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Background: How exactly does an organism coordinate its responses to differing environmental

conditions, especially when several responses and physiological priorities are potentially

conflicting? Recently, single cell results have been published on the kinetics of the bacterial SOS

response. Based on these, we construct a relatively simple mathematical model for the regulatory

control of the mutagenic elements of the Escherichia coli DNA repair system. Methods: We

employ one first order delay differential equation for the dynamics of the activation level of

mutagenic gene repair and one first order ordinary differential equation for the dynamics of the

level of DNA damage. After manual adjustment of parameters, our model qualitatively

reproduces the UV dose dependent RecA expression peak occurrence, peak amplitude and peak

timing. Parameter noise captures qualitatively the fluctuations observed in the experimental data.

Quantitative agreement is achieved for timing of the three response peaks for different doses of

UV. Conclusions: A delayed negative feedback is likely to play a primary role in the regulation

of the E. coli mutagenic gene repair. The model presented in this paper is an example of how

a delayed regulatory mechanism establishes control over a critical organismic response with

negative secondary effects.

1 Introduction

For any organism, the integrity of its hereditary information,

the genome, is crucial. Damage can manifest itself through

changes of the contained information, i.e. genetic mutations,

or as physical damage to the information carrier itself. Both

types of damage readily occur and are therefore a possible

evolutionary origin of the molecular mechanisms that safeguard

genetic information as well as the physical information carrier.

Understandably, both aspects of gene repair are of high

physiological priority, but situations where they are in conflict

can and do occur.

Published experimental data1 give insight into how the

interplay of these gene repair priorities shapes the regulatory

dynamics of the E. coli SOS response (a bacterial DNA repair

system which can counteract consequences of physical DNA

damage very effectively at the cost of allowing more mutations

than conventional repair). Based on these data from specific

model organisms, mathematical modeling can give detailed

insight into the more general question of how physiological

priorities are condensed into actual regulatory mechanisms.

Mechanistic models2,3 can give detailed account of regulation

in a specific model organism or experimental setup. In contrast,

the abstraction of general concepts from a specific experimental

context favors conceptual, minimal models. Such a minimal

model of the experimentally observed E. coli SOS response1 is

still missing.

In this paper, we develop a simple delayed negative feedback

model for the single cell expression kinetics of the E. coli SOS

response after UV irradiation.1 This minimal delay model captures

the observed SOS expression kinetics more comprehensively

than existing mechanistic models.2,3 Further, it is an example

of the precise adjustment of a critical organismic response

with negative secondary effects to a specific stress level. The

regulation is established through delayed feedback and

delayed induction.

SOS response

When physical damage to an organism’s information carrier

occurs, repairing it quickly is the highest priority. The repair is

executed even if it compromises another priority, the integrity
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of the genetic information. The SOS response was first described

more than 35 years ago.4 Its mechanisms to either bypass or

repair DNA damage have since been investigated extensively in

E. coli as a model organism. Including more than 40 genes, the

SOS response counteracts DNA damage in various ways,

including nucleotide excision repair (NER), homologous recom-

bination, translesion DNA replication and cell cycle arrest.5

The SOS response elements range from non-mutagenic to

highly mutagenic. Accordingly, the regulation of the SOS

response can be seen as a bacterium’s means to finely balance

between informational and physical integrity of the genome.

Expression of the proteins involved is regulated by the repressor

LexA. LexA binds with differential affinity to the promoter

regions of the different SOS genes, termed SOS boxes. Under

normal growth conditions, each gene is expressed at a basal

level, which is set by a gene’s SOS box’s specific complementarity

and resulting binding affinity for the LexA protein.6 DNA

damage sensing is mediated by an effective yet simple mechanism.

During replication, replication forks stall upon encountering

lesions in the DNA. The exposed single stranded DNA is

recognized by RecA, which binds to it and is changed into the

active form RecA*. This in turn catalyses self cleavage of

LexA, inducing the expression of the previously repressed SOS

genes. For further background information reviews should be

consulted.7,8

The temporal induction of the different SOS response genes

occurs in a stepwise fashion. First, proteins involved in NER

are expressed and begin to remove damaged nucleotides.

