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Extending the work of Friedman et al. (2006), we study the stationary density of the distribution of

molecular constituents in the presence of noise arising from either bursting transcription or translation,

or noise in degradation rates. We examine both the global stability of the stationary density as well as

its bifurcation structure. We have compared our results with an analysis of the same model systems

(either inducible or repressible operons) in the absence of any stochastic effects, and shown the

correspondence between behaviour in the deterministic system and the stochastic analogs. We have

identified key dimensionless parameters that control the appearance of one or two stable steady states

in the deterministic case, or unimodal and bimodal densities in the stochastic systems, and detailed the

analytic requirements for the occurrence of different behaviours. This approach provides, in some

situations, an alternative to computationally intensive stochastic simulations. Our results indicate that,

within the context of the simple models we have examined, bursting and degradation noise cannot be

distinguished analytically when present alone.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In neurobiology, when it became clear that some of the
fluctuations seen in whole nerve recording, and later in single
cell recordings, were not simply measurement noise but actual
fluctuations in the system being studied, researchers very quickly
started wondering to what extent these fluctuations actually
played a role in the operation of the nervous system.

Much the same pattern of development has occurred in cellular
and molecular biology as experimental techniques have allowed
investigators to probe temporal behaviour at ever finer levels, even
to the level of individual molecules. Experimentalists and theoreti-
cians alike who are interested in the regulation of gene networks are
increasingly focussed on trying to access the role of various types of
fluctuations on the operation and fidelity of both simple and complex
gene regulatory systems. Recent reviews (Kaern et al., 2005; Raj and
van Oudenaarden, 2008; Shahrezaei and Swain, 2008b) give an
interesting perspective on some of the issues confronting both
experimentalists and modellers.

Typically, the discussion seems to focus on whether fluctua-
tions can be considered as extrinsic to the system under con-
sideration (Shahrezaei et al., 2008; Ochab-Marcinek, 2008, 2010),
ll rights reserved.
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or whether they are an intrinsic part of the fundamental pro-
cesses they are affecting (e.g. bursting, see below). The dichotomy
is rarely so sharp, however, but Elowitz et al. (2002) have used an
elegant experimental technique to distinguish between the two,
see also Raser and O’Shea (2004), while Swain et al. (2002)
and Scott et al. (2006) have laid the groundwork for a theoretical
consideration of this question. One issue that is raised persis-
tently in considerations of the role of fluctuations or noise in the
operation of gene regulatory networks is whether or not they are
‘‘beneficial’’ (Blake et al., 2006) or ‘‘detrimental’’ (Fraser et al.,
2004) to the operation of the system under consideration. This is,
of course, a question of definition and not one that we will be
further concerned with here.

Here, we consider in detail the density of the molecular distribu-
tions in generic bacterial operons in the presence of ‘bursting’
(commonly known as intrinsic noise in the biological literature) as
well as inherent (extrinsic) noise using an analytical approach. Our
work is motivated by the well-documented production of mRNA
and/or protein in stochastic bursts in both prokaryotes and eukar-
yotes (Blake et al., 2003; Cai et al., 2006; Chubb et al., 2006; Golding
et al., 2005; Raj et al., 2006; Sigal et al., 2006; Yu et al., 2006),
and follows other contributions by, for example, Kepler and Elston
(2001), Friedman et al. (2006), Bobrowski et al. (2007) and Shahrezaei
and Swain (2008a). The analytical solution of the steady state density
of the molecular distributions in the presence of bursting was first
derived in Friedman et al. (2006). Our work extends these results to
show the global stability of the limiting densities and examine their
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bifurcation structure to give a complete understanding of the effect of
bursting on molecular distributions. It is important to also recognize
the pioneering work of Berg (1978) who first studied the statistical
fluctuations of protein numbers in bacterial population (with divi-
sion) through the master equation approach, and introduced the
concept of what is now called bursting.

In Section 2 we develop the concept of the operon and treat
simple models of the classic inducible and repressible operon.
Section 4 considers the effects of bursting alone. Section 5 then
examines the situation in which there are continuous white noise
fluctuations in the dominant species degradation rate in the
absence of bursting.
2. Generic operons

2.1. The operon concept

The so-called ‘central dogma’ of molecular biology, based on
the Nobel Prize winning work of Jacob et al. (1960) in which they
introduced the concept of the operon, is simple to state in
principle, but complicated in its detail. Namely through the
process of transcription of DNA, messenger RNA (mRNA, M) is
produced and, in turn, through the process of translation of the
mRNA proteins (intermediates, I) are produced. There is often
feedback in the sense that molecules (enzymes, E) whose produc-
tion is controlled by these proteins can modulate the translation
and/or transcription processes. In what follows we will refer to
these molecules as effectors. Rather astonishingly, within a few
short years of the publication of the ground breaking work
of Jacob et al. (1960) the dynamics of this simple feedback system
was studied mathematically by Goodwin (1965). His formulation
of the operon concept is now known as the Goodwin model.

We now consider both the transcription and translation
process in more detail. In the transcription process an amino acid
sequence in the DNA is copied by the enzyme RNA polymerase
(RNAP) to produce a complementary copy of the DNA segment
encoded in the resulting RNA. Thus this is the first step in the
transfer of the information encoded in the DNA. The process by
which this occurs is as follows.

When the DNA is in a double stranded configuration, the RNAP
is able to recognize and bind to the promoter region of the DNA.
(The RNAP/double stranded DNA complex is known as the closed
complex.) Through the action of the RNAP, the DNA is unwound in
the vicinity of the RNAP/DNA promoter site, and becomes single
stranded. (The RNAP/single stranded DNA is called the open
complex.) Once in the single stranded configuration, the tran-
scription of the DNA into mRNA commences.

In prokaryotes, translation of the newly formed mRNA com-
mences with the binding of a ribosome to the mRNA. The function of
the ribosome is to ‘read’ the mRNA in triplets of nucleotide
sequences (codons). Then through a complex sequence of events,
initiation and elongation factors bring transfer RNA (tRNA) into
contact with the ribosome-mRNA complex to match the codon in
the mRNA to the anti-codon in the tRNA. The elongating peptide
chain consists of these linked amino acids, and it starts folding into
its final conformation. This folding continues until the process is
complete and the polypeptide chain that results is the mature
protein.

The lactose (lac) operon in bacteria is the paradigmatic
example of this concept and this much studied system consists
of three structural genes named lacZ, lacY, and lacA. These three
genes contain the code for the ultimate production, through
the translation of mRNA, of the intermediates b-galactosidase,
lac permease, and thiogalactoside transacetylase, respectively.
The enzyme b-galactosidase is active in the conversion of lactose
into allolactose and then the conversion of allolactose into
glucose. The lac permease is a membrane protein responsible
for the transport of extracellular lactose to the interior of the cell.
(Only the transacetylase plays no apparent role in the regulation
of this system.) The regulatory gene lacI, which is part of a
different operon, codes for the lac repressor, which is transformed
to an inactive form when bound with allolactose, so in this system
allolactose functions as the effector molecule.

