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a b s t r a c t

Cyclical neutropenia (CN) is a rare hematopoietic disorder in which the patient’s neutrophil level drops to

extremely low levels for a few days approximately every three weeks. CN is effectively treated with

granulocyte colony stimulating factor (G-CSF), which is known to interfere with apoptosis in neutrophil

precursors and to consequently increase the circulating neutrophil level. However, G-CSF treatment

usually fails to eliminate the oscillation. In this study, we establish an age-structured model of

hematopoiesis, which reduces to a set of four delay differential equations with specific forms of initial

functions. We numerically investigate the possible stable solutions of the model equations with respect to

changes in the parameters as well as the initial conditions. The results show that the hematopoietic

system possesses multistability for parameters typical of the normal healthy state. From our numerical

results, decreasing the proliferation rate of neutrophil precursors or increasing the stem cell death rate are

two possible mechanisms to induce cyclical neutropenia, and the periods of the resulting oscillations are

independent of the changing parameters. We also discuss the dependence of the model solution on the

initial condition at normal parameter values corresponding to a healthy state. Using insight from our

results we design a hybrid treatment method that is able to abolish the oscillations in CN.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The hematopoietic regulatory system is a dynamical system
with negative feedback control of all circulating cellular blood
components. In a healthy adult person, approximately 1011–1012

new blood cells are produced daily in order to maintain the steady
state levels in the peripheral circulation. All blood cells are derived
from a common origin in the bone marrow, the hematopoietic stem
cells (HSCs). These stem cells differentiate and proliferate, giving
rise to the three major cell lines: the leukocytes (white blood cells),
erythrocytes (red blood cells), and platelets. The three peripheral
regulatory loops are of a negative feedback nature. They are
mediated by a variety of cytokines including granulocyte colony
simulating factor (G-CSF) (Price et al., 1996), which regulates
neutrophil numbers, erythropoietin (EPO) (Adamson, 1999), which
mediates the regulation of erythrocyte production, and thrombo-
poietin (TPO) (Ratajczak et al., 1997; Tanimukai et al., 1997), which
regulates production of platelets and other cell lineages. These
cytokines are synthesized and released by cells of the hematopoi-
etic system. Despite the fact that the broad outlines of the
ll rights reserved.

i),
regulation process are clear, the detailed dynamics of how the
numbers of circulating cells of each type are regulated remain
somewhat obscure and have been attracting widespread interest
from different contexts (Collijn and Mackey, 2005a,b; Dingli et al.,
2007; Foo et al., 2009; Foley and Mackey, 2009; Lei and Mackey,
2007; Mahaffy et al., 1998; Marciniak-Czochra et al., 2009; Ostby
et al., 2004; Roeder et al., 2009; Rubinow and Lebowitz, 1975).
Deregulation of hematopoiesis can result in a number of hemato-
logical diseases with significant oscillations in one or more of the
circulating cells (Haurie et al., 1998; Foley and Mackey, 2009).
Examples of these diseases include cyclical neutropenia (CN)
(Colijn and Mackey, 2005b; Haurie et al., 1998, 1999a; von
Schulthess and Mazer, 1982), periodic chronic myelogenous leu-
kemia (PCML) (Colijn and Mackey, 2005a; Fortin and Mackey,
1999; Pujo-Menjouet and Mackey, 2004), cyclical thrombocytope-
nia (CT) (Apostu and Mackey, 2008; Pavord et al., 1996; Santillan
et al., 2000), and periodic auto-immune hemolytic anemia (AIHA)
(Mackey, 1979; Milton and Mackey, 1989). Of particular interest in
this paper is cyclical neutropenia.

Neutrophils are a class of white blood cells and comprise
approximately 60% of the blood cells. These cells are critically
important for the immune response and migrate from the blood to
tissue during an infection to destroy pathogens. Cyclical neutro-
penia is a type of severe chronic neutropenia with recurrent low
absolute neutrophil counts in the blood and CN patients therefore
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have recurrent infections as a clinical symptom. Patients with CN
are characterized by oscillations in the circulating neutrophil
count. The neutrophil count falls from normal to barely detectable
levels with a period of about 19–21 days (Guerry et al., 1973; Dale
and Hammond, 1988; Haurie et al., 1999b), although longer periods
have been observed (Haurie et al., 1999b). CN is also found in an
animal model, the grey collie (Lund et al., 1967). The canine
disorder closely resembles human CN with the exception of the
period that ranges from 11 to 15 days (Haurie et al., 1999a). In both
humans with CN and the grey collie, there is not only a periodic
decrease in the circulating neutrophil levels, but also a correspond-
ing oscillation of platelets, and occasionally the reticulocytes and
lymphocytes. Often (but not always), the period of the oscillation in
these other cell lines is the same as the period in the neutrophils
(Haurie et al., 1998, 1999a,b).

Cyclical neutropenia in humans is often treated using G-CSF
(Hammond et al., 1989), which is known to interfere with neutrophil
precursor apoptosis (Koury, 1992; Park, 1996; Migliaccio et al., 1990;
Williams and Smith, 1993). Administrating G-CSF to CN patients
usually results in an increased amplitude and decreased period of
the oscillations. In some isolated cases, G-CSF abolished the oscilla-
tions (Haurie et al., 1999b; Hammond et al., 1989). The reason for the
diverse responses to G-CSF treatment remains unclear.

In Bernard et al. (2003), a two-compartment model of HSCs and
the circulating neutrophils was used to study the origins of
oscillations in CN and to mimic the effect of G-CSF treatment. In
Foley and Mackey (2006), the same two-compartment model was
used to study the effects of G-CSF treatment with different
protocols. It was shown that, depending on the starting time of
G-CSF administration, the neutrophil count could either be stabi-
lized or show large amplitude oscillations. Similar results were also
noted in Colijn et al. (2007) in a more comprehensive four-
compartment model that was developed earlier (Colijn and
Mackey, 2005a,b). All these results suggest the possible co-exis-
tence of both a stable steady state and oscillatory neutrophil counts
(bistability) in the hematopoietic regulatory system. The bistability
was described in a two-compartment model, but the parameters
were away from the typical normal values (Bernard et al., 2003).
Fig. 1. A cartoon representation of the age-structu
Numerical simulations also found multiple oscillatory solutions in
both two- and four-compartment models (Bernard et al., 2003;
Colijn et al., 2007). However, the range of the system parameters
over which this bistability exists was not clear. In particular, it is not
clear whether the system would have bistability in the typical
healthy state, or in a state of post G-CSF treatment, and how the
oscillatory state in G-CSF treatment could be avoided.

In this paper, we numerically study the multistability in hematopoi-
etic regulation. This is done by investigating the possible stable
solutions of the system corresponding to different system parameters
and initial conditions. We will first introduce in Section 2 an age-
structured model of hematopoiesis, which is described by a set of delay
differential equation with particular forms for the initial functions. In
Section 3, we will discuss the bifurcation and multistability of the
model, and the effect of initial conditions. At the end of this section, we
propose a hybrid method that combines G-CSF administration and
blood transfusion/hemospasia as a possible treatment for CN. Simula-
tions show that this hybrid method is able to abolish the oscillation. The
paper concludes with a discussion in Section 4.
2. Model and method

2.1. Model formulation

In previous work the dynamics of the hematopoietic system has
been modeled by a set of nonlinear delay differential equations
(Colijn and Mackey, 2005a,b), which was obtained from the age-
structured models of the stem cell population (Mackey, 1978),
leukocytes (Hearn et al., 1998; Haurie et al., 2000; Bernard et al.,
2003), erythrocytes (Mackey, 1979; Bélair et al., 1995; Mahaffy
et al., 1998) and platelets (Bélair and Mackey , 1987; Santillan et al.,
2000). We refer this model in the present study.

The model under study is illustrated in Fig. 1. There are four
compartments, including the stem cells and three differentiated
cell lines.

Stem cells are classified as resting-phase (G0) cells (population
Q(t), cells/kg) or proliferating-phase (population s(t,a), cells/kg)
red model. See text for details and notation.
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(Mackey, 1978). The resting-phase cells can either re-enter the
proliferative phase at a rate bðQ Þ (day�1) that involves a negative
feedback, or differentiate into any of the three cell lines, leukocytes
(population n(t,a), cells/kg), erythrocytes (population r(t,a),
cells/kg), or platelets (population p(t,a), cells/kg), at rates kN

(day�1), kR (day�1), or kP (day�1), respectively. An age-structured
quantity s(t,a) is used to represent the population of proliferating
stem cells, with the age a¼0 for their time of entry into the
proliferative state. Moreover, the proliferating stem cells are
assumed to undergo mitosis at a fixed time tS after entry into
the proliferating compartment, and to be lost randomly at a rate gS

(day�1) during the proliferating phase (Mackey, 1996). Each
normal cell generates two resting-phase cells at the end of mitosis.

Age-structured models are used for the dynamics of leukocytes,
erythrocytes, and platelets, with age a¼0 for the time point of
differentiating from stem cells. All the differentiation rates kNðNÞ,
kRðRÞ, and kPðPÞ involve negative feedback loops, with the rates
depending on the population of the corresponding circulating cells
N(t), R(t), and P(t), respectively (Colijn and Mackey, 2005a). There are
two stages for each of the circulating cell lines after the differentia-
tion, first the amplification/maturation of precursor cells in the bone
marrow, and next circulation of mature cells throughout the body. In
the stage of amplification/maturation, the precursor cells undergo
many stages of cell division and randomly die in a period of tNM

(days) for leukocytes, tRM (days) for erythrocytes, and tPM (days) for
platelets, respectively. The proliferation rates of the precursor cells
are represented by ZN for leukocytes, ZR for erythrocytes, and ZP for
platelets, and are positive and assumed to be constants. Thus,
increasing the apoptosis rate of precursor cells can result in a
decrease of the proliferation rates. Circulating cells are lost at rates
gN , gR, and gP , respectively. In additional, the circulating erythrocytes
and platelets are actively destroyed at a fixed time tRS and tPS,
respectively, from their time of entering the circulating compartment
(Mahaffy et al., 1998; Bélair and Mackey, 1987).

Let

NðtÞ ¼

Z þ1
tNM

nðt,aÞ da

RðtÞ ¼

Z tRsum

tRM

rðt,aÞ da ð1Þ

PðtÞ ¼

Z tPsum

tPM

pðt,aÞ da,

which are the populations of circulating cells. Hereinafter we set
tRsum ¼ tRMþtRS,tPsum ¼ tPMþtPS. Also let

kðtÞ ¼ kNðNðtÞÞþkRðRðtÞÞþkPðPðtÞÞ ð2Þ

denote the total HSC differentiation rate of stem cells at time t. The
model is then described by the following partial differential
equations

rsðt,aÞ ¼�gSsðt,aÞ ðt40,0rartSÞ

dQ

dt
¼ 2sðt,tSÞ�ðbðQ ÞþkðtÞÞQ ðt40Þ

rnðt,aÞ ¼
ZNnðt,aÞ ðt40,0rartNMÞ

�gNnðt,aÞ ðt40,aZtNMÞ

(
ð3Þ

rrðt,aÞ ¼
ZRrðt,aÞ ðt40,0rartRMÞ

�gRrðt,aÞ ðt40,tRM rartRsumÞ

(

rpðt,aÞ ¼
ZPpðt,aÞ ðt40,0rartPMÞ

�gPpðt,aÞ ðt40,tPM rartPsumÞ

(

where r¼ @=@tþ@=@a.
The negative feedback functions are represented by Hill func-
tions (Colijn and Mackey, 2005a)

kNðNÞ ¼ f0
ys1

1

ys1

1 þNs1
, bðQ Þ ¼ k0

ys2

2

ys2

2 þQs2
, ð4Þ

kRðRÞ ¼
kr

1þKrRs3
, kPðPÞ ¼

kp

1þKpPs4
: ð5Þ

The boundary conditions at a¼0 are given by

sðt,0Þ ¼ bðQ ðtÞÞQ ðtÞ,
nðt,0Þ ¼ kNðNðtÞÞQ ðtÞ,

rðt,0Þ ¼ kRðRðtÞÞQ ðtÞ,

pðt,0Þ ¼ kPðPðtÞÞQ ðtÞ,

ðtZ0Þ ð6Þ

according to the negative feedback loops. The initial conditions are

sð0,aÞ ¼ gSðaÞ, ð0rartSÞ

Q ð0Þ ¼Q0

nð0,aÞ ¼ gNðaÞ, ð0rarþ1Þ ð7Þ

rð0,aÞ ¼ gRðaÞ, ð0rartRsumÞ

pð0,aÞ ¼ gPðaÞ, ð0rartPsumÞ

Eqs. (1)–(7) define the initial-boundary value problem for the
age-structured model of hematopoietic regulation.

When t4tmax ¼maxftS,tNM ,tRsum,tPsumg, we integrate Eq. (3) by
the method of characteristics to obtain the following model of delay
differential equations that has been studied in Colijn and Mackey
(2005a,b, 2007):

dQ

dt
¼�ðbðQ ÞþkNðNÞþkRðRÞþkPðPÞÞQþ2e�gStSbðQtS

ÞQtS
,

dN

dt
¼�gNNþeZNtNMkNðNtNM

ÞQtNM
,

dR

dt
¼�gRRþeZRtRM fkRðRtRM

ÞQtRM
�e�gRtRSkRðRtRsum

ÞQtRsum
g,

dP

dt
¼�gPPþeZPtPM fkPðPtPM

ÞQtPM
�e�gPtPSkPðPtPsum

ÞQtPsum
g: ð8Þ

Here, the subscripts on the dependent variables indicate delayed
arguments, i.e., QtS

¼ Q ðt�tSÞ.
When trtmax, the initial conditions (7) have to be taken into

account. Note that tRM otRS in hematopoietic regulation (Colijn
and Mackey, 2005a). In Appendix A, we obtain the following model
equations starting from tZ0 by applying the method of character-
istics to (3)

dQ

dt
¼�ðbðQ ÞþkNðNÞþkRðRÞþkPðPÞÞQþFQ ðtÞ

dN

dt
¼�gNNþFNðtÞ

dR

dt
¼�gRRþFRðtÞ

dP

dt
¼�gPPþFPðtÞ ð9Þ

where FQ(t), FN(t), FR(t) and FP(t) are piecewise continuous functions
given in Table 1.

Let (Q(0), N(0), R(0), P(0))¼(Q0, N0, R0, P0) be the initial condition
of (9). In Eq. (3), compatibility between the initial and boundary
conditions at (0,0) requires the following equalities

ðgSð0Þ,gNð0Þ,gRð0Þ,gPð0ÞÞ ¼ ðbðQ0ÞQ0,kNðN0ÞQ0,kRðR0ÞQ0,kPðP0ÞQ0Þ,

ð10Þ



Table 1
Definition of the functions FQ(t), FN(t), FR(t) and FP(t).

The functions FQ(t), FN(t) and FR(t) are

FQ ðtÞ ¼
2gSðtS�tÞe�gSt , ð0rtrtSÞ

2e�gStSbðQtS
ÞQtS

, ðt4tSÞ

(

FN ðtÞ ¼
gNðtNM�tÞeZN t , ð0rtrtNMÞ

eZNtNMkNðNtNM
ÞQtNM

, ðt4tNMÞ

(

FRðtÞ ¼

gRðtRM�tÞeZR t�gRðtRsum�tÞe�gR t , ð0rtrtRM Þ

eZRtRMkRðRtRM
ÞQtRM

�gRðtRsum�tÞe�gR t , ðtRM otrtRSÞ

eZRtRMkRðRtRM
ÞQtRM

�gRðtRsum�tÞe�gRtRS þZR ðt�tRS Þ , ðtRS otrtRsumÞ

eZRtRM kRðRtRM
ÞQtRM

�e�gRtRSkRðRtRsum
ÞQtRsum

� �
; ðt4tRsumÞ

8>>>><
>>>>:

If tPM rtPS ,

FP ðtÞ ¼

gPðtPM�tÞeZP t�gP ðtPsum�tÞe�gP t , ð0rtrtPMÞ

eZPtPMkPðPtPM
ÞQtPM

�gP ðtPsum�tÞe�gP t , ðtPM otrtPSÞ

eZPtPMkPðPtPM
ÞQtPM

�gP ðtPsum�tÞe�gPtPS þZP ðt�tPS Þ , ðtPS o trtPsumÞ

eZPtPM fkP ðPtPM
ÞQtPM

�e�gPtPSkP ðPtPsum
ÞQtPsum

g, ðt4tPsumÞ

8>>>><
>>>>:

and if tPS otPM ,

FPðtÞ ¼

gPðtPM�tÞeZP t�gPðtPsum�tÞe�gP t , ð0rtrtPSÞ

gPðtPM�tÞeZP t�gPðtPsum�tÞe�gPtPS þZP ðt�tPS Þ , ðtPS otrtPMÞ

eZPtPMkPðPtPM
ÞQtPM

�gP ðtPsum�tÞe�gPtPS þZP ðt�tPS Þ , ðtPM otrtPsumÞ

eZPtPM fkPðPtPM
ÞQtPM

�e�gPtPSkP ðPtPsum
ÞQtPsum

g; ðt4tPsumÞ

8>>>><
>>>>:

Table 2
Normal steady state parameters.

Sources: 1¼Bernard et al. (2003), 2¼Abkowitz et al. (1988), 3¼Beutler et al. (1995),

4¼Deubelbeiss et al. (1975), 5¼Haurie et al. (2000), 6¼Mahaffy et al. (1998),

7¼Novak and Necas (1994), 8¼Santillan et al. (2000).