Subsequently, homologous recombination is increased and

finally, the DNA polymerase PolV, which is error-prone yet

capable of translesion repair, becomes active.9 In this way the

SOS response is initiated by minimal DNA damage, but the

mutagenic repair action of PolV only takes effect if damage

still persists after the time delay between initiation and PolV

repair action. As a consequence, the induction of the SOS

response only leads to disruption of genetic information if

DNA lesions cannot be repaired in the delay time corresponding

to PolV activation. This regulation pattern allows for the

mutagenic SOS response to be sharply controlled, and thus

to reduce the genetic mutations to a minimum.5 Of more

general interest, the SOS response has drawn attention because

it displays bursts of genetic variability at the cost of replication

fidelity,10 a concept that is widely conserved in E. coli.11

Experimentally observed SOS kinetics

Friedman et al.1 irradiated E. coli with doses of 10 to 50 J m�2

of UV light and monitored the resulting activation of the SOS

response in single cells. As a reporter system, low copy

plasmids were introduced, which contained a promoterless

GFP gene after the LexA repressed promoter regions of recA,

lexA and umuDC, the latter encoding the UmuD and UmuC

subunits of polymerase PolV. When monitored at the single

cell level, the normalized promoter activity appeared in

discrete peaks after irradiation. The timing of the peaks

was conserved throughout the cells in one population. For

increasing doses of UV light, peak amplitudes saturated

and the number of observed peaks and the delay between

individual peaks increased.

2 Model development and adjustment to data

General approach

Our model is based on data and findings of Friedman et al.1

We take into consideration a limited set of aspects of the

regulation of PolV expression and repair activity: (1) delayed

initial induction only by a persistent signal indicating physical

DNA damage, (2) a sharp shut-down when physical damage

has been cleared, and (3) a delay time t from replication

fork stalling to the actual repair activity of PolV. A visual

representation of the model and example traces for the simulation

of a single cell is shown in Fig. 1.

Mathematical formulation

We propose a minimal mathematical model that combines the

aforementioned aspects of mutagenic SOS repair. We employ

two dynamic variables. E(t) represents the current activity of

mutagenic SOS repair, where E = 0 corresponds not to no

activity, but to a base level of signaling without external UV

irradiation. D(t) monitors the actual amount of physical

genome damage present in the cell; note that the amount of

damage sensed by stalled replication forks generally differs

from but depends on D(t).

Clearance of physical DNA damage D. For the sake of

simplicity we assume that non-mutagenic repair contributes

only negligibly to the reduction of physical DNA damage, the

reduction is instead governed by the levels of physical damage

D(t) itself and by E(t), the current activity of mutagenic repair.

We describe the repair of physical DNA damage by

dD

dt
¼ �Crmax

DðtÞ
1þDðtÞ ; 0
� �

�max
EðtÞ

1þ EðtÞ ; 0
� �

; ð1Þ

where Cr is a constant coefficient describing the rate at which

mutagenic SOS repair removes physical DNA damage. The

Hill-type functions including D(t) and E(t) account for our

assumption that mutagenic repair of physical DNA damage is

increased by the presence of more physical damage as well as

by stronger induction of the mutagenic repair, while it has a

limited capacity that leads to saturation with increasing D(t)

and E(t). The max{. . .,0} expressions serve to prevent non-

physiological undershoots, which would correspond to the

mutagenic SOS repair adding surplus physical damage.