2.2. The transcription rate function

In this section we examine the molecular dynamics of both
the classical inducible and repressible operon to derive expres-
sions for the dependence of the transcription rate on effector
levels. (When the transcription rate is constant and independent
of the effector levels we will refer to this as the no control
situation.)

2.2.1. Inducible regulation

For a typical inducible regulatory situation (such as the lac

operon), in the presence of the effector molecule the repressor is
inactive (is unable to bind to the operator region preceding the
structural genes), and thus DNA transcription can proceed. Let R

denote the repressor, E the effector molecule, and O the operator.
The effector is known to bind with the active form R of the
repressor. We assume that this reaction is of the form

RþnE"
K1

REn, K1 ¼
REn

R � En
, ð1Þ

where n is the effective number of molecules of effector required
to inactivate the repressor R. Furthermore, the operator O and
repressor R are assumed to interact according to

OþR"
K2

OR, K2 ¼
OR

O � R
:

Let the total operator be Otot:

Otot ¼ OþOR¼OþK2O � R¼Oð1þK2RÞ,

and the total level of repressor be Rtot:

Rtot ¼ RþK1R � EnþK2O � R:

The fraction of operators not bound by repressor (and therefore
free to synthesize mRNA) is given by

f ðEÞ ¼
O

Otot
¼

1

1þK2R
:

If the amount of repressor R bound to the operator O is small

Rtot CRþK1R � En ¼ Rð1þK1EnÞ

so

R¼
Rtot

1þK1En
,

and consequently

f ðEÞ ¼
1þK1En

1þK2RtotþK1En
¼

1þK1En

KþK1En
, ð2Þ

where K ¼ 1+K2Rtot. There will be maximal repression when E¼0
but even then there will still be a basal level of mRNA production
proportional to K�1 (which we call the fractional leakage).

If the maximal DNA transcription rate is jm (in units of inverse
time) then, under the assumption that the rate of transcription j
in the entire population is proportional to the fraction f of
unbound operators, the variation j of the DNA transcription rate
with the effector level is given by j¼jmf , or

jðEÞ ¼jm

1þK1En

KþK1En
: ð3Þ
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2.2.2. Repressible regulation

In the classic example of a repressible system (such as the trp

operon) in the presence of the effector molecule the repressor is
active (able to bind to the operator region), and thus block DNA
transcription. We use the same notation as before, but now note
that the effector binds with the inactive form R of the repressor so
it becomes active. We assume that this reaction is of the same
form as in Eq. (1). The difference now is that the operator O and
repressor R are assumed to interact according to

OþR � En"
K2

OREn, K2 ¼
OREn

O � R � En
:

The total operator is now given by

Otot ¼OþOREn ¼OþK2O � R � En ¼Oð1þK2R � EnÞ,

so the fraction of operators not bound by repressor is given by

f ðEÞ ¼
O

Otot
¼

1

1þK2R � En
:

Again assuming that the amount of repressor R bound to the
operator O is small we have

f ðEÞ ¼
1þK1En

1þðK1þK2RtotÞEn
¼

1þK1En

1þKEn ,

where K¼K1+K2Rtot. Now there will be maximal repression when
E is large, but even at maximal repression there will still be a
basal level of mRNA production proportional to K1K�1o1. The
variation of the DNA transcription rate with effector level is
given by j¼jmf or

jðEÞ ¼jm

1þK1En

1þKEn : ð4Þ

Both (3) and (4) are special cases of the function

jðEÞ ¼jm

1þK1En

AþBEn ¼jmf ðEÞ: ð5Þ

where A,BZ0 are given in Table 1.

2.3. Deterministic operon dynamics

The reader may wish to consult Polynikis et al. (2009) for an
interesting survey of techniques applicable to this approach.

We first consider the Goodwin (1965) model and let (M,I,E)
denote mRNA, intermediate protein, and effector concentrations,
respectively. Then for a generic operon with a maximal level of
transcription bd (in concentration units), we have dynamics
Table 1

Definitions of the parameters A, B, L, D and y. See the text and Section 2.2 for more

detail.

Parameter Inducible Repressible

A K¼1+K2Rtot 1

B K1 K¼K1+K2Rtot

B

A

K1

K

K

L¼ A K 1

D¼ BK�1
1

1 KK1
�1

y¼
kd

nD
1�

D
L

� �
kd

n
�

K�1

K
40

kd

n
�

K1�K

K
o0
described by the system (Goodwin, 1965; Griffith, 1968a, b;
Othmer, 1976; Selgrade, 1979)

dM

dt
¼ bdjmf ðEÞ�gMM, ð6Þ

dI

dt
¼ bIM�gII, ð7Þ

dE

dt
¼ bEI�gEE: ð8Þ

Here we assume that the rate of mRNA production is proportional
to the fraction of time the operator region is active, and that the
rates of intermediate and enzyme production are simply propor-
tional to the amount of mRNA and intermediate, respectively.
All three of the components (M,I,E) are subject to random loss.
The function f is calculated in the previous section. It will greatly
simplify matters to rewrite Eqs. (6)–(8) by defining dimensionless
concentrations. To this end we first rewrite Eq. (5) in the form

jðeÞ ¼jmf ðeÞ, ð9Þ

where jm (dimensionless) is defined by

jm ¼
jmbEbI

gMgEgI

and f ðeÞ ¼
1þen

LþDen
, ð10Þ

L and D are defined in Table 1, and we have defined a dimension-
less effector concentration (e) through

E¼ Ze with Z¼ 1ffiffiffiffiffiffi
K1

n
p :

Further defining dimensionless intermediate (i) and mRNA con-
centrations (m) through

I¼ iZgE

bE

and M¼mZ gEgI

bEbI

,

Eqs. (6)–(8) can be written in the equivalent form

dm

dt
¼ gM ½kdf ðeÞ�m�,

di

dt
¼ gIðm�iÞ,

de

dt
¼ gEði�eÞ,

where

kd ¼ bdjm and bd ¼
bd

Z ð11Þ

are dimensionless constants.
For notational simplicity, henceforth we denote dimensionless

concentrations by (m,i,e)¼(x1,x2,x3), and subscripts (M,I,E) ¼
(1,2,3). Thus we have

dx1

dt
¼ g1½kdf ðx3Þ�x1�, ð12Þ

dx2

dt
¼ g2ðx1�x2Þ, ð13Þ

dx3

dt
¼ g3ðx2�x3Þ: ð14Þ

In each equation, gi for i¼1,2,3 denotes a net loss rate (units
of inverse time), and thus Eqs. (12)–(14) are not in dimen-
sionless form.

