (L1, ∥ · ∥), and a Frobenius–Perron operator
P : L1 → L1 is such that P : V → V is bounded and for some constants
r ∈ (0, 1), M ≥ 0, k ∈N, the following holds

∥Pk f ∥V ≤ r∥ f ∥V + M∥ f ∥ for all f ∈ V. (2)

en the operator P has an invariant density in V. For the one dimensional
maps considered in [26] the space V was the space of functions with
bounded variation. Condition (2) is usually referred to as the Lasota–Yorke
type inequality in the theory of dynamical systems and it has been used in
different seings [3, 11]. It gives a spectral decomposition of the operator P
on the space V, where it acts as a quasicompact operator, and it is related
to the concept of asymptotic periodicity [10, 12, 13, 21]. In particular, mixing
and exactness are equivalent properties when condition (2) holds.

In , Lasota and Yorke [28] introduced the method of a lower bound
function and proved the existence of an absolutely continuous invariant
measure together with exactness of piecewise convex transformations on an
interval. A linear operator P : L1 → L1 that satisfies P f ≥ 0 and ∥P f ∥ = ∥ f ∥
for all f ≥ 0, f ∈ L1 is called aMarkov (or a stochastic) operator. If we restrict
ourselves to only considering densities f ∈ D then any linear operator P
which when acting on a density again yields a density is a Markov operator.
us the Frobenius–Perron operator is a Markov operator. Given a Markov
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operator the family {Pn} is said to be asymptotically stable if there is f∗ ∈ D
such that P f∗ = f∗ and

lim
n→∞
∥Pn f − f∗∥ = 0 for all f ∈ D.

An L1 function h is a nontrivial lower bound function for {Pn} if h ≥ 0, ∥h∥ > 0

and

lim
n→∞
∥(Pn f − h)−∥ = 0 for all f ∈ D.

is condition could be wrien in the alternate form

Pn f ≥ h − εn

where ∥εn∥ → 0 as n→ ∞, illustrating that a lower bound function is such
that successive iterates of a density f by a Markov operator P are eventually
above it. With these concepts, we can now state the result of [28] that has
proved to be of considerable utility in a variety of seings.

eorem 2.2. {Pn} is asymptotically stable if and only if {Pn} has a nontrivial
lower bound function.

is method allowed simple proofs of exactness of piecewise expanding
mappings on intervals or on the real line, as well as the results of [14]
for expanding mappings on manifolds. Another context where eorem 2.2
has found application is in dynamical systems with stochastic perturbations.
Specifically, consider the following recurrence equation

xn+1 = S(xn) + ξn,

where S is a transformation acting on X = Rd and {ξn} is a sequence of
independent random variables with density g. If fn is the density of xn then
fn+1 = P fn and the Markov operator P is given by

P f (x) =
∫
X

f (y)g(x − S(y)) dy,

which is a particular example of integral operators of the form

P f (x) =
∫
X

k(x, y) f (y)µ(dy),

where k : X × X→ [0,∞) is a measurable function satisfying∫
X

k(x, y)µ(dx) = 1
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for almost all y ∈ X. An interesting class of integral Markov operators
appeared in a simple model of the cell cycle [22] and its generaliza-
tions [9, 24, 34].

e lower bound function technique has also been applied in a contin-
uous time seing [23, Section ], where a family {Pt}t≥0 of operators on
L1 will be called a stochastic semigroup if each operator Pt is Markov and
{Pt}t≥0 is a strongly continuous semigroup on L1. Asymptotic stability in
continuous time arises in the study of long-term behaviour of solutions of
integro-differential equations

∂tu = Au − λu + λPu,

where P is an integral operator, λ ≥ 0 is a constant, and A is the infinitesimal
generator of a stochastic semigroup, in particular a first or second order
differential operator, whichwe now recall. Given a set of ordinary differential
equations

dxi

dt
= bi(x), i = 1, . . . , d (3)

operating in a region ofRd, whose solutions are defined for all times through
a flow {St}t∈R, leads to the family of Frobenius–Perron operators

Pt f (x) = f (S−t(x))J−t(x),

where J−t is the Jacobian of the transformation S−t. is gives the evolution
equation for f (t, x) = Pt f (x):