Note that both Hill-type functions take on the half-value at

KD = 1 and KE = 1. We can, and indeed should, simplify our

model formulation in this way, as KD as well as KE can be

scaled into D and E and the model parameters (namely Cr, g0,
and s0) without loss of generality; they are redundant

parameters, which if kept lead to over-parametrization of

the model. For example purpose, let us rescale, starting with

non-scaled %D(t) and %E(t) with respective half-values kd,ke:

d �D

dt
¼ � �Cr

�D

kD þ �D

�E

kE þ �E
; D :¼ �D=kD; E :¼ �E=kE

) dD

dt
¼ �Cr

D

1þD

E

1þ E
; Cr ¼ �Cr=kD:

The rescaled half values are now 1.
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RecA signaling. The rate of damage clearance dD/dt is

pivotal in the regulatory system; at any given time replication

forks stall at sites of physical damage and are freed (mostly) by

mutagenic SOS repair action (PolV). This dynamically sets the

duration of replication forks being stalled at a site of physical

damage. The longer a replication fork is stalled at one and the

same site of physical damage, the stronger the signaling to the

mutagenic SOS boxes (binding of RecA to single stranded

DNA exposed by the stalled replication forks, activation of

bound RecA into RecA*, cleavage of LexA, derepression of

mutagenic SOS boxes). The rate of clearance thus sets the

signaling strength to the mutagenic SOS repair, so we use

�dD/dt as an indicator of recA promoter activity, the first

experimentally detectable element in the signaling chain.1

Current mutagenic repair activity E is dynamically set by the

damage level D and delayed mutagenic repair action Es. To

complete our model, we have to describe the dynamic behavior

of the current mutagenic SOS repair activity level E(t), which

is governed by both the damage level D(t) and the action of

mutagenic SOS repair by PolV.

First, let us only consider the influence of the damage D(t)

without mutagenic SOS repair. We assume that non-

mutagenic repair is working at full capacity, which is insufficient

to effectively prevent replication forks from stalling for long.

We translate this assumption as a constant increase in the

mutagenic SOS repair activity at a rate g0. However, mutagenic

SOS repair activity is only observed after an initial period tlag

of non-mutagenic repair. Therefore we employ a Heaviside

function H(t � tlag) to ‘‘switch on’’ mutagenic repair only

after tlag. We combine this into an expression describing the

mutagenic SOS repair activity increase at saturated levels of

damage D - N and not yet considering any effects of PolV

repair action:

g(t) = g0H(t � tlag). (2)

For non-saturated damage levels D o N we introduce a

Hill-type pre-factor, so that a lower damage level leads to less

repair action simply for the reason that less damaged sites are

encountered by replication forks. Combining all these aspects,

we can now write down a differential equation for E(t), that

does not yet incorporate the influence of mutagenic PolV

repair action:

dE

dt
¼ max

Dnd

1þDnd
; 0

� �
gðtÞ: ð3Þ

The influence of the damage saturates for D - N. For more

damaged sites present, replication forks stall more often. For

increasing damage, however, an increasing fraction of all

replication forks is stalled for an increasing fraction of time,

so saturation is reached. In contrast to (1), a Hill-exponent nd
was introduced as this physical dependence might differ from

the regulatory dependence on D described in (1).

PolV action reduces the stalling of replication forks by

enabling translesion DNA replication, which in turn allows

Fig. 1 Model overview and single cell example simulation results. The left diagram depicts the basic elements of the model. The two interwoven

black lines represent a piece of a longer DNA strand, which is undergoing replication. Black x symbols are UV-induced physically damaged sites

on the DNA strand. The blue-shaded rectangle on the DNA strand is the current position of a replication fork. The replication fork is stalled by a

damaged site, the stalling is indicated by a red circle around the damaged site. From a stall point, signaling to the SOS response is indicated by a red

arrow away from the stall point. The framed box contains a sequence of molecular events that likely is responsible for the time delay t observed in

experiment1 and incorporated into our model. Finally, another red arrow indicates the SOS repair action, which frees the stalled replication fork.

The right graph displays an example simulation trace of a single cell response to 50 J m�2 irradiation, model parameters as in Table 2. D(t)

(black dashed line) is the overall amount of physical DNA damage present. dD/dt (solid dark red line) is the rate of clearance of this damage D(t).