Parameter name Value used Unit Sources

Stem cell compartment

Qn 1.1 �106 cells/kg 1

gS 0.07 day�1 1

tS 2.8 days 1,2

k0 8.0 day�1 1

y2 0.3 �106 cells/kg 1

s2 4 (none) 1

Neutrophil compartment

Nn 6.9 �108 cells/kg 2,3

gN 2.4 day�1 1,4,5

tNM 3.5 days 1

ZN 3.208 day�1 1,3

f0 0.40 day�1 (calculated)

y1 0.36 �108 cells/kg 1

s1 1 (none) 1

Erythrocyte compartment

Rn 3.5 �1011 cells/kg 6

gR 0.001 day�1 6

tRM 6 days 6

tRsum 120 days 6

ZR 1.8222 day�1 3,7

kr 1.17 day�1 (calculated)

Kr 0.0382 ð�1011 cells=kgÞ�s3 6

s3 6.96 (none) 6

Platelet compartment

Pn 2.94 �1010 cells/kg 8

gP 0.15 day�1 8

tPM 7 days 8

tPS 9.5 days 8

ZP 1.46 day�1 3

kp 1.17 day�1 (calculated)

Kp 11.66 ð�1010 cells=kgÞ�s4 8

s4 1.29 (none) 8
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and

ðbuðQ0ÞQ0þbðQ0ÞÞQ uð0ÞþgSuð0Þ ¼�gSgSð0Þ,

Q uð0Þ ¼ 2gSðtSÞ�ðbðQ0Þþkð0ÞÞQ0,

kNu ðN0ÞNuð0ÞQ0þkNðN0ÞQ uð0ÞþgNu ð0Þ ¼ ZNgNð0Þ, ð11Þ

kRu ðR0ÞRuð0ÞQ0þkRðR0ÞQ uð0ÞþgRu ð0Þ ¼ ZRgRð0Þ,

kPu ðP0ÞPuð0ÞQ0þkPðP0ÞQ uð0ÞþgPu ð0Þ ¼ ZPgPð0Þ,

where (N0, R0, P0) are associated with the initial population distribu-
tions through

N0 ¼

Z þ1
tNM

gNðaÞ da, R0 ¼

Z tRsum

tRM

gRðaÞ da, P0 ¼

Z tPsum

tPM

gPðaÞ da,

ð12Þ

and Q uð0Þ,Nuð0Þ,Ruð0Þ,Puð0Þ are given by (9) at t¼0.
Eqs. (9)–(12) give a model of hematopoietic regulation from the

original age-structured model (3)–(7). Initial conditions of the
delay differential Eq. (8) are given explicitly through the initial
populations gi(a), (i¼S,N,R,P) with the restrictions (10)–(12) and
the Eq. (9) with 0rtrtmax.

In Colijn and Mackey (2007), bifurcations, bistability, and the
effect of initial functions in the delay differential equation model
were studied by solving the equations numerically with predefined
initial functions on �tmaxrtr0 (corresponding to the initial
functions in the present model with 0ototmax). Nevertheless,
solutions obtained in this way, with positive initial conditions, can
be negative at some time t40 and therefore biologically not
acceptable. This indicates that there is no equivalent between a
delay model and an age-structured model when initial conditions
are not taken into considerations. In the present model, if the initial
populations gi(a) satisfy (10)–(12), we can prove that any solution
of Eq. (9) with positive initial conditions (Q0, N0, R0, P0) is positive
for all t401.

2.2. Method

This study focuses on the stable oscillatory solutions with
dynamical properties similar to those in patients with CN. In the
1 For example, see Appendix A for a brief discussion. A detailed proof will be

given elsewhere.
current study, we solve the model equations numerically to seek
possible stable solutions corresponding to given parameters. The
solutions could be considered as biologically possible states when
the system parameters are changed for some reason.

From previous studies (Bernard et al., 2003; Colijn and Mackey,
2005b), the possible mechanisms leading to the oscillation in CN
include a decrease of the proliferation rate of neutrophil precursor
cells, and an increase of the apoptosis rate of stem cells. Accord-
ingly, the proliferation rate of the neutrophil precursor cells ZN and
the stem cell death rate gS are two parameters of interest in the
current study. In addition, G-CSF treatment is known to decrease
the apoptosis in neutrophil precursors, which results in an increase
of ZN , and an increase of the stem cell differentiation rate kN by
increasing y1 (Bernard et al., 2003; Colijn et al., 2007). The
parameter y1 is proportional to the production of G-CSF (Bernard
et al., 2003). Therefore, We are also interested in the parameter y1.
In the simulations, we change each of these parameters, and hold
the other parameters at their default values as given in Table 2,
which are estimated to correspond to the healthy state (Colijn and
Mackey, 2005a).

From Colijn and Mackey (2005a), in the case of a healthy state,
the Eq. (9) possesses a positive steady state (when t4tmax),
denoted by (Qn, Nn, Rn, Pn). In our simulation, for each set of
parameters, we solve the model equations numerically to obtain
20 independent sample solutions, each with randomly selected
initial value at t¼ 0. The initial values (Q0, N0, R0, P0) are taken
randomly from the range

0:1oQ0=Q�,N0=N�,R0=R�,P0=P�o10:
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The initial populations gi, (i¼S,N,R,P) are defined according to the
initial values and the conditions (10)–(12) (refer to Appendix B for
details). Each solution is solved by Euler’s method (with time step
dt ¼ 0.002) up to t¼1800 days, such that it reaches a stable state
(either oscillatory or steady state), and the resulting data from the
last 600 days are used for further analysis as detailed below.

To distinguish oscillatory solutions from constant solutions in the
simulation, we investigate the upper and lower bounds of the stem
cell count Q(t) in the last 600 days of the simulation (1200oto1800
(days)), denoted by Qmax and Qmin, respectively. Therefore, a solution
approaches the steady state if Qmax � Qmin, and approaches an
oscillatory solution between Qmax and Qmin if QmaxbQmin. For
oscillatory solutions, we calculate the period by applying Lomb
periodogram analysis to the neutrophil population N(t) in the last
600 days (Lomb, 1976), in accordance with the way one determines
the periods from observed data (Haurie et al., 1999a,b).