The dynamics of this classic operon model can be fully
analyzed. Let X¼(x1,x2,x3) and denote by St(X) the flow generated
by the system (12)–(14). For both inducible and repressible
operons, for all initial conditions X0 ¼ ðx0

1,x0
2,x0

3ÞARþ3 the flow
StðX0ÞARþ3 for t40.
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Fig. 2. Full logarithmic plot of the steady state values of xn versus kd for an

inducible system, obtained from Eq. (15), for n¼4 and K ¼ 2,5,10, and 15 (left to

right) illustrating the dependence of the occurrence of bistability on K. See the text

for details.
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Steady states of the system (12)–(14) are in a one to one
correspondence with solutions of the equation

x

kd
¼ f ðxÞ ð15Þ

and for each solution xn of Eq. (15) there is a steady state
Xn
¼(x1

n,x2
n,x3

n) of (12)–(14) given by

x�1 ¼ x�2 ¼ x�3 ¼ x�:

Whether there is a single steady state Xn or there are multiple
steady states will depend on whether we are considering a
repressible or inducible operon.

2.3.1. No control

In this case, f ðxÞ � 1, and there is a single steady state x� ¼ kd

that is globally asymptotically stable.

2.3.2. Inducible regulation

Single versus multiple steady states. For an inducible operon
with f given by Eq. (2), there may be one (X1

n or X3
n), two (X1

n,X2
n
¼X3

n

or X1
n
¼X2

n,X3
n), or three (X1

n,X2
n,X3

n) steady states, with the ordering
0oX�1rX�2rX�3, corresponding to the possible solutions of
Eq. (15) (cf. Fig. 1). The smaller steady state (X1

n) is typically
referred to as an uninduced state, while the largest steady state
(X3

n) is called the induced state. The steady state values of x are
easily obtained from (15) for given parameter values, and the
dependence on kd for n¼4 and a variety of values of K is shown
in Fig. 1. Fig. 2 shows a graph of the steady states xn versus kd for
various values of the leakage parameter K.

Analytic conditions for the existence of one or more steady
states can be obtained by using Eq. (15) in conjunction with the
observation that the delineation points are marked by the values
of kd at which x=kd is tangent to f(x) (see Fig. 1). Simple differen-
tiation of (15) yields the second condition

1

kdnðK�1Þ
¼

xn�1

ðKþxnÞ
2
: ð16Þ
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Fig. 1. Schematic illustration of the possibility of one, two or three solutions of

Eq. (15) for varying values of kd with inducible regulation. The monotone

increasing graph is the function f of Eq. (10), and the straight lines correspond

to x=kd for (in a clockwise direction) kd A ½0,kd�Þ, kd ¼kd� , kd Aðkd� ,kdþ Þ,

kd ¼ kdþ , and kdþokd . This figure was constructed with n¼4 and K¼10 for

which kd� ¼ 3:01 and kdþ ¼ 5:91 as computed from (18). See the text for further

details.
From Eqs. (15) and (16) we obtain the values of x at which
tangency will occur:

x7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�1

2
n�

Kþ1

K�1

� �
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�2n

Kþ1

K�1
þ1

r( )
n

vuut : ð17Þ

The two corresponding values of kd at which a tangency occurs
are given by

kd7 ¼ x8
Kþxn

8

1þxn
8
: ð18Þ

(Note the deliberate use of x8 as opposed to x7 .)
A necessary condition for the existence of two or more steady

states is obtained by requiring that the square root in (17) be non-
negative, or

KZ
nþ1

n�1

� �2

: ð19Þ

From this a second necessary condition follows, namely

kdZ
nþ1

n�1

ffiffiffiffiffiffiffiffiffiffiffi
nþ1

n�1

n

r
: ð20Þ

Further, from Eqs. (15) and (16) we can delineate the boundaries
in ðK ,kdÞ space in which there are one or three locally stable
steady states as shown in Fig. 3. There, we have given a para-
metric plot (x is the parameter) of kd versus K, using

KðxÞ ¼
xn½xnþðnþ1Þ�

ðn�1Þxn�1
and kdðxÞ ¼

½KðxÞþxn�2

nxn�1½KðxÞ�1�
,

for n¼4 obtained from Eqs. (15) and (16). As is clear from the
figure, when leakage is appreciable (small K, e.g for n¼4,
Koð5=3Þ2) then the possibility of bistable behaviour is lost.

Remark 1. Some general observations on the influence of n, K,
and kd on the appearance of bistability in the deterministic case
are in order.
1.
 The degree of cooperativity (n) in the binding of effector to the
repressor plays a significant role. Indeed, n41 is a necessary
condition for bistability.
2.
 If n41 then a second necessary condition for bistability is
that K satisfies Eq. (19) so the fractional leakage (K�1) is
sufficiently small.
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Fig. 3. In this figure we present a parametric plot (for n¼4) of the bifurcation

diagram in ðK ,kdÞ parameter space delineating one from three steady states in a

deterministic inducible operon as obtained from Eqs. (15) and (16). The upper

(lower) branch corresponds to kd� (kdþ ), and for all values of ðK ,kdÞ in the interior

of the cone there are two locally stable steady states X1
n,X3

n, while outside there is

only one. The tip of the cone occurs at ðK ,kdÞ ¼ ðð5=3Þ2 ,ð5=3Þ
ffiffiffiffiffiffiffiffi
5=34

p
Þ as given by

Eqs. (19) and (20). For KA ½0,ð5=3Þ2Þ there is but a single steady state.
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3.
 Furthermore, kd must satisfy Eq. (20) which is quite instruc-
tive. Namely for n-1 the limiting lower limit is kd41 while
for n-1 the minimal value of kd becomes quite large. This
simply tells us that the ratio of the product of the production
rates to the product of the degradation rates must always be
greater than 1 for bistability to occur, and the lower the degree
of cooperativity (n) the larger the ratio must be.
4.
 If n, K and kd satisfy these necessary conditions then bistability
is only possible if kdA ½kd�,kdþ � (cf. Fig. 3).
5.
 The locations of the minimal (x�) and maximal (x+) values of x

bounding the bistable region are independent of kd.

6.
1.1
Finally
(a) (x+�x�) is a decreasing function of increasing n for

constant kd,K
(b) (x+�x�) is an increasing function of increasing K for

constant n,kd.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Local and global stability. The local stability of a steady state xn

is determined by the solutions of the eigenvalue equation
(Yildirim et al., 2004)

ðlþg1Þðlþg2Þðlþg3Þ�g1g2g3kdf u� ¼ 0, f u� ¼ f uðx�Þ: ð21Þ

Set

a1 ¼
X3

i ¼ 1

gi, a2 ¼
X3

ia j ¼ 1

gigj, a3 ¼ ð1�kdf u�Þ
Y3

i ¼ 1

gi,

so (21) can be written as

l3
þa1l

2
þa2lþa3 ¼ 0: ð22Þ

By Descartes’s rule of signs, (22) will have either no positive roots
for f u�A ½0,k�1

d Þ or one positive root otherwise. With this informa-
tion and using the notation SN to denote a locally stable node, HS
a half or neutrally stable steady state, and US an unstable steady
state (saddle point), then there will be:
Fig. 4. Schematic illustration that there is only a single solution of Eq. (15) for all

�

values of k with repressible regulation. The monotone decreasing graph is f for a

A single steady state X1

n (SN), for kdA ½0,kd�Þ.

d

repressible operon, while the straight lines are x=k . This figure was constructed
�

d

with n¼4 and D¼ 10. See the text for further details.
Two coexisting steady states X1
n (SN) and X2

n
¼X3

n (HS, born
through a saddle node bifurcation) for kd ¼ kd�.
�
 Three coexisting steady states X1
n (SN), X2

n (US), X3
n (SN) for

kdA ðkd�,kdþ Þ.