The peaks of �dD/dt were used to detect peaks in recA promoter activation. Peak 1, Peak 2 and Peak 3 are indicated by a red, a green and a blue

circle, respectively. tlag is the induction delay from an initial DNA physical damage signal to the first induction of the mutagenic SOS response.
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the replication fork to pass the stall point. In our model this

should lead to a reduction of the increase of E. As a multi-step

molecular pathway containing at least two sequential regulations

of transcription (recA, then umuDC), we assume a delay t
from signaling to mutagenic SOS repair till it actually takes

effect by reducing the stalling of replication forks at sites

of physical DNA damage. We place an additional term

�s0Et/(1 + Et) into (3) to include mutagenic SOS repair with

the above features. The term is placed along with g(t), which
was employed earlier in (3), where mutagenic repair effects

were not considered yet. We get

dE

dt
¼ max

Dnd

1þDnd

� �
gðtÞ � s0

Et

1þ Et

� �
; ð4Þ

where s0 is a constant coefficient describing the relative

strength of mutagenic SOS repair and Et = E(t � t) is the

mutagenic SOS repair activity delayed by t. Note that the half-

value constant for the Et Hill-type function was set 1, by the

earlier rescaling of E. The half-value in the Dnd Hill-type

function was assumed to be 1, solely for simplicity.

Initial conditions. E(t r 0) = 0 and Ė(t r 0) = 0, because

signaling to mutagenic gene repair is at a base level before

irradiation. The initial damage level is set toD(t=0)=D0. In

the experiment, the UV irradiation dose has been varied, and

accordingly D0 has to be varied in the initialization of our

model according to the UV dose. We assumed a simple propor-

tionality D0 = CI, where C is a proportionality factor in units of

[m2 J�1] and I the imposed UV dose in units of [J m�2].

Model parameters

Delay time dependence on irradiation. From Friedman et al.1

we can determine mean cell doubling times for different UV

doses I, see Table 1. A quadratic fit using Gnumeric gives the

following dependence:

TD(I) = 0.0135�I2 + 0.599�I + 39.0, (5)

with R2 = 0.9702. The quadratic expression explained the

experimental data better than a linear fit, for which R2 = 0.9481.

Further, Friedman et al.1 show a strong correlation between cell

doubling time TD and the peak separation time T of the form

1

T
¼ 1

TD
þ 1

68min

� �
: ð6Þ

The oscillations observed in our model simulations have to

match the time of peak separation T. Generally speaking, the

oscillation period in oscillating delay system is strongly dependent

on the feedback delay, called t in our model.12 Assuming a high

damage limit D0 -N and no induction delay tlag = 0, the core

delay differential equation (4) becomes

_E ¼ g0 � s0
Et

1þ Et
; ð7Þ

which is of the type
:
E= f(Et), where only the delayed value of E

is present in the right hand side. One steady state E*= g0/(s0� g0)
exists when s0 > g0. Linearizing around this steady state gives

:
u = �S*u(t � t), u(t) = E(t) � E*, (8)

where S* = (s0 � g0)
2/s0. This type of delay differential

equation can be treated as shown elsewhere.12 We assume that

we are close to the Hopf bifurcation at which the first

eigenvalue crosses to the positive real half of the complex

plane. For combinations of (t,s0,g0) close to that bifurcation,

either slowly decaying or persistent oscillatory behavior

around E* can be observed, with a period close to the Hopf

period THopf = 4t. As our model should produce oscillations

with a period of T to comply with the data, we investigated

values close to t = T/4. We found t = T/4.35 to give good

results. Using (5) and (6) we find

t ¼ 68min

4:3

TDðIÞ
68minþ TDðIÞ

: ð9Þ

Lag time dependence on delay time. For the lag time tlag = 3t
has been assumed, which makes the first peak time T1 roughly T.