Patients with CN have neutrophil levels lower than 0:5� 109=L,
about 1/10 of the normal level, for 3–5 days for every three weeks
(Haurie et al., 1999b; Gill et al., 2000). To test this feature for each
oscillatory solution quantitatively, we define the ‘‘severity index’’
of a solution as the average fraction of days, in the last 600 days in
the simulation, such that the neutrophil count is less than 0:1� N�.
A larger value of the severity index means a more severe mani-
festation of the disease in a given patient. In the case of a CN patient,
the index takes a value of about 4/20¼0.2.
y

Fig. 2. The bifurcation diagrams. (a)–(c) The maximum (blue circle) and minimum (green

time interval 1200oto1800 (days), with given system parameters as shown by the

minimum values. Dashed lines show the stem cell counts for steady state solutions. Trian

neutrophils in the oscillatory solutions, obtained by Lomb periodogram analysis with sign

oscillatory solutions. Dashed lines show a severity index of 0.20. Shadows show the para

and severity index of about 0.20, in accordance with observed data from CN patients. (For i

the web version of this article.)
3. Results

3.1. Bifurcation diagram and multistability

Fig. 2 shows the simulation result when either of the para-
meters, gS, ZN , or y1 is changed.

Figs. 2 a–c show Qmax and Qmin of the solutions, which depend on
the system parameters and initial conditions. Each solution gives
two points, Qmax and Qmin, in each panel. The solutions converging
to a stable steady state are indicated by the superposition of Qmax

and Qmin, while the oscillatory solutions are characterized by the
separating of Qmax and Qmin. The results show clear evidence for
multistability over a wide range of parameter values, including
typical parameter values for healthy states. In this multistable
region, the system dynamics for the same parameter values can
converge to either a stable steady state or an oscillatory state,
depending on the initial conditions.

From Fig. 2a, when the neutrophil precursor proliferation rate ZN

decreases from the default value, there is a critical point ðZN ¼ 3:10Þ
at which the steady state becomes unstable. Nevertheless, the
oscillatory state remains stable across this critical point. Similar
results are also seen in the diagram with respect to the stem cell
death rate gS and the parameter y1 (Figs. 2 b–c). Increasing either gS

or y1 is able to destabilize the steady state, while the oscillatory state
remains stable. Here, the critical values are gS ¼ 0:082 or y1 ¼ 0:51,
plus) values of stem cell counts Q(t) (in units of 106 cells/kg) for each solution in the

X-axis. Stable steady-states are shown by the superposition of the maximum and

gles show the points for default values as in Table 2. (d)–(f) The periods (in days) of

ificance level 0.01. (g)–(i) The severity index (refer the text for the definition) of the

meter regions in which their are oscillatory solutions with a period of about 20 days

nterpretation of the references to colour in this figure legend, the reader is referred to
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respectively. Stability of the oscillatory state is indicative of the
persistence of CN as is observed clinically in G-CSF treatment. We
shall discuss this later through the effect of initial conditions. In
Fig. 2(b), we note that when gS is large enough ðgS40:247Þ, the
oscillatory solutions disappear, and all solutions approach to zero.
This is because when the stem cell death rate is larger than the
proliferation rate due to division ð2e�gStS 41Þ, the stem cell popula-
tion (and, of course, other cell populations) will eventually decrease
to zero. In fact, this is just the state of extinction.

Periods of the oscillatory solutions are shown in Figs. 2d–f. The
results show obvious conservation of periods of about 20 days for
the oscillatory solution with different values of parameters. This is
consistent with observations from CN patients that different
patients show almost the same period of oscillations (Haurie
et al., 1999a). From Figs. 2d–f in additional to the 20 day periodic
oscillations, there are oscillatory solutions with longer periods.
Long period oscillations are also observed in CN patients (Haurie
et al., 1998). From the simulations, we see that unlike the typical 20
day periods, the longer periods depend on the bifurcation para-
meters. Two oscillatory solutions with short and long periods,
respectively, are shown in Fig. 3.

To identify the oscillatory solutions corresponding to the oscilla-
tions in CN, we calculated the severity index for each oscillatory
solution. The results are shown in Figs. 2g–i. Shaded regions show
the parameter values at which there are oscillatory solutions with a
period of about 20 days and a severity index of about 0.20, in
accordance with the observed situation in CN patients.

These simulation results suggest two possible mechanisms that
may lead to oscillations in CN patients:
Mechanism1
Fig. 3. Two num

show the 0.01 s
Decreasing the neutrophil precursor proliferation
rate. In particular, when 2:75oZN o3:10, 3–15% less
than the normal value, and other parameters are as in
Table 2.
Mechanism2
 Increasing the HSC apoptosis rate. In particular, when
0:10ogSo0:14, 40–100% larger than the normal
value, and other parameters are as in Table 2.
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erical solutions with (a) short (19 days) and (b) long (32 days) periods, re

ignificance level. In both solutions, ZN ¼ 2:78 days�1. Neutrophils are in
The above results are consistent with previous studies (Bernard
et al., 2003), and give more explicit parameter value regions for CN
patients. The numerical simulations show that both mechanisms
are capable of producing concomitant oscillations in erythrocyte
and platelet populations, and both with the same period as
neutrophils.

We note that when 0:1oy1o0:35, there are oscillatory solu-
tions showing a severity index close to that observed clinically.
However, we cannot conclude that decreasing y1 is a mechanism
for the oscillations in CN. The reason is that the steady state is stable
in this case, and therefore decreasing y1 alone is not able to induce
the oscillation.
3.2. Effect of the initial functions

In the previous section, we have shown that the hematopoietic
regulatory system may display multistability, co-existence of a
stable steady state and an oscillatory state, when system para-
meters take normal values (the healthy state). As a result, CN that is
caused by changes in system parameters may not recover to the
healthy state even if the parameters are taken back to their normal
values by therapy, for example through G-CSF treatment. For
patients with G-CSF treatment, their neutrophil count could either
be stabilized or show larger amplitude oscillations (Hammond
et al., 1989; Haurie et al., 1999b). Modeling simulation has also
shown that the outcome of a treatment depends on the temporal
protocol as well as the starting time (Foley and Mackey, 2006;
Colijn et al., 2007). Mathematically, the reason for this diverse
outcome is that there are delays in the hematopoietic model, and
therefore the historical state prior to the treatment is important for
the ultimate effect. Here, we study the effect of the initial functions
on the dynamical behavior. Next, we will propose a hybrid
treatment method that capable of abolishing the oscillation in
CN patients.