�
 Two coexisting steady states X1

n
¼X2

n (HS at a saddle node
bifurcation), and X3

n (SN) for kd ¼ kdþ .

�
 One steady state X3

n (SN) for kdþokd.

For the inducible operon, other work extends these local
stability considerations and we have the following result char-
acterizing the global behaviour:

Theorem 1 (Othmer, 1976; Smith, 1995 Proposition 2.1,

Chapter 4). For an inducible operon with j given by Eq. (3), define

II ¼ [1/K,1]. There is an attracting box BI �Rþ3 defined by

BI ¼ fðx1,x2,x3Þ : xiA II , i¼ 1,2,3g

such that the flow St is directed inward everywhere on the surface of

BI. Furthermore, all X�ABI and
1.
 If there is a single steady state, i.e. X1
n for kdA ½0,kd�Þ, or X3

n for

kdþokd, then it is globally stable.

2.
 If there are two locally stable nodes, i.e. X1

n and X3
n for

kdA ðkd�,kdþ Þ, then all flows S(X0) are attracted to one of them.
(See Selgrade, 1979 for a delineation of the basin of attraction of

X1
n and X3

n.)

2.3.3. Repressible regulation

As illustrated in Fig. 4, the repressible operon has a single
steady state corresponding to the unique solution xn of Eq. (15).
To determine its local stability we apply the Routh–Hurwitz
criterion to the eigenvalue Eq. (22). The steady state correspond-
ing to xn will be locally stable (i.e. have eigenvalues with negative
real parts) if and only if a140 (always the case) and

a1a2�a340: ð23Þ

The well-known relation between the arithmetic and geometric
means

1

n

Xn

i ¼ 1

giZ

Yn

i ¼ 1

gi

 !1=n

,



M.C. Mackey et al. / Journal of Theoretical Biology 274 (2011) 84–96 89
when applied to both a1 and a2 gives, in conjunction with Eq. (23),

a1a2�a3Zð8þkdf u�Þ
Y3

i ¼ 1

gi40:

Thus as long as f u�4�8=kd, the steady state corresponding to xn

will be locally stable. Once condition (23) is violated, stability of
xn is lost via a supercritical Hopf bifurcation and a limit cycle is
born. One may even compute the Hopf period of this limit cycle
by assuming that l¼ joH ðj¼

ffiffiffiffiffiffiffi
�1
p
Þ in Eq. (22) where oH is the

Hopf angular frequency. Equating real and imaginary parts of the
resultant yields oH ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
a3=a1

p
or

TH ¼
2p
oH
¼ 2p	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3
i ¼ 1 gi

ð1�kdf u�Þ
Q3

i ¼ 1 gi

vuut :

These local stability results tell us nothing about the global
behaviour when stability is lost, but it is possible to characterize
the global behaviour of a repressible operon with the following

Theorem 2 (Smith, 1995 Theorem 4.1 & Theorem 4.2,

Chapter 3). For a repressible operon with j given by Eq. (4), define

IR ¼ [K1/K,1]. There is a globally attracting box BR �Rþ3 defined by

BR ¼ fðx1,x2,x3Þ : xiA IR, i¼ 1,2,3g

such that the flow S is directed inward everywhere on the surface of

BR. Furthermore there is a single steady state X�ABR. If Xn is locally

stable it is globally stable, but if Xn is unstable then a generalization

of the Poincare–Bendixson theorem (Smith, 1995, Chapter 3) implies

the existence of a globally stable limit cycle in BR.

Remark 2. There is no necessary connection between the Hopf
period computed from the local stability analysis and the period
of the globally stable limit cycle.
3. Fast and slow variables

In dynamical systems, considerable simplification and insight
into the behaviour can be obtained by identifying fast and slow
variables. This technique is especially useful when one is initially
interested in the approach to a steady state. In this context a fast
variable is one that relaxes much more rapidly to a conditional
equilibrium than a slow variable (Haken, 1983). In many systems,
including chemical and biochemical ones, this is often a conse-
quence of differences in degradation rates, with the fastest
variable the one that has the largest degradation rate. We employ
the same strategy here to obtain approximations to the determi-
nistic dynamics that will be used in the next section.

It is often the case that the degradation rate of mRNA is much
greater than the corresponding degradation rates for both the
intermediate protein and the effector ðg1bg2,g3Þ so in this case
the mRNA dynamics are fast and we have the approximate
relationship

x1Ckdf ðx3Þ:

Consequently the three variable system describing the generic
operon reduces to a two variable one involving the slower
intermediate and effector:

dx2

dt
¼ g2½kdf ðx3Þ�x2�, ð24Þ

dx3

dt
¼ g3ðx2�x3Þ: ð25Þ

In our considerations of specific single operon dynamics below we
will also have occasion to examine two further subcases, namely

Case1. Intermediate (protein) dominated dynamics. If it should
happen that g1bg3bg2 (as for the lac operon, then the effector
also qualifies as a fast variable so

x3Cx2

and thus from (24)–(25) we recover the one dimensional equation
for the slowest variable, the intermediate:

dx2

dt
¼ g2½kdf ðx2Þ�x2�: ð26Þ

Case2. Effector (enzyme) dominated dynamics. Alternately, if
g1bg2bg3 then the intermediate is a fast variable relative to
the effector and we have

x2Cx3

so our two variable system (24)–(25) reduces to a one dimen-
sional system

dx3

dt
¼ g3½kdf ðx3Þ�x3� ð27Þ

for the relatively slow effector dynamics.
Both Eqs. (26) and (27) are of the form

dx

dt
¼ g½kdf ðxÞ�x� ð28Þ

where g is either g2 for protein (x2) dominated dynamics or g3 for
effector (x3) dominated dynamics.
4. Distributions with intrinsic bursting

4.1. Generalities

It is well-documented experimentally (Cai et al., 2006; Chubb
et al., 2006; Golding et al., 2005; Raj et al., 2006; Sigal et al., 2006;
Yu et al., 2006) that in some organisms the amplitude of protein
production through bursting translation of mRNA is exponentially
distributed at the single cell level with density

hðyÞ ¼
1

b
e�y=b , ð29Þ

where b is the average burst size, and that the frequency of
bursting j is dependent on the level of the effector. Writing
Eq. (29) in terms of our dimensionless variables we have

hðxÞ ¼
1

b
e�x=b: ð30Þ

Remark 3. The technique of eliminating fast variables described
in Section 2.3 above (also known as the adiabatic elimination
technique, Haken, 1983) has been extended to stochasti-
cally perturbed systems when the perturbation is a Gaussian
distributed white noise, cf. Stratonovich (1963, Chapter 4,
Section 11.1), Wilemski (1976), Titular (1978), and Gardiner (1983,
Section 6.4). However, to the best of our knowledge, this type of
approximation has never been extended to the situation dealt with
here in which the perturbation is a jump Markov process.