Further model parameters. The values of the other model

parameters g0, s0, Cr, nd and C have been determined manually

to mimic several features of the experimental data reasonably

well, see Results and Discussion. Specifically, we considered

the amplitudes and the occurrence of the discrete peaks during

a heuristic search. First, g0 was picked, then a value s0 > g0, then
the three parameters Cr, nd, and C were adjusted, see Table 2.

While these parameters reproduce the aforementioned features,

they are not necessarily optimal or even unique in any sense.

Biological fluctuations

For a comparison of model and data we include biological

variations. We account for them by randomization of the

model parameters for the regulation delay t, the relative

strength of mutagenic SOS repair s0, and the initial damage

value D0. For each simulation of an individual cell we draw

them from a normal distribution in the following manner:

t = �t � (1 + N(0,st)), (10)

s0 = %s0 � (1 + N(0,ss)), (11)

D0 = %D0 � (1 + N(0,sD)), (12)Table 1 Mean cell doubling times TD for different UV doses I as
reported by Friedman et al.1 The error of read-out from the graph
shown by Friedman et al.1 on cell doubling times is 5 min. Delay times
t as calculated from fitted cell doubling times TD(I) for different UV
doses, see (5), and using eqn (9) describing the dependence of t on the
cell doubling time

I/J m�2 0 10 20 35 50
TD/min 37.5 46.5 62 70 105
t/min 5.76 6.41 7.17 8.37 9.51

Table 2 Model parameter values: the parameter values have been
determined manually, so as to capture reasonably well the experi-
mental data from Friedman et al.1

Parameter g0 s0 Cr nd C

Unit 1 min�1 1 min�1 1 min�1 1 m2 J�1

Value 0.1 0.37 0.1 3 0.11
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where N(m = 0,s) is a normally distributed random variable

with mean m and variance s, while st,ss,sD are the variances

for the respective parameters. st =0.03, ss =0.2 and sD =0.05

are used where noise on the simulation parameters is

employed, unless other values are mentioned.

At the risk of stating the obvious: the simulation itself is

fully deterministic, only the parameters that initialize the

simulation are picked randomly.

Numerical solutions

The differential equations were integrated with the MatLab

integrator tool ddesd.13 Our simulation code can be found in

the ESI.w

3 Results

Wild type results

Peak distributions. In the original experiment1 as well as in

our model simulations wild type cells were exposed to UV

doses of 20 and 50 J m�2. In Fig. 2 peak distributions and

histograms from the model and the experiment are shown for

both conditions. A good quantitative agreement of the mean

peak times is reached. With respect to peak amplitude and

timing, the distributions agree qualitatively.

For a dose of 50 J m�2, the first peak time and amplitude are

confined to a small range. For the second and third peak

fluctuations increase, especially those of the peak amplitude.

For a dose of 20 J m�2, the fluctuations increase similar to

those seen for the higher UV dose. The mean amplitudes,

however, follow a different pattern. In the experimental data,

the first peaks amplitude is exceeded by that of the second

peak, while that of the third peak is lower than the two

preceding ones. In our model results each consequent peak is

decreased. A decreased number of cells exhibits a third peak,

in the experimental data as well as in the histograms obtained

from our simulations.

Peak occurrence, timing and amplitude. In Fig. 3 the different

aspects of the SOS response peaks are displayed for experimental

results from Friedman et al.1 and simulations of our model.

This more detailed and thorough comparison with data reveals

strong qualitative agreement between model and experimental

results. For higher UV doses, the number of cells exhibiting

first, second and third peaks increases. The first peak is

established throughout the monitored populations for irradiation

of 10 J m�2 and higher. The second peak is more populated for

doses higher than 10 J m�2 in experimental and model results.

For 10 J m�2 irradiation the third peak is established inE15%

of cells in the experimental data but not at all in the model

results. Also, the third peak appears in almost all cells in the

model after 50 J m�2, while in the experimental results only

55% are reached. Still, the general pattern of consecutive

increase of cells exhibiting one, two or all three peaks for

increasing UV dose is visible in experimental as well as model

results.