To study the effect of initial functions, we set the system
parameters at their default values as given in Table 2, and vary
the initial functions in the simulation. Each solution converges to
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0

10

20

30

40

50
Lomb periodogram

0 400
s

10 20 30 40
0

10

20

30

40

50

days

lets
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units of 108 cells/kg, while platelets are in units of 1010 cells/kg.
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either a stable steady state or to an oscillatory solution. From the
model Eq. (9), the initial functions depend on the initial population
distributions gi(a), i¼(S, N, R, P), which are infinite dimensional. To
illustrate the basins of attraction of the stable states in a one
dimensional diagram, we characterize the initial cell populations
by daily relative displacements CXðX ¼N,R,PÞ as follows. For each
of the circulating cell lines, the relative displacement is defined by
its distance from the steady state over the lag time and normalized
by the corresponding value of the steady state:

CX ¼
1

tX

Z tX

0

XðtÞ�X�
X�

����
���� dt ðX ¼N,R,PÞ: ð13Þ

Here tN ¼ tNM ,tR ¼ tRsum and tP ¼ tPsum. Figs. 4a–c show the
dependence of Qmax and Qmin for each solution with
CXðX ¼N,R,PÞ, respectively.

We consider the relationship with CP for illustration. There are
two critical values (C1 ¼ 0:0304 and C2 ¼ 0:8633). In our simula-
tions, all solutions with CP oC1 converge to the stable steady
state, and all solutions withCP 4C2 converge to a oscillatory state.
When C1oCP oC2, the solution converges to either the steady
state or an oscillatory state, depending on the initial populations.
Similar results hold forCN andCR. These results indicate that in CN
therapy, simply resetting the parameters of a patient does not
ensure the elimination of oscillations because the relative dis-
placements prior the treatment are usually not small values.

Because of the multistability when system parameters take
values characteristic of a healthy state, it is interesting to know how
stable the steady state is to prevent a healthy person from
switching to an oscillatory blood cell count. From Fig. 4b, blood
cell counts of a healthy person can switch to oscillatory state if
there are abnormal fluctuations such that the relative displacement
CR40:28, i.e., about 28% away from the normal level. When
CRo0:28, Fig. 4d shows the relative displacements for the other
two cell lines ðCN ,CPÞ so that a solution remains at steady state
(green points) or switches to an oscillatory state (blue points).
Fig. 4e plots the probability of having an oscillatory solution as a
Fig. 4. Effect of the initial functions. (a)–(c) The maximum (blue circle) and minimum

displacement between the initial function and the corresponding steady state (see the tex

(d) Basins of the stable steady state (green points) and the oscillatory solutions (blue poi

(e) Probability to obtain oscillatory solutions (POS) as a function of CNþCP according to s

(For interpretation of the references to colour in this figure legend, the reader is referre
function of CNþCP according to the simulations, in which the
dashed line shows the 50% probability level. We can see that even
whenCNþCP is as large as 0.8, 50% of the simulating solutions can
still converge to the stable steady state. These results reveal that
small fluctuation in the cell populations is not likely, if not
impossible, to switch the steady state to an oscillatory state.
3.3. Hybrid treatment to abolish the oscillation

In Fig. 4, we note that all solutions withCP o0:03 converge to the
steady state, irrespective of other cell lines. This suggests that if we
could temporarily control the circulating cell populations at their
normal values for some days, say 16 days ð � tPsumÞ, it would be able
to abolish the oscillations. To test this idea, we propose a new
therapy method for CN patients that combines G-CSF treatment and
temporal blood transfusion/hemospasia. The G-CSF administration
tends to force the system parameters to their default values at
healthy state, and blood transfusion/hemospasia is intended to
maintain the circulating cell populations at their normal levels.
The effects of this hybrid treatment are studied numerically.

We started from an oscillatory state (neutrophil counts shown
in lower panel in Fig. 5a), and simulated 104 sample cases, each
with a randomly selected starting day of treatment and duration (in
days) of blood transfusion/hemospasia. The results are shown in
Fig. 5. Fig. 5a shows the cases in which the oscillations are abolished
after treatment. The results suggest that if we apply transfusion/
hemospasia for long enough (Z16 days), the oscillations can be
abolished no matter when we start the treatment. If the transfu-
sion/hemospasia is shorter than 16 days, however, the effect
depends on the day when the treatment is started. In isolated
situations, the G-CSF treatment alone is able to abolish the
oscillation (arrows in Fig. 5a). Two sample cases are shown in
Fig. 5b with stabilization and oscillatory outcomes after treatment,
respectively.

The disadvantage of the above protocol is the 16 days of
continuous transfusion/hemospasia, which is clinically not
(green plus) values of stem cell counts (in units of 106 cells/kg) vs. the relative

t for details) for each of the cell lines: (a) neutrophils, (b) leukocytes, and (c) platelets.

nts) represented by the displacements CP and CN (under the condition CR o0:28).

imulations (under the condition CR o0:28). Dashed line shows the 50% probability.

d to the web version of this article.)
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Fig. 5. Simulation results of the effects of the hybrid treatment combining G-CSF and blood transfusion/hemospasia. (a) Lower panel shows neutrophil counts (in units of

108 cells/kg) of a untreated case. Blue dots in the upper panel shows the cases such that oscillations are abolished after treatment. Here, the X-axis is the starting date of therapy