The analog of the deterministic intermediate protein domi-
nated Case 1 above (when g1bg3bg2) is

dx2

dt
¼�g2x2þXðh,jðx2ÞÞ with jðx2Þ ¼ g2jmf ðx2Þ, ð31Þ

where Xðh,jÞ denotes a jump Markov process, occurring at a rate
j, whose amplitude is distributed with density h as given in (30).
Analogously, in the Case 2 effector dominated situation the
equation becomes

dx3

dt
¼�g3x3þXðh,jðx3ÞÞ with jðx3Þ ¼ g3jmf ðx3Þ: ð32Þ
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Eqs. (31) and (32) can both be written as

dx

dt
¼�gxþXðh,jðxÞÞ, with jðxÞ ¼ gkbf ðxÞ, kb �jm:

Remark 4. In the case of bursting we will always take kb �jm in
contrast to the deterministic case where kd ¼ bdjm.

From Mackey and Tyran-Kamińska (2008) the corresponding
operator equation for the evolution of the density u(t,x) when
there is a single dominant slow variable is given by

@uðt,xÞ

@t
�g @ðxuðt,xÞÞ

@x
¼�gkbf ðxÞuðt,xÞþgkb

Z x

0
f ðyÞuðt,yÞhðx�yÞ dy:

ð33Þ

Remark 5. This is a straightforward generalization of what
Gardiner (1983, Section 3.4) refers to as the differential Chap-
man–Kolmogorov equation.

Stationary solutions un(x) of (33) are solutions of

�
dðxu�ðxÞÞ

dx
¼�kbf ðxÞu�ðxÞþkb

Z x

0
f ðyÞu�ðyÞhðx�yÞ dy: ð34Þ

If there is a unique stationary density, then the solution u(t,x) of
Eq. (33) is said to be asymptotically stable (Lasota and Mackey,
1994) in the sense that

lim
t-1

Z 1
0
juðt,xÞ�u�ðxÞj dx¼ 0

for all initial densities u(0,x).

Theorem 3 (Mackey and Tyran-Kamińska, 2008, Theorem 7). The

unique stationary density of Eq. (34), with f given by Eq. (9) and h

given by (29), is

u�ðxÞ ¼
C
x

e�x=bexp kb

Z x f ðyÞ

y
dy

� �
, ð35Þ

where C is a normalizing constant such that
R1

0 u�ðxÞdx¼ 1. Further,
u(t,x) is asymptotically stable.

Remark 6. The stationary density (35) is found by rewriting
Eq. (34) in the form

dyðxÞ

dx
þ

yðxÞ

b
�kb

f ðxÞ

x
yðxÞ ¼ 0, yðxÞ � xu�ðxÞ

using Laplace transforms and solving by quadratures. Note also
that we can represent un as

u�ðxÞ ¼ Cexp

Z x kbf ðyÞ

y
�

1

b
�

1

y

� �
dy,

where C is a normalizing constant.

4.2. Distributions in the presence of bursting

4.2.1. Protein distribution in the absence of control

If the burst frequency j¼ gkbf is independent of the level of
all of the participating molecular species, then the solution given
in Eq. (35) is the density of the gamma distribution:

u�ðxÞ ¼
1

bkbGðkbÞ
xkb�1e�x=b,

where Gð�Þ denotes the gamma function. For kbAð0,1Þ, u�ð0Þ ¼1
and un is decreasing while for kb41, un(0)¼0 and there is a
maximum at x¼ bðkb�1Þ.

4.2.2. Controlled bursting

We next consider the situation in which the burst frequency
j is dependent on the level of x, c.f. Eq. (5). This requires that we
evaluate

kb

Z x f ðyÞ

y
dy¼

Z x kb

y

1þyn

LþDyn

� �
dy¼ ln xkbL

�1

ðLþDxnÞ
y

n o
,

where L,D are enumerated in Table 1 for both the inducible and
repressible operons treated in Section 2.2 and

y¼
kb

nD
1�

D
L

� �
:

Consequently, the steady state density (35) explicitly becomes

u�ðxÞ ¼ Ce�x=bxkbL
�1
�1ðLþDxnÞ

y: ð36Þ

The first two terms of Eq. (36) are simply proportional to the
density of the gamma distribution. For 0okbL

�1o1 we have
u�ð0Þ ¼1 while for kbL

�141, u�ð0Þ ¼ 0 and there is at least one
maximum at a value of x40. We have u�ðxÞ40 for all x40 and
from Remark 6 it follows that

u�uðxÞ ¼ u�ðxÞ
kbf ðxÞ

x
�

1

b
�

1

x

� �
, x40: ð37Þ

Observe that if kbr1 then un is a monotone decreasing function
of x, since kbf ðxÞr1 for all x40. Thus we assume in what follows
that kb41.

Since the analysis of the qualitative nature of the stationary
density leads to different conclusions for the inducible and
repressible operon cases, we consider each in turn.
4.2.3. Bursting in the inducible operon

For y40, as in the case of an inducible operon, the third term
of Eq. (36) is a monotone increasing function of x and, conse-
quently, there is the possibility that un may have more than one
maximum, indicative of the existence of bistable behaviour. In
this case, the stationary density becomes

u�ðxÞ ¼ Ce�x=bxkbK�1�1ðKþxnÞ
y, y¼

kb

n
ð1�K�1Þ:

From (37) it follows that we have u�uðxÞ ¼ 0 for x40 if and only if

1

kb

x

b
þ1

� �
¼

1þxn

Kþxn
: ð38Þ

Again, graphical arguments (see Fig. 5) show that there may be up
to three roots of (38). For illustrative values of n, K, and b, Fig. 6
shows the graph of the values of x at which u�uðxÞ ¼ 0 as a function
of kb. When there are three roots of (38), we label them as
~x1o ~x2o ~x3.