As observed in the experimental data, the mean peak times

T1, T2 and T3 are multiples of T throughout the whole

irradation range above 10 J m�2. The peak amplitudes

saturate for an increase in UV dose; the first peak saturates

first, followed by the second and then the third peak. In a

Dumu knockout system, the first peak amplitude increases with

UV dose in experiment. The peak amplitude also reaches a

higher value in the model results, but does not reach up as high

as observed in the experiment, and exhibits a saturation

behavior. As only two experimental Dumu data points are

available, conclusions on curvature and consequently saturation

behavior cannot be drawn from the experimental data.

Effects of DumuDC on the feedback delay s

For the DumuDC mutant bacteria, a more delayed and

scattered second peak is observed, the third one is hardly

present, see Fig. 4. To adjust our model, we increased the delay

time t by 90% (while not changing tlag) and the associated

variance st to 0.15. The increase in t brings the timing of the

second peak in alignment with the observations in the mutant

experiment. This change in t in our model is accompanied by

an increase in the amplitude and time of the first peak. The

same altered kinetics are found in the experimental observations,

and have been shown to be a typical change resulting from

increased delay times in a negative autoregulation in an

engineered organism.14,15 Thus, we suggest a prolonged delay

time as an explanation of the expression kinetics observed in

the DumuDC mutant experiment. The amplitude increase can

also be viewed in Fig. 3. The increase in variance was

introduced solely to reproduce the experimental results.

4 Discussion

Model evaluation and comparison with other models

Agreement with data and known mechanisms. Our model

captures qualitatively most characteristics of the data

presented by Friedman et al.1 Most prominently, all three

discrete recA promoter activity peaks are explained by a single

delayed negative feedback loop. Correct coverage of a broad

range of data is usually indicative for a model to have captured

a good deal of the underlying dynamical system. In comparison,

Krishna et al.2 can explain a second response peak along with

many detailed characteristics of the data, but cannot elicit a

third peak. Shimoni et al.3 can qualitatively explain the

occurrence of discrete peaks. Further, our model incorporates

the present damage level as a dynamic variable, whose reduction

rate depends on the current activity of PolV and the damage

level itself. In the Krishna et al.2 model the rate of damage

clearance is independent of the activity level of PolV.

Connecting the activity level of the PolV repair response to

the rate of damage repair should be an important feature of a

model that describes the dynamic regulation of a repair

response. Shimoni et al.3 simply switch the damage level

ON/OFF from outside the model.

Another difference between our model and that of Krishna

et al.2 is in the assumptions regarding the molecular mechanism

leading to the occurrence of secondary expression peaks. In our

model, we employed a regulatory delay, a feature readily

encountered in molecular regulatory systems comprised of

protein–protein interactions as well as transcriptional

regulation. We assumed (based on a putative common depen-

dence on protein synthesis, which is increasingly impaired
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by UV-induced damage) that the delay time t depends on the

cell doubling time TD. Then, we adjusted the regulatory delay t
to fit the experimental data,1 see Table 1; our delay times agree

with the 7–10 minute delay between recA and lexA (most rapid

expression response to stalled replication forks) and umuDC

(encodes subunits of mutagenic SOS repair associated DNA

polymerase V) promoter activity measured in experiment.1

This experimentally found delay time was not used in formation

of our model, rather the delay time t was determined

independently by matching our model to the available recA

expression kinetics data. In contrast, Krishna et al. employ a

hyper-sensitive threshold in relative concentrations of the

UmuD and UmuC subunits to combine into active PolV.

The threshold is associated with an abrupt assembly of PolV,

which provides a molecular mechanism to ‘‘integrate’’ (in the

mathematical sense of integration over time) umuDC

expression as a signal to mutagenic SOS repair and trigger

the second peak at a critical threshold. This is a strong

assumption, and moreover necessary for the model of Krishna

et al. to exhibit a second expression peak. A third peak does

not arise from this assumption. The introduction of a delay

makes this assumption unnecessary, a mechanistic interpretation

of our model would actually indicate that PolV exerts repair

action rapidly after umuDC expression.