(the same day as shown in the lower panel), and Y-axis is the number of days of transufsion/hemospasia. Arrows show that G-CSF treatment alone, starting at a proper time, is

able to abolish the oscillation. (b) Two simulation results that either converge to stable steady state (upper panel) or a stable oscillatory state (lower panel) after treatment. The

parameters (starting point and duration of transfusion/hemospasia) are marked by ‘*’ (upper panel) and ‘x’ (lower panel) in (a), respectively. Bold vertical line shows the day of

starting G-CSF administration, and shadowed areas show the days of transfusion/hemospasia. In the temporal plots, the cell counts of neutrophils (in units of 108 cells/kg) are

shown. In the simulation, the starting point and duration of transfusion/hemospasia are chosen randomly from 0–8 and 0–4 weeks, respectively. We set ZN ¼ 2:78 for the

untreated case, and ZN ¼ 3:2 to mimic the effect of G-CSF treatment (increased neutrophil proliferation rate). During the days of blood transfusion/hemospasia, the circulating

cell populations are forced to their steady state levels (within errors of 720%). (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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Fig. 6. Simulation result of neutrophil (in units of 108 cell/kg) temporal dynamics after G-CSF administration and discontinuous transfusion/hemospasia. Bold vertical line

shows the day of starting G-CSF administration, and shadowed regions show the time of transfusion/hemospasia.
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realistic. Here, we study the alternative option of performing
transfusion/hemospasia 4 h every day. Simulations show that
the G-CSF treatment together with temporal (60 days) discontin-
uous transfusion/hemospasia can also abolish the oscillation
(Fig. 6). In this paper, we will not extend our discussion on how
to design a more realistic treatment protocols, and leave it to
further studies.
4. Conclusions

We have studied an age-structured model of the hematopoietic
system from which the model of delay differential equations and
corresponding initial conditions were obtained. The models were
studied numerically to investigate all possible stable solutions for
given parameters. Our simulations show that the initial conditions of
the delay differential equations are important because of the
multistability, stable steady state and oscillatory state coexist when
system parameters take values characteristic of a healthy human.

From our simulations, we have obtained oscillatory solutions that
share similar dynamical features as in CN patients: (1) conservation of
oscillation periods (about 20 days) for different patients, which is
shown by the independent of periods with ZN and gS, and (2) the
neutrophil counts falling to extremely low levels for 3–5 days every
three weeks. These oscillatory solutions can be induced by either
decreasing the neutrophil precursor proliferation rate ZN (by increas-
ing the apoptosis rate of precursor cells), or increasing the HSC
apoptosis rate gS. The healthy state can be destabilized by either
decreasing ZN or increasing gS, and converges to an oscillatory
solution.

A traditional way to treat CN is trying to revert the system
parameters to normal. For example, through G-CSF administration
that decreases apoptosis in neutrophil precursors, and therefore
leads to an increase in ZN . Nevertheless, such treatments may not
be effective even if we can restore the system parameters to their
healthy state values because of the multistability, by which the
oscillatory state remains stable at the system with healthy state
values. As seen clinically, it is very unusual to abolish the oscilla-
tions in CN by G-CSF administration. Thus, in therapy, we may need
not only a traditional treatment that tends to recover the patient’s
physical symptoms, such that the healthy state is stabilized, but
also an adjuvant therapy that can switch the patient from the state
of oscillation to stable cell counts. The former relates to the
bifurcation of the model equations and only depends on system
parameters, while the latter is associated with transition of the
system state from the basin of oscillatory state to that of the steady
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state, and depends on the historical dynamics prior to the starting
of treatment.

In this paper, we have numerically investigated the relation
between a solution’s long term behavior and its initial functions. In
our simulations, we found that with default value (healthy state)
parameters, all solutions with small value of relative displacement
for platelets for days in accordance with tPsum can always converge
to the steady state, irrespective of other cell lines. This suggests a
way to switch an oscillatory solution to a locally stable steady state:
maintain the circulating cell populations at their normal level for
some days, say 16 days. Accordingly, we propose a hybrid therapy
method for CN patients that combines long term G-CSF treatment
and temporarily blood transfusion/hemospasia. G-CSF tends to
reset the system parameters to their normal values, and transfu-
sion/hemospasia will keep the circulating cell populations at their
normal levels. Our simulations have shown that the oscillations can
be abolished if we apply transfusion/hemospasia for a long enough
duration of time, say more than 16 days. Since it is not realistic to
perform 16 days of continuous transfusion/hemospasia, we also
studied the possibility of an alternative method with transfusion/
hemospasia 4 h every day, for 60 days. Further studies are
surely needed to design more realistic protocols of such hybrid
treatments.
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Appendix A. Formulation for the functions FiðtÞði¼Q ,N,R,PÞ

We refer to the general age-structured model of Fig. 7 to derive
Fi(t) (i¼Q,N,R,P) in the equation for the initial functions. Let u(t,a) be
the circulating cell population at time t with age a. The age a¼0
indicates the time of differentiating from the stem cell compart-
ment. The population dynamics are modeled by

@u

@t
þ
@u

@a
¼ Zu, ðt40,0oaot0Þ

@u

@t
þ
@u

@a
¼�gu, ðt40,t0oaotÞ

uðt,0Þ ¼ f ðUðtÞ,tÞ, ðt40,a¼ 0Þ

uð0,aÞ ¼ gðaÞ, ðt¼ 0,0rartÞ

8>>>>>>><
>>>>>>>:

ð14Þ

where t0 is the maturation time, and t1 is the time to senescence,
t¼ t0þt1, Z is the proliferation rate, g is the death rate, g(a) is the
Fig. 7. Cartoon of a simple age-structured model.
initial population distribution, f(U(t),t) is the differentiation rate, and

UðtÞ ¼

Z t

t0

uðt,aÞ da ð15Þ

is the total population of circulating cells. We always assume
t0oþ1.

First, we consider the case t1oþ1. Integrating the second
equation in (14), we obtain an equation for U(t):

dU

dt
¼�gUþuðt,t0Þ�uðt,tÞ: ð16Þ

The Eq. (14) can be solved by the method of characteristics.
The solution is given by

uðt,aÞ ¼

gða�tÞeZt , ð0otrart0Þ

gða�tÞe�gt , ð0otþt0rartÞ
gða�tÞeZðtþt0�aÞ�gða�t0Þ, ðt0rart,a�t0rtraÞ

f ðUðt�aÞ,t�aÞeZa, ð0oart0,tZaÞ

f ðUðt�aÞ,t�aÞeZt0�gða�t0Þ, ðt0rart,tZaÞ:

8>>>>>><
>>>>>>:

ð17Þ

Thus, we have

uðt,t0Þ ¼
gðt0�tÞeZt , ðtrt0Þ

f ðUt0
,t�t0Þe

Zt0 , ðtZt0Þ

(
ð18Þ

and

uðt,tÞ ¼
gðt�tÞe�gt , ðtrt1Þ

gðt�tÞe�gt1þZðt�t1Þ, ðt1rtrtÞ
f ðUt,t�tÞe�gt1 , ðtZtÞ:

8><
>: ð19Þ

Here Ut0
¼Uðt�t0Þ, Ut ¼Uðt�tÞ.