∂ f
∂t

= −
d∑

i=1

∂(bi f )
∂xi

, (4)

which will be recognized as the generalized Liouville equation. As an ex-
tension of the situation for ordinary differential equations, for stochastic
differential equations of the form

dx = b(x)dt + σ(x)dW(t),

where x is a d-dimensional vector and W(t) is a standard Wiener process,
then the density f (t, x) = Pt f (x) satisfies the Fokker–Planck equation

∂ f
∂t

= −
d∑

i=1

∂(bi f )
∂xi

+
1

2

d∑
i, j=1

∂2(ai j f )
∂xi∂x j

, (5)
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where ai j(x) =
∑d

k=1 σik(x)σ jk(x). For a review of asymptotic behaviour of
stochastic semigroups we refer to [33].

We end this section with a few remarks concerning continuous time
systems. Let {St}t≥0 be a semigroup of measurable transformations on (X,A).
A probability measure µ is invariant under {St}t≥0 if µ is an invariant
measure under all St and it is called ergodic if sets invariant under all St

are of measure zero or one. e concepts of mixing and exactness extend
accordingly. Exactness will not occur for flows defined by (3), since each St

is invertible. However, it might occur in infinite-dimensional phase-space,
as will be indicated in the next section.

3. First-order partial differential equations

Motivated, no doubt, by [35] and inspired by the initial results in [19,27],
Lasota [20] considered the following

∂u
∂t

+ c(x)
∂u
∂x

= f (x, u) (6)

with the initial condition

u(0, x) = v(x) for x ∈ [0, 1]. (7)

e functions c : [0, 1]→ R and f : [0, 1] × [0,∞)→ R satisfy

c(0) = 0, c(x) > 0 for x ∈ (0, 1],
f (x, u) ≤ k1u + k2 for x ∈ [0, 1], u ≥ 0,

f (x, 0) = 0 for x ∈ [0, 1].

It was shown in [20] that under some regularity assumptions on c and f the
solutions of equation (6) with the initial condition (7) define a semigroup
{St}t≥0 on the space C+([0, 1]) of nonnegative continuous functions on
[0, 1] and the semigroup {St}t≥0 has an interesting long-term behaviour.
Namely, Stv converges, as t → ∞, to the same limit for each v with
v(0) > 0 and {St}t≥0 is chaotic in the sense of Auslander–Yorke [2] on a set
V ⊆ {v ∈ C+([0, 1]) : v(0) = 0}, which means that there is v ∈ V such
that the orbit {Stv : t ≥ 0} is dense in V and that for each v ∈ V the
orbit {Stv : t ≥ 0} is unstable. is extremely irregular behaviour was later
identified with exactness of {St}t≥0 in [4, 5, 31, 32].

ese results were used by Lasota and colleagues in [25] to understand
the success that Maria Ważewska-Czyżewska had had in treating patients
who had developed aplastic anaemia due to chemotherapy, radiotherapy, or
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exposure to certain organic compounds. ey developed a reasonably inter-
esting and straightforward physiologically realistic model for the process. In
terms of dimensionless variables the model was formulated as a reaction-
convection equation for the normalized red cell precursor density u(t, x) at
time t and maturation level x:

∂u
∂t

+ c(x)
∂u
∂x

=
[
p(t, x,u) − ∂c

∂x

]
u(t, x),

where

c(x) =

x, 0 ≤ x ≤ 1,

1, 1 ≤ x,

is the normalized cell maturation velocity and

p(t, x,u) =


λ
(
1 − u(t, x)

)
, 0 ≤ x < 1,

0, 1 ≤ x < L + 1,

−∞, L + 1 ≤ x,

is the normalized relative proliferation rate. L is related to the range of
maturation levels. Using this model they were able to precisely explain
the successful treatment through a decrease in the cellular maturation rate
which led to a minimization of the low levels of red blood cells during
recovery periods.