Generally we cannot determine when there are three roots.
However, we can determine when there are only two roots
~x1o ~x3 from the argument of Section 2.3.2. At ~x1 and ~x3 we will
not only have Eq. (38) satisfied but the graph of the right hand
side of (38) will be tangent to the graph of the left hand side at
one of them so the slopes will be equal. Differentiation of (38)
yields the second condition

n
xn�1

ðKþxnÞ
2
¼

1

kbbðK�1Þ
ð39Þ

We first show that there is an open set of parameters ðb,K ,kbÞ

for which the stationary density un is bimodal. From Eqs. (38) and
(39) it follows that the value of x7 at which tangency will occur is
given by

x7 ¼ bðkb�1Þz7

and z7 are positive solutions of equation

z

n
¼ 1�z�bð1�zÞ2, where b¼

Kðkb�1Þ

ðK�1Þkb
:
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Fig. 5. Schematic illustration of the possibility of one, two or three solutions of

Eq. (38) for varying values of kb with bursting inducible regulation. The straight

lines correspond (in a clockwise direction) to kb Að0,kb�Þ, kb ¼ kb� , kb Aðkb� ,kbþ Þ

(and, respectively, kb oK , kb ¼ K , Kokb), kb ¼ kbþ , and kbþokb . This figure was

constructed with n¼4, K¼10 and b¼1 for which kb� ¼ 4:29 and kbþ ¼ 14:35 as

computed from (42). See the text for further details.
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Fig. 6. Full logarithmic plot of the values of x at which u�uðxÞ ¼ 0 versus the

parameter kb , obtained from Eq. (38), for n¼4, K ¼ 10, and (left to right) b¼5,

1 and b¼ 1/10. Though somewhat obscured by the logarithmic scale for x, the

graphs always intersect the kb axis at kb ¼ K. Additionally, it is important to note

that uu�ð0Þ ¼ 0 for Kokb , and that there is always a maximum at 0 for 0okb oK.

See the text for further details.
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We explicitly have

z7 ¼
1

2bn
2bn�ðnþ1Þ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þ2�4bn

q� �

provided that

ðnþ1Þ2

4n
Zb¼

Kðkb�1Þ

ðK�1Þkb
: ð40Þ

Eq. (40) is always satisfied when kboK or when kb4K and K is as
in the deterministic case (19). Observe also that we have
zþ404z� for kboK and zþ4z�40 for kb4K. The two
corresponding values of b at which a tangency occurs are given by

b7 ¼
1

ðkb�1Þz7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

bð1�z7 Þ
�K

n

s
and z7 40:

If kboK then u�ð0Þ ¼1 and un is decreasing for brbþ , while for
b4bþ there is a local maximum at x40. If kb4K then un(0)¼0
and un has one or two local maximum. As a consequence, for n41
we have a bimodal steady state density un if and only if the
parameters kb and K satisfy (40), kb4K , and bA ðbþ ,b�Þ.

We now want to find the analogy between the bistable
behaviour in the deterministic system and the existence of
bimodal stationary density un. To this end we fix the parameters
b40 and K41 and vary kb as in Fig. 5. Eqs. (38) and (39) can also
be combined to give an implicit equation for the value of x7 at
which tangency will occur

x2n�ðK�1Þ n�
Kþ1

K�1

� �
xn�nbðK�1Þxn�1þK ¼ 0 ð41Þ

and the corresponding values of kb7 are given by

kb7 ¼
x8 þb

b

� �
Kþxn

8

1þxn
8

� �
: ð42Þ

There are two cases to distinguish.
Case 1. 0okboK . In this case, u�ð0Þ ¼1. Further, the same

graphical considerations as in the deterministic case show that
there can be none, one, or two positive solutions to Eq. (38).
If kbokb�, there are no positive solutions, un is a monotone
decreasing function of x. If kb4kb�, there are two positive
solutions ( ~x2 and ~x3 in our previous notation, ~x1 has become
negative and not of importance) and there will be a maximum in
un at ~x3 with a minimum in un at ~x2.

Case2. 0oKokb. Now, un(0)¼0 and there may be one, two, or
three positive roots of Eq. (38). We are interested in knowing
when there are three which we label as ~x1o ~x2o ~x3 as ~x1, ~x3 will
correspond to the location of maxima in un while ~x2 will be the
location of the minimum between them and the condition for the
existence of three roots is kb�okbokbþ .

We see then that the different possibilities depend on the
respective values of K, kb�, kbþ , and kb. To summarize, we may
characterize the stationary density un for an inducible operon in
the following way:
1.
 Unimodal type 1: u�ð0Þ ¼1 and un is decreasing for
0okbokb� and 0okboK
2.
 Unimodal type 2: un(0)¼0 and un has a single maximum at
(a) ~x140 for Kokbokb� or
(b) at ~x340 for kbþokb and Kokb
3.

Bimodal type 1: u�ð0Þ ¼1 and un has a single maximum at
~x340 for kb�okboK
4.
 Bimodal type 2: un(0)¼0 and un has two maxima at ~x1, ~x3,
0o ~x1o ~x3 for kb�okbokbþ and Kokb

Remark 7. Two comments are in order.
1.
 Remember that the case n¼1 cannot display bistability in the
deterministic case. However, in the case of bursting in the
inducible system when n¼1, if K=bþ1okboK and
b4K=ðK�1Þ, then u�ð0Þ ¼1 and un also has a maximum at
~x340. Thus in this case one can have a Bimodal type
1 stationary density.Lipshtat et al. (2006),
2.
 in a numerical study of a mutually inhibitory gene arrange-
ment (which is dynamically equivalent to an inducible
operon), provided numerical evidence that bistability was
possible without cooperative binding (i.e. n¼1). The
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demonstration here of bistability gives analytic support to
their conclusion.

We now choose to see how the average burst size b affects
bistability in the density un by looking at the parametric plot of
kbðxÞ versus K(x). Define

Fðx,bÞ ¼
xnþ1

nxn�1ðxþbÞ
: ð43Þ

Then

Kðx,bÞ ¼
1þxnFðx,bÞ

1�Fðx,bÞ
and kbðx,bÞ ¼ ½Kðx,bÞþxn�

xþb

bðxnþ1Þ
: ð44Þ

The bifurcation diagram obtained from a parametric plot of K

versus kb (with x as the parameter) is illustrated in Fig. 7 for n¼4
and two values of b. Note that it is necessary for 0oKokb in
order to obtain Bimodal type 2 behaviour.

For bursting behaviour in an inducible situation, there are two
different bifurcation patterns that are possible. The two different
cases are delineated by the respective values of K and kb, as
shown in Figs. 6 and 7. Both bifurcation scenarios share the
property that while increasing the bifurcation parameter kb from
0 to 1, the stationary density un passes from a unimodal density
with a peak at a low value (either 0 or ~x1) to a bimodal density
and then back to a unimodal density with a peak at a high value
ð ~x3Þ.

In what will be referred as Bifurcation type1, the maximum at
x¼0 disappears when there is a second peak at x¼ ~x3. The
sequence of densities encountered for increasing values of kb

is then: Unimodal type 1 to a Bimodal type 1 to a Bimodal
type 2 and finally to a Unimodal type 2 density.

In the Bifurcation type2 situation, the sequence of density types
for increasing values of kb is: Unimodal type 1 to a Unimodal type
2 and then a Bimodal type 2 ending in a Unimodal type 2 density.