Simplicity and number of parameters. The model presented

in this paper employs two differential equations: a delay

differential equation is the dynamical core of our model, and

one ordinary differential equation is used to monitor the

amount of DNA damage. These equations require exactly 6

parameters. while 3 more parameters are used to mimic

biological variations, but these have no effect on the overall

Fig. 2 recA expression peaks in simulation and experimental data from Friedman et al.1 A: Each circle represents a recA expression peak

amplitude in the model results (20 J m�2) for 51 individual cells. Red circles are first peaks, green circles second peaks, and blue circles third peaks.

B: Histograms of model result (20 J m�2) peak times, colors same as in A. C: Experimental results (20 J m�2) taken from Friedman et al.1 Each

circle represents a peak in recA promoter activity as measured by GFP expression. D: Histograms of experimental peak times (20 J m�2), colors

same as in A. E, F, G, H: Same as A, B, C, D (respective order) but UV dose 50 J m�2.
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dynamical behavior. Krishna et al.2 build a complex

regulatory network of 6 ODEs, one of which is reduced to

its quasi-steady state. Shimoni et al.3 claim to create a minimal

model, using 18 model parameters in a stochastic simulation.

Model robustness. We introduce parameter fluctuations into

our model simulation to account for biological variations.

None of these variations qualitatively disrupts our model

results. Also, discrete, correlated peaks are found in our model

over a vast range of delay times; changing the other model

parameters can affect the number and timing of peaks, but

mostly does not affect the qualitative occurrence of discrete

peaks either, as can be tried using our simulation code in the

ESI.w This speaks of robust model behavior over a broad

parameter space.

Insights, predictions and hypotheses. The aim of a minimal

model is not primarily to give mechanistic insight into the

underlying biochemistry. Rather, its strength should be in

making a few conceptual points: The introduction of a strikingly

simple delay model captures a great deal of the experimental

behavior presented by Friedman et al.1 While a minimal model

like ours will not be sufficient to explain experimental findings

in as much detail as a fully developed and biologically realistic

one, the existent more complex models2,3 without dynamical

delay do not explain some important features present in the

experimental data.1 Delay models are a standard approach for

Fig. 3 Dependence of peak characteristics on UV irradiation dose. A, B, and C are from model simulations with 51 cells for each dose. The error

bars, drawn from the standard error of the mean, partly vanish behind symbols. D, E and F display experimental results and are taken from

Friedman et al.1 Red always represents the first, blue the second, and green the third peak. A: Percentage of simulated cells exhibiting the according

peak. B: Simulation peak times hTii scaled by T(I). C: recA peak amplitudes in simulation. The dashed red line with hollow circles represents the

first peak amplitude for the Dumu knockout mutant. D: Same as A but from experimental data. E: Same as B but from experimental data.

F: hPAii/PA0 peak amplitudes in experimental recA promoter activity. Hollow red circles represent experimental Dumu promoter activity Peak 1

amplitudes.
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multi-time scale dynamics. The SOS kinetics are governed by

fast protein–protein interactions and slow gene regulatory

effects, thus making SOS kinetics an ideal example of multi-

time scale regulation. It is therefore not surprising that a delay

model captures much of the experimentally observed regulation

pattern. In contrast to claims made by Shimoni et al.3

stochasticity seems unnecessary for a qualitative explanation

of the observed SOS kinetics, though it might be of importance

for a biologically realistic model. An in-depth description of

the integration of delay and stochastic effects in a closely

related regulatory system is presented by Liu et al.16

Our model development employs the hypothesis that the

delay time t, in close relation with the cell doubling time TD,

depends on the UV dose I. An increased cell doubling time can

be understood as a proxy for slowed down protein synthesis,

which in turn might also increase the delay time t. We found

the delay time t to agree with the range of delay times between

recA and umuDC promoter activity of 7–10 minutes.