4. Differential delay equations

Ważewska-Czyżewska and Lasota [35], in an examination of the dyna-
mics of erythrocyte production, started from a time-age model for red blood
cell development and derived the differential delay equation

dx
dt

= −γx + βe−αxτ xτ ≡ x(t − τ), (8)

and then studied aspects of the solution behaviour both analytically and
numerically. ere is a unique steady state which is positive. Depending on
the parameters it is either hyperbolic and stable (and thereby aracting), or
it is a center, or it is hyperbolic and unstable. Numerical results suggest that
in the first case the steady state is globally aracting. In [6] it is shown that
in the last case there exists a periodic orbit which seems to be hyperbolic and
stable, with a large domain of araction. Periodic orbits as in [6] also arise
in a supercritical local Hopf bifurcation. ere are further Hopf bifurcations
which result in other periodic orbits, all of them unstable.
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Coincidentally Mackey and Glass [30], in an examination of the regula-
tion of respiration, derived very similar equation

dx
dt

= −γx + β
1

1 + xn
τ

xτ ≡ x(t − τ) (9)

that had the same qualitative monotone decreasing nonlinearity as equation
(8) and the same qualitative solution behaviour.

In the same paper Mackey and Glass [30] also proposed a second model
for the regulation of white blood cell production that was framed in terms
of a differential delay equation given by

dx
dt

= −γx + β
xτ

1 + xn
τ

xτ ≡ x(t − τ). (10)

In studying equation (10), now known as the Mackey–Glass equation, the
solution behavior of equation (10) is much richer than that of (8) or (9),
since one can either have a globally stable steady state, or a Hopf bifurcation
to a simple limit cycle which can then show further bifurcations to more
complicated limit cycles satisfying the Sharkovsky sequence and displaying
Feigenbaum scaling. Ultimately “chaotic” solutions can ensue. We now know
that this variety of solution behaviors and existence of multiple bifurcations
is due to the non-monotone nature of the nonlinearity in (10). In what has to
be one of the delicious ironies of life and research, in that same year Lasota
published a paper [18] in which he had considered an equation qualitatively
identical to (10), but without knowing of the work published in [30]. e
Lasota version was of the form

dx
dt

= −γx + βxn
τe
−xτ, (11)

so the nonlinearity had the same non-monotone character as in equation
(10). us, from a historical perspective, differential delay equations of the
form

dx
dt

= −γx + F(xτ), (12)

with F(y) ≥ 0, F(0) = 0, F′(0) ≥ 0, F′(y) = 0 for some y ∈ (0,∞),
limy→∞ F(y) = 0, should be known as Lasota–Mackey–Glass equations for
their spectrum of solution behaviours.

Incidentally, let us mention that for (12) with certain special functions F
it can be proved that chaotic solutions do exist, in case γ > 0 (see [1]) and in
case γ = 0 (see [15–17]). However, these results do not cover (10) and (11),
for which existence of chaotic motion remains an open problem.
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e problem is related to a conjecture, formulated by Lasota in [18,
Section ], about existence of an invariant ergodic measure corresponding to
equation (11), which we now recall with an obvious change of his notation.
Let C = C([−τ, 0]) be the space of continuous functionsφ : [−τ, 0]→ Rwith
the supremum norm topology. Consider the mapping S : C→ C defined by
the formula

(Sφ)(t) = x(t + τ), −τ ≤ t ≤ 0,

where x : [−τ,∞)→ R is the unique solution of (11) which is continuous on
[−τ,∞), differentiable on [0,∞) and satisfies the initial value condition

x(t) = φ(t), −τ ≤ t ≤ 0.

We can describe the properties of equation (11) in terms of S. Namely,
we shall say that a measure µ on C is invariant (ergodic) with respect to
equation (11) if it is invariant (ergodic) under S.

Conjecture [18]. For some positive values of the parameters γ, τ,n and β
there exists on C a continuous probability measure which is ergodic and
invariant with respect to equation (11).

5. Delay dynamics and evolution of densities

In examining the dynamical behavior of a system there are fundamentally
two options available to the experimentalist.

. In the first option s/he will examine the dynamical trajectories of indi-
viduals, be they fundamental particles in a cloud chamber or cells in a petri
dish or animals in an ecological experiment. In this case the experimentalist
may be interested in replicating the experiment many times, and building
up a statistical description of the observed behavior under the assumption
(among others) that the trajectory behavior will be replicated between trials
given the same initial conditions.

. In the second option this approach will be forsaken for one in which
the evolving statistics of large populations are examined. is is, of course,
most familiar in statistical mechanics, but is also important in many other
areas. e advantage of this approach is that if one can understand the
dynamics of density evolution, then many interesting statistical quantities
can be computed, and the results compared with experimental results. Much
of this material has been reviewed in Section 2.