The two different kinds of bifurcation that can occur are easily
illustrated for b¼1 as the parameter kb is increased. (An enlarged
diagram in the region of interest is shown in Fig. 8.) Fig. 9
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Fig. 7. In this figure we present two bifurcation diagrams (for n¼4) in ðK ,kbÞ

parameter space delineating unimodal from bimodal stationary densities un in an

inducible operon with bursting as obtained from Eq. (44) with (43). The upper

cone-shaped plot is for b¼1/10 while the bottom one is for b¼1. In both cone-

shaped regions, for any situation in which the lower branch is above the line

kb ¼ K (lower straight line) then bimodal behaviour in the stationary solution

un(x) will be observed with maxima in un at positive values of x, ~x1 and ~x3.
illustrates Bifurcation type 1, when K¼4, and kb increases from
low to high values. As kb increases, we pass from a Unimodal type
1 density, to a Bimodal type 1 density. Further increases in kb lead
to a Bimodal type 2 density and finally to a Unimodal type
2 density. This bifurcation cannot occur, for example, when
b¼ 1=10 and Kr15 (see Fig. 7).

Fig. 10 shows Bifurcation type 2, when K¼3. As kb increases,
we pass from a Unimodal type 1 density, to a Unimodal type
2 density. Then with further increases in kb, we pass to a Bimodal
type 2 density and finally back to a Unimodal type 2 density.

Remark 8. There are several qualitative conclusions to be drawn
from the analysis of this section.
1.
κ

Fig
hor
The presence of bursting can drastically alter the regions of
parameter space in which bistability can occur relative to the
deterministic case. Fig. 11 presents the regions of bistability in
the presence of bursting in the ðK ,b � kbÞ parameter space,
which should be compared to the region of bistability in the
deterministic case in the ðK ,kdÞ parameter space (bkb is the
mean number of proteins produced per unit of time, as is kd).
2.
 When 0okboK , at a fixed value of kb, increasing the average
burst size b can lead to a bifurcation from Unimodal type 1 to
Bimodal type 1.
3.
 When 0oKokb, at a fixed value of kb, increasing b can lead to
a bifurcation from Unimodal type 2 to Bimodal type 2 and then
back to Unimodal type 2.

4.2.4. Bursting in the repressible operon

The possible behaviours in the stationary density un for the
repressible operon are easy to delineate based on the analysis of
the previous section, with Eq. (38) replaced by

1

kb

x

b
þ1

� �
¼

1þxn

1þDxn
: ð45Þ

Again graphical arguments (see Fig. 12) show that Equation (45)
may have either none or one solution. Namely,
1.
 For 0okbo1, u�ð0Þ ¼1 and un is decreasing. Eq. (45) does not
have any solution (Unimodal type 1).
2.
 For 1okb, un(0)¼0 and un has a single maximum at a value of
x40 determined by the single positive solution of Eq. (45)
(Unimodal type 2).
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. 8. This figure presents an enlarged portion of Fig. 7 for b¼1. The various

izontal lines mark specific values of kb referred to in Figs. 9 and 10.



2.8

3

3.15

3.3

3.7

4

4.45

0 1 2 3 4 5 6 7 8
5

x

κ b

Fig. 10. An illustration of Bifurcation type2 for intrinsic bursting. For several values

of the bifurcation parameter kb (between 2.8 and 5 from top to down), the

stationary density un is plotted versus x between 0 and 8. The parameters used are

b¼1, K¼3, and n¼4. For kb o3, un has a single maximum at x¼0, and for

3okb t3:3, un has a single maximum at ~x1 40. For 3:3tkb t4:45, un has two

local maxima at 0o ~x1 o ~x3, and finally for kb\4:45 un has a single maximum at
~x3 40. Note that for each plot of the density, the scale of the ordinate is arbitrary

to improve the visualization.
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Fig. 11. The presence of bursting can drastically alter regions of bimodal

behaviour as shown in this parametric plot (for n¼4) of the boundary in

ðK ,b � kbÞ parameter space delineating unimodal from bimodal stationary densities

un in an inducible operon with bursting and in ðK ,kdÞ parameter space delineating

one from three steady states in the deterministic inducible operon. From top to

bottom, the regions are for b¼10, 1, 0.1 and 0.01. The lowest (heavy dashed line)

is for the deterministic case. Note that for b ¼ 0.01, the two regions of bistability

and bimodality coincide and are indistinguishable from one another.
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Fig. 9. In this figure we illustrate Bifurcation type1 when intrinsic bursting is

present. For a variety of values of the bifurcation parameter kb (between 3 and

6 from top to down), the stationary density un is plotted versus x between 0 and 8.

The values of the parameters used in this figure are b¼1, K¼4, and n¼4. For

kb t3:5, un has a single maximum at x¼0. For 3:5tkb o4, un has two local

maxima at x¼0 and ~x3 41. For 4okb t5:9, un has two local maxima at

0o ~x1 o ~x3. Finally, for kb\5:9, un has a single maximum at ~x3 41. Note that

for each plot of the density, the scale of the ordinate is arbitrary to improve the

visualization.
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4.3. Recovering the deterministic case

We can recover the deterministic behaviour from the bursting
dynamics with a suitable scaling of the parameters and limiting
procedure. With bursting production there are two important
parameters (the frequency kb and the amplitude b), while with
deterministic production there is only kd. The natural limit to
consider is when

b-0, kb-1 with bkb � kd:

In this limit, the implicit equations which define the maximum points
of the steady state density, become the implicit Eqs. (15) and (16)
which define the stable steady states in the deterministic case.

The bifurcations will also take place at the same points, because
we recover Eq. (18) in the limit. However, Bimodality type 1 as well
as the Unimodal type 1 behaviours will no longer be present, as in the
deterministic case, because for kb-1 we have kb4K. Finally, from
the analytical expression for the steady state density (36) un will
became more sharply peaked as b-0. Due to the normalization
constant (which depends on b and kb), the mass will be more
concentrated around the larger maximum of un.

5. Distributions with fluctuations in the degradation rate

5.1. Generalities

For a generic one dimensional stochastic differential equation
of the form

dxðtÞ ¼ aðxÞ dtþsðxÞ dwðtÞ

the corresponding Fokker Planck equation

@u

@t
¼�

@ðauÞ

@x
þ

1

2

@2ðs2uÞ

@x2
ð46Þ

can be written in the form of a conservation equation

@u

@t
þ
@J

@x
¼ 0,

where

J¼ au�
1

2

@ðs2uÞ

@x
is the probability current. In a steady state when @tu� 0, the
current must satisfy J¼constant throughout the domain of
the problem. In the particular case when J¼0 at one of the
boundaries (a reflecting boundary) then J¼0 for all x in the
domain and the steady state solution un of Eq. (46) is easily
obtained with a single quadrature as

u�ðxÞ ¼
C

s2ðxÞ
exp 2

Z x aðyÞ
s2ðyÞ

dy

	 