Investigating this experimentally detected delay time for

dependence on the UV dose might yield a qualitative agreement

with the dependence described by us, which would constitute a

strong confirmation of our model and its basic assumptions.

Given the feasibility of the original experiment,1 this experi-

mental knowledge should be easily accessible, or even be

derived by the according analysis of the existent expression

kinetics data.

Implications for E. coli SOS regulation

From our model, it seems likely that the whole lexA/recA/umu

regulatory complex of the SOS response goes through delay-

induced oscillations with an oscillation period equal to the

peak separation time. In fact, this is the exact behavior present

in the experimental data.1 This interpretation is different from

that of Krishna et al.,2 who associate mutagenesis only with

occurrence of the second recA expression peak. Our model

associates all three recA expression peaks with signaling to

mutagenic elements of the SOS response, while strong

mutagenesis only occurs if heavy physical DNA damage

persists up to the time of full assembly of PolV.

In accordance with the data of the Dumu knockout mutant,

prolonging the delay time by 90% and increasing the biological

fluctuations captures the observed Dumu kinetics,1 see Fig. 4.

This might point towards the activation of a redundant

response to genome damage, which is masked in wild type

cells by the action of PolV. Redundant pathways are readily

encountered in molecular biology, and a regulatory function

of UmuD and UmuC similar to a eukaryotic DNA damage

checkpoint has been suggested.17 This differs from the inter-

pretation of Krishna et al.,2 who explain the Dumu data as a

loss of the second recA expression peak that they associate

with mutagenesis.

Broader implications

Our model gives a specific answer to the general question of

how physiological priorities can manifest themselves in

organismic regulation mechanisms. While the observed PolV

expression oscillations might actually not hold physiological

importance, they have indeed allowed us to uncover the

potential role of a regulatory delay. In the specific example,

the delayed activation of PolV allows the unicellular organism

to react appropriately to two different scenarios of physical

DNA damage, cf. also Friedman et al.:1 (1) in case of little

damage, non-mutagenic gene repair is able to clear damage

before mutagenic repair action of PolV can take effect, or

(2) in case of heavy physical damage, PolV overrides the

priority of genetic information integrity for the sake of

Fig. 4 Dumu knockout mutant recA expression peaks in simulation and experimental data from Friedman et al.1 A: Model results with delay time

t increased by 90% and increased variance of delay time variations st = 0.15 at UV dose 20 J m�2. Each circle represents a recA expression peak

amplitude from one individual cell. Red circles are first peaks, green circles second peaks, and blue circles third peaks. 51 individual cells have been

simulated. B: Histograms of model result peak times, colors same as in A. C: Experimental results taken from Friedman et al.1 Each circle

represents a peak in recA promoter activity as measured by GFP expression. D: Histograms of experimental peak times, colors same as in A.
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securing the usability of the physical information carrier itself.

At the same time, persistent damage is repaired stepwise with

control points to check if integrity has meanwhile been

restored. This behavior can be readily explained by a delayed

negative feedback loop and seems to be evolutionary favored

over a reaction that simply correlates in intensity with the

induced damage. The regulatory network controlling the SOS

response could be established by several components of the

SOS response itself as hypothesized already by Friedman

et al.1

From a more conceptual perspective, a pattern of delay-

regulated integration of several staggered responses emerges.

The regulatory integration of such responses, spanning a

trade-off spectrum between the capacity to fend off an

environmental challenge and inflicted self-damage, might be

of conceptual value in other defense systems. Examples coming

to mind are innate vs. adaptive immune response and cellular

apoptosis/autophagy decisions. Further, it has been suggested

that eukaryotic cells possess functionally comparable inducible

DNA repair mechanisms,18 whose regulatory integration with

other critical responses with negative secondary effects16

should be highly interesting.
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