Which approach is taken is sometimes a maer of choice, but oen
dictated by the nature of the individual units being studied.
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For systems in which the underlying dynamics are described by differen-
tial equations, or stochastic differential equations, or maps, there is a large
corpus of methods that have been developed with which one can approach
(in a modeling context) both of the types of data collection outlined above
and the connection of that data to underlying dynamical systems theory.

However many problems in the physical, and especially the biological,
sciences involve the dynamic behavior of individual entities whose dynamics
involve significant delays. For problems like this, existing techniques to
theoretically consider the evolution of densities are non-existent. Repeated
aempts to think of ways to formulate the evolution of densities in the
presence of dynamics with delays have failed in even the most elementary
respects (e.g. defining the fundamental mathematical aspects of the problem).
When dynamics are described by a differential delay equation of the form in
equation (13) then we must consider what is likely to be measured. Figure 1
will aid in this.

1. A schematic illustration of the connection between the evolution of an ensemble of initial
functions and what would be measured in a laboratory. An ensemble of N initial functions
on [−τ, 0] is allowed to evolve forward in time under the action of the delayed dynamics. At
time t we sample the distribution of the values of x across all N trajectories and form an

approximation to a density f (t, x) given by ρ. Taken from [29] with permission.

In Figure 1 we show a schematic depiction of what one would actually
measure in an ensemble of units whose dynamic evolution is governed
by a differential delay equation. We assume that there are N such units



e Mathematical Legacy of Andrzej Lasota 

involved in our experiment, and that the experiment is started at time t = 0

with each of the N units having a history (= an initial function) on the
interval [−τ, 0] preceding the start of the experiment. We let these N units
evolve dynamically in time, and assume that we have a device able to record
a histogram approximation ρ to the density f (t, x) of the distribution of the
state variable x at time t.¹ Note that this measurement procedure is carried
out at successive individual times and might be continuous.

us, what wemeasure is not unlike what we might measure in a system
whose dynamics are evolving under the action of the system of ordinary
differential equations (3). However, what we are able to calculate is far
different.

To be more concrete, suppose we have a variable x evolving under the
action of some dynamics described by a differential delay equation

dx
dt

= F (x(t), x(t − τ)), (13)

or the stochastic differential delay equation

dx = F (x(t), x(t − τ))dt + σ(x(t), x(t − τ))dW(t), (14)

with the initial condition x(t) = φ(t), t ∈ [−τ, 0], where W(t) is a standard
Wiener process. en we would like to know how some “density” f of the
variable x will evolve in time, i.e., we would like to be able to write down an
equation for an “unknown operator”U

U f = 0.

Unfortunately we don’t really know how to do this, and that’s the whole
point of this section.e reason that the problem is so difficult is embodied in
equation (13) and the infinite dimensional nature of the problem because of
the necessity of specifying the initial function φ(t) for t ∈ [−τ, 0]. However,
we do have some clues about what U should look like in various limiting
cases. For example, in equation (13) if τ → 0 then we should recover the
normal Liouville equation (4) from U. If τ → 0 in equation (14) then we
should recover the Fokker–Planck equation (5).

Equation (13) might induce a semiflow {Tt}t≥0 on a subset X of the space
of continuous functions C = C([−τ, 0],R), which can be wrien as xt = Ttφ

¹ It sometimes might be the case that we would not measure ρ, but rather might have
estimates of various moments of ρ like ⟨x⟩, ⟨x2⟩, etc.
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(see [7, 8]). In one sense, it would seem that the evolution of a density under
the action of this semigroup would be given by an extension of equation (1)∫

A

Pt f (x)µ(dx) =
∫

T−1t (A)

f (x)µ(dx) for all measurable A ⊂ X.

is writing of the evolution of the density f under the action of the
semigroup of Frobenius–Perron operators Pt : L1 → L1 is, however, merely
formal and serves to highlight the major problems that we face.

Namely the problem surfaces of:
. what the measure µ on the space C is,
. what is a density f on C,
. what does it mean to do integration over subsets of C,
. how would you actually figure out what T−1t is?
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