,

where C is a normalizing constant as before.
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Fig. 12. Schematic illustration that there can be one or no solution of Eq. (45),

depending on the value of kb , with repressible regulation. The straight lines

correspond (in a clockwise direction) to kb ¼ 2 and 0:8. This figure was con-

structed with n¼4, D¼ 10 and b¼1. See the text for further details.
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5.2. Fluctuations in degradation rate

In our considerations of the effects of continuous fluctuations,
we examine the situation in which fluctuations appear in the
degradation rate g of the generic Eq. (28). From standard chemical
kinetic arguments (Oppenheim et al., 1969), if the fluctuations are
Gaussian distributed the mean numbers of molecules decaying in
a time dt is simply gxdt and the standard deviation of these
numbers is proportional to

ffiffiffi
x
p

. Thus we take the decay to be given
by the sum of a deterministic component gxdt and a stochastic
component s

ffiffiffi
x
p

dwðtÞ, where w is a standard Brownian motion,
and write Eq. (28) as a stochastic differential equation in the form

dx¼ g½kdf ðxÞ�x� dtþs
ffiffiffi
x
p

dw:

Within the Ito interpretation of stochastic integration, this equa-
tion has a corresponding Fokker Planck equation for the evolution
of the ensemble density u(t,x) given by (Lasota and Mackey, 1994)

@u

@t
¼�

@½ðgkdf ðxÞ�gxÞu�

@x
þ
s2

2

@2ðxuÞ

@x2
: ð47Þ

In the situation we consider here, sðxÞ ¼ s
ffiffiffi
x
p

and
aðxÞ ¼ gkdf ðxÞ�gx. Further, since concentrations of molecules
cannot become negative the boundary at x¼0 is reflecting and
the stationary solution of Eq. (47) is given by

u�ðxÞ ¼
C
x

e�2gx=s2
exp

2gkd

s2

Z x f ðyÞ

y
dy

� �
:

Set ke ¼ 2gkd=s2. Then the steady state solution is given explicitly
by

u�ðxÞ ¼ Ce�2gx=s2
xkeL�1

�1½LþDxn�y, ð48Þ

where L,DZ0 and y are given in Table 1.

Remark 9. Two comments are in order.
1.
 Because the form of the solutions for the situation with
bursting (intrinsic noise) and extrinsic noise are identical, all
of the results of the previous section can be carried over here
with the proviso that one replaces the average burst amplitude
b with b-s2=2g� bw and kb-ke ¼ 2gkd=s2 � kd=bw.
2.
 We can look for the regions of bimodality in the ðK ,kdÞ-plane,
for a fixed value of bw. We have the implicit equation for x7

x2n�ðK�1Þ n�
Kþ1

K�1

� �
xn�nbwðK�1Þxn�1þK ¼ 0

and the corresponding values of kd are given by

kd7 ¼ ðx8 þbwÞ
Kþxn

8

1þxn
8

� �
:

Then the bimodality region in the ðK ,kdÞ-plane with noise in
the degradation rate is the same as the bimodality region for
bursting in the ðK ,bkbÞ�plane.

We have also the following result.

Theorem 4 (Pichór and Rudnicki, 2000, Theorem 2). The unique

stationary density of Eq. (47) is given by Eq. (48). Further u(t,x) is

asymptotically stable.

5.3. The deterministic limit

Here again we can recover the deterministic behaviour from a
limit in the extrinsic fluctuations dynamics. In this case, however,
the frequency and the amplitude of the perturbation are already
scaled. Then the limit s-0 gives the same result as in the
deterministic case.
6. Discussion and conclusions

In trying to understand experimentally observed distribu-
tions of intracellular components from a modelling perspective,
the norm in computational and systems biology is often to use
algorithms developed initially by Gillespie (1977) to solve the
chemical master equation for specific situations. See Lipniacki
et al. (2006) for a typical example. However, these investigations
demand long computer runs, are computationally expensive, and
further offer little insight into the possible diversity of behaviours
that different gene regulatory networks are capable of.

There have been notable exceptions in which the problem has
been treated FROM an analytical point of view, cf. Kepler and
Elston (2001), Friedman et al. (2006), Bobrowski et al. (2007),
and Shahrezaei and Swain (2008a). The advantage of an analytic
development is that one can determine how different elements of
the dynamics shape temporal and steady state results for the
densities u(t,x) and un(x), respectively.

Here we have extended this analytic treatment to simple
situations in which there is either bursting transcription and/or
translation (building on and expanding the original work
of Friedman et al., 2006), or fluctuations in degradation rates, as
an alternative to the Gillespie (1977) algorithm approach. The
advantage of the analytic approach that we have taken is that it is
possible, in some circumstances, to give precise conditions on the
statistical stability of various dynamics. Even when analytic
solutions are not available for the partial integro-differential
equations governing the density evolution, the numerical solution
of these equations may be computationally more tractable than
using the Gillespie (1977) approach.

One of the more surprising results of the work reported here is
that the stationary densities in the presence of bursting noise
derived in Section 4 are analytically indistinguishable from those
in the presence of degradation noise studied in Section 5. We had
expected that there would be clear differences that would offer
some guidance for the interpretation of experimental data to
determine whether one or the other was of predominant impor-
tance. Of course, the next obvious step is to examine the problem
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in the presence of both noise sources simultaneously. However,
the derivation of the evolution equation in this case, as has been
pointed out (Hierro and Dopazo, 2009), is not straightforward and
we will report on our results in a separate communication.
Likewise, an investigation of the effects of colored noise and/or
non-Gaussian distributed noise is of interest from a biological
perspective. However, both of these refinements entail consider-
able mathematical difficulties and will be dealt with in a later
communication.

In terms of the issue of when bistability, or a unimodal versus
bimodal stationary density is to be expected, we have pointed out
the analogy between the unimodal and bistable behaviours in the
deterministic system and the existence of bimodal stationary
densities in the stochastic systems. Our analysis makes clear the
critical role of the dimensionless parameters n, k (be it kd, kb, or
ke), b (either b or bw), and the fractional leakage K�1. The relations
between these defining the various possible behaviours are
subtle, and we have given these in the relevant sections of our
analysis.

The appearance of both unimodal and bimodal distributions
of molecular constituents as well as what we have termed
Bifurcation Type 1 and Bifurcation Type 2 have been extensively
discussed in the applied mathematics literature (cf. Horsthemke
and Lefever, 1984; Feistel and Ebeling, 1989 and others) and the
bare foundations of a stochastic bifurcation theory have been laid
down by Arnold (1998). Significantly, these are also well-docu-
mented in the experimental literature as has been shown by
Gardner et al. (2000), Acar et al. (2005), Friedman et al. (2006),
Hawkins and Smolke (2006), Zacharioudakis et al. (2007), Mariani
et al. (2010), and Song et al. (2010) for both prokaryotes and
eukaryotes. If the biochemical details of a particular system are
sufficiently well-characterized from a quantitative point of view
so that relevant parameters can be estimated, it may be possible
to discriminate between whether these behaviours are due to the
presence of bursting transcription/translation or extrinsic noise.
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