Applying (18) and (19) to (16), we have the following delay
differential equation for U(t) when t4t,

dU

dt
¼�gUþeZt0 f ðUt0

,t�t0Þ�eZt0�gt1 f ðUt,t�tÞ, ðt4tÞ: ð20Þ

When trt and t0ot1,

dU

dt
¼�gUþ

gðt0�tÞeZt�gðt�tÞe�gt , ðtrt0Þ

eZt0 f ðUt0
,t�t0Þ�gðt�tÞe�gt , ðt0rtrt1Þ

eZt0 f ðUt0
,t�t0Þ�gðt�tÞeZðt�t1Þ�gt1 ; ðt1rtotÞ

8><
>:

ð21Þ

When trt and t1ot0,

dU

dt
¼�gUþ

gðt0�tÞeZt�gðt�tÞe�gt , ðtrt1Þ

gðt0�tÞeZt�gðt�tÞeZðt�t1Þ�gt1 , ðt1rtrt0Þ

eZt0 f ðUt0
,t�t0Þ�gðt�tÞeZðt�t1Þ�gt1 ; ðt0rtrtÞ:

8><
>:

ð22Þ

Thus, the full equation for tZ0 is obtained through the initial
population distribution g(a) by combining (21) or (22) with (20).
The initial condition is given by Uð0Þ ¼

R t
t0

gðaÞ da.
If t1 ¼1, the Eqs. (20)–(22) become

dU

dt
¼�gUþ

gðt0�tÞeZt , ðtrt0Þ

eZt0 f ðUt0
,t�t0Þ, ðt4t0Þ

(
ð23Þ

In the hematopoietic system, we have tRM otRS. Thus, the
functions Fi(t) (i¼Q,N,R,P) can be obtained from (20)–(23).
Appendix B. Initial cell populations in the simulation

First, we consider the initial population in the model given
in Fig. 7. In (14), g(a) measures the initial cell population distribu-
tion. With the continuity of u(t,a) at (0,0), we stipulate the
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condition

gð0Þ ¼ f ðUð0Þ,0Þ ¼ f

Z t

t0

gðaÞ da,0

� �
: ð24Þ

Furthermore, the compatibility at (0,0) requires

guð0Þ ¼ Zgð0Þ�
@f

@U

����
ð0,0Þ

dUð0Þ

dt
�
@f

@t

����
ð0,0Þ

¼ Zgð0Þ�
@f

@U

����
ð0,0Þ

ð�gUð0Þþgðt0Þ�gðtÞÞ�@f

@t

����
ð0,0Þ

: ð25Þ

If we select the particular initial population distribution such
that the circulating cells are lost (die) at a rate g, then

gðaÞ ¼ gðt0Þe
�gða�t0Þ, ðt0oaotÞ:

In this case, we have

Uð0Þ ¼

Z t

t0

gðaÞ da¼ gðt0Þð1�e�gt1 Þ=g

and gðtÞ ¼ gðt0Þe
�gt1 , which implies �gUð0Þþgðt0Þ�gðtÞ ¼ 0.

Furthermore, when @f=@tjt ¼ 0 � 0, the condition (25) can be
reduced to

guð0Þ ¼ Zgð0Þ:

Thus, when @f=@tjt ¼ 0 � 0, let U(0)¼U0, g0¼ f(U0, 0), and g1 ¼

gU0=ð1�e�gt1 Þ, it is easy to verify that the function g(a) given below
satisfies the conditions (24) and (25):

gðaÞ ¼
g0eZaþðln½g1=g0 ��Zt0Þ=ða=t0Þ

2
ð0raot0Þ

g1e�gða�t0Þ ðt0rartÞ

(
ð26Þ

In particular, we have g0¼g(0) and g1¼ gðt0Þ.
Now, for the hematopoietic system in the present study and for

given initial values (Q0, N0, R0, P0), we take (gS(a), gN(a), gR(a), gP(a))
as follows in the simulation. First, let

ðgS,0,gN,0,gR,0,gP,0Þ ¼ ðbðQ0ÞQ0,kNðN0ÞQ0,kRðR0ÞQ0,kPðP0ÞQ0Þ:

Next, define

gS,1 ¼
1
2ðbðQ0Þþkð0ÞÞQ0,

gN,1 ¼ gNN0,

gR,1 ¼ gRR0=ð1�e�gRtRS Þ,

gP,1 ¼ gPP0=ð1�e�gPtPS Þ:

Now, the initial populations are

gSðaÞ ¼ gS,0e�gSaþðln½gS,1=gS,0 �þgStSÞða=tSÞ
2

, ð0rartSÞ ð27Þ

gNðaÞ ¼
gN,0eZN aþðln½gN,1=gN,0��ZNtNM Þða=tNM Þ

2
ð0rartNMÞ

gN,1e�gN ða�tNM Þ ða4tNMÞ

(
ð28Þ

gRðaÞ ¼
gR,0eZRaþðln½gR,1=gR,0 ��ZRtRM Þða=tRM Þ

2
ð0rartRMÞ

gR,1e�gRða�tRM Þ ðtRM oartRsumÞ

(
ð29Þ

gPðaÞ ¼
gP,0eZP aþðln½gP,1=gP,0��ZPtPM Þða=tPM Þ

2

ð0rartPMÞ

gP,1e�gP ða�tPM Þ ðtPM oartPsumÞ:

(
ð30Þ

In the simulation, we take (Q0, N0, R0, P0) randomly, and define the
initial populations (gS(a), gN(a), gR(a), gP(a)) according to the above
process. Next, the model Eqs. (9) can be solved numerically.
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