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Abstract

In this paper we study and establish central limit theorem behavior in the skew (generalized) tent map transforma-
tion 7 Y — Y originally considered by Billings and Bollt [Billings L, Bollt EM. Probability density functions of some
skew tent maps. Chaos, Solitons & Fractals 2001; 12: 365-376] and Ito et al. [Ito S, Tanaka S, Nakada H. On unimodal
linear transformations and chaos. II. Tokyo J Math 1979; 2: 241-59]. When the measure v is invariant under 7, the
transfer operator 27 : L'(v) — L'(v) governing the evolution of densities f under the action of the skew tent map, as
well as the unique stationary density, are given explicitly for specific transformation parameters. Then, using this devel-
opment, we solve the Poisson equation ' = 2 f + ¢ for two specific integrable observables ¢ and explicitly calculate

the variance a(¢)* = [, ¢*(»)v(dy).
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The statistical properties of uniformly expanding maps on an interval are relatively well understood. Thus, if a map
T: Y —Y is mixing then it has a unique absolutely continuous invariant measure v by the Birkhoff Ergodic Theorem,
i.e., for any observable which is an integrable function ¢ : ¥ — R we have

LS 6(rw) — v(@) = / SOI(d), as n— oo,

n <

where the convergence is almost sure. Given a Holder continuous function ¢ : ¥ — R, or a function of bounded var-
iation, the sequence ¢ o T/ has an exponential decay of correlations which gives rise to various probabilistic limit the-
orems such as the Central Limit Theorem (CLT), i.e., an observable ¢ is said to satisfy CLT if v(¢) = 0 and there exists
a constant ¢ = o(¢) > 0 such that
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v(xEY:\/L;ljz;¢(Tj(x))<u> - / ezw

as n — oo, for all u € R. There are various generalizations of the CLT such as almost sure invariance principles (ASIP)
[5,11], i.e., there exists € > 0, a sequence of random variables S,,, and a standard Brownian motion w such that S, has the
same distribution as Z}Z&(f) o 77, and almost everywhere

S, = a(p)w(n) +On"*°) as n— oo.
We have

which reduces to

o7 = [ $onia +2Z/¢ (dy). (1.1)

In general it is difficult to calculate o(¢) directly. Sometimes one may proceed by calculating the correlation function
based on determining the eigenvalues and eigenvectors of the Perron—Frobenius operator. However the calculations
often become quite cumbersome, even for the apparently simple example of the standard tent map

Sy)=a—1-all

fora € (\/Q7 2}, studied by a number of authors, specifically [15,4]. For expanding piecewise-linear Markov maps on
[0, 1] calculations of various statistics, including correlations, are described in [6], but the method used there again re-
quires finding the eigenvalues and eigenvectors of finite-dimensional matrices. In other situations it is easier to find a
solution f of the so-called Poisson equation [12]:

[ =21+ ¢, (1.2)
where 27 : L'(v) — L'(v) is the transfer operator associated with 7. Then the calculation of the variance reduces to
7 =2 [ rmeonn - [ 607w, (13)
Y JY

The definition of the Perron—Frobenius (transfer) operator for 7 depends on a specific o-finite measure y on the mea-
sure space (Y, %) with respect to which T is nonsingular, i.e., (7' (4)) = 0 for all 4 € % with u(4) = 0. Given such a
measure the transfer operator P : L' (1) — L'(u) is defined as follows. For any f € L' (u), there is a unique element P fin
Ll(,u) such that

[ prom@) = [ L, @) forallac (1.4)

This in turn gives rise to different operators for different underlying measures on 4. Thus if u is the Lebesgue measure
on Y then P is called the Perron—Frobenius operator. If v is invariant under 7, then T is nonsingular and the transfer
operator 27 : L'(v) — L'(v) is well defined. Here we write 2, to emphasize that the underlying measure v is invariant
under 7. In particular, the transfer operator #; is the Perron—Frobenius operator iff the Lebesgue measure is invariant.
If v is absolutely continuous with respect to the Lebesgue measure, then there is a stationary density g, such that
Pg, =g, and

v(4) :/Ag*(y)u(dy% Ade B

In particular, if ¥ = supp(g,) = {y € Y : g,(v) > 0} then the transfer operator 2 : L' (v) — L'(v) is given by
Pfg.) ¢

*

Zr(f) = feL'(). (1.5)

Now, we can rewrite (1.1) as

87 = [ #oni@) +2Z/f’;¢<y O)(dy).
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In particular, if ¢ is such that Z¢ = 0, then () = Iy ¢*(y)v(dy) (c.f. [10] for examples of such transformations). If ¢
is a function of bounded variation then the function

=374,
n=0

is a well defined element of L!(v) and is a solution of the Poisson equation (1.2), which leads to (1.3).
In this paper we consider the skew (or generalized) tent map 7 on R defined by

b—1+ay, y<O,

) =tam ={, o 7Y (1)
where a > 0, b > 1. In Section 2 we restrict the map 7 to an interval Y and describe a set of parameters @, b for which T
has a positive invariant density in Y, by showing that it is conjugate to a skew tent map on [0, 1], studied by [7,1]. For
specific values of a and b the action of the map and the form of its invariant density are described in Section 3. For these
values of a and b the transfer operator has a particularly simple form, which is considered in Section 4. For ¢ from a
finite dimensional subspace % of L(v) the solution of the Poisson equation (1.2) is given in Section 5, where we also
derive a closed form expression for a(¢)>.

Finally, in Section 6, we consider two specific observable functions ¢ and calculate the variance o(¢)?. In Example 1
we consider the potential ¢ = log|T’| — [log|T’(y)|v(dy), while Example 2 considers the deviation away from the mean
m, ¢(y) = y — m. Examples 3 and 4 give explicit expressions for a(¢)* for specific values of the parameters (a, b).

2. The family of skew tent maps

Let T be defined by (1.6) and define an interval ¥ by Y = [T%(0), T(0)] = [-(b — 1)*,b—1]. Then T(Y) C Y if
a+b = ab. The Perron—Frobenius operator P : L'(u) — L'(u) is then given by
1, 1
Pf(y) = ;f(lp N0y 5-11 () +Ef('ﬁ+0’))a (2.1
where = and Y are the inverse branches of T given by
_ +1-b +1-b
V) =T ) = (2.2)

and u is the Lebesgue measure on Y.
The transformation 7: Y — Y is conjugated to the transformation S, : [0,1] — [0, 1]

atb—ab 1
Sep(x) = { Z)(CIJF_;T’ 0 ixjx:f (2.3)
studied by Ito et al. [7], i.e., T,5(0(x)) = 0(S.s(x)) for x € [0,1], where
o(x) =b(b—1x—(b—1).
Define
D={(a,b):a>0,b>1,a+b > ab}, D;={(a,b)eD:a>1}.

Form > 2 let

D = {(a,b) €eD:a<1, ia’i <b< ia’}.
=0

i=0

As shown in [7], the transformation S,, has a strictly positive invariant density in the parameter subset
o0
D=|J{(ab)eD; :a"b>1,a+b<ab},
m=1

and this invariant density is given by

o0 1\ Mol 1\ Vi
h.=3% C (;) (— ;) L, 0.0

n=0
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where C is a normalizing constant and Ny(n), N (n) = 0 are sequences of integers [7, Eq. 45].
It should also be noted that the transformation F, 4 on [0, 1] studied by [1]:

+5Lx, 0<x <o,
Fop(x) = * 2.4
) {_ et (2.4)
reduces to (2.3) if we set
1—
a= ﬁ, b= ! .
o l—a

3. Characterizing the rising periodic orbits

Consider those values of (a,b) for which {7"(0)} is a periodic orbit with period K > 3 and in which 7"(0) is negative
forn=2,...,K — 1 and T%(0) = 0. Then we have

7"0)=0b-1)(1+a+...+a2—a"2) for nz2. (3.1)
Thus
K-2
b= d"k (3.2)
1=0

Define the intervals A4; by

A, = [T(0), 772(0)] for 1=1,2,....K—1. (3.3)
Then
pd) = (b~ Da"*' (3.4)
and
A, I=1,...,K—2,
T(4)) = { & :
() {UAhl:KL (3:3)
=1
We have Y = UﬁllA ;- The invariant measure v has a density given by
K—-1
g. =Y dily, (3.6)
=1
where the dj, [ = 1,...,K — 1 are the solutions of
dg-1 = bd,,
]l(]?:,]ﬁ»dd](,l :abdl, 1=2,...,K*1, (37)
> dip(dr) =1,
=

and are given by

aK—Z

-1
d] = (lijdl, d1 = — — - (38)
2 (b - DXL T
If a # 1 then from (3.2) it follows that
a1 —1 a2 -1 a® —1
¢ = =" - " )
ak2(a—-1)’ b ak-2(a—-1)’ atb ak-2(a—1) (39)
Consequently,
d, a —1 (a—1)

4@ a1 Tl Datb_Ka ) (3.10)
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Making use of (3.6), (3.10), and (3.4) we obtain

(b - 1)(d - 1)d,
(a—1ak2 7’

Ifa=1thenb=K -1,

v(d,) = I=1,....K—1. (3.11)

2

=l = K - DK

(3.12)

and
vd,)=(0b-Dld,, I=1,...,K—1. (3.13)

4. The transfer operator

The transfer operator 2, on the space L'(v) is given by the equation
P(fg.)
g

*

yrf: 7.f€Ll(V)'

The values of (a,b) were chosen in Section 3 so 4; C (—o00,0] for / =1,...,K —2 and Ax_; C [0,00). From (3.5) and
(3.6) we thus obtain

K-2
goy = Z:(/MA,+l
=1
and
K-1
go W+ =dk Z Ly,
=1

Consequently Eq. (2.1) for the transfer operator 27 : L'(v) — L'(v) has the form

K-1
d;_ _ dg_
'@Tf:fo¢+1A‘+;(ﬁfow —o—b’;llfo,r/ﬁ)l,q,

and can be rewritten as

9’rf=KZI(le°W+(1*Cz)fOLVr)lA,, (4.1)
=1
where
0, =1
01_{?711’ [=2,... K1 (42)
Note that
ev(d) =v(4,.), 1=2,...,K—1. (4.3)
Consider the finite dimensional subspace % of L(v) spanned by the elements
O, =1y —cialy,, j=1,....,.K=2 (4.4)
and
) =0-v)l,0), j=1,....K-1, (4.5)
where v; is the center of the interval 4, j=1,...,K — 1. From (3.1) and (3.3) we obtain
w_{%bGaHM““ﬁ,a#L (4.6)
£2(2j+3 - 2K), a=1.

We are going to show that 2,(¥) C .



794 M.C. Mackey, M. Tyran-Kamiriska | Chaos, Solitons and Fractals 38 (2008) 789-805

To do this we need expressions for #;0; and Zrn;. From (3.5) and (4.1) it follows that

cj+19j+17 j:1>'~'7K_37
PO, = K-2 4.7
T —en S0, =K -2 (4.7)
=1
and
Priy; = (Y — Uj)lA/+l
for j=1,...,K — 2. Since v; is the center of the interval 4; C (—o0,0], we have v; <0 and

V) -y =210

However T(A4;) = A1, so T(v;) = v,y and
Cjt1 .
Doty =L =1 K2 (4.8)

Since Ax | C [0,1] and T(4x_) = U;:'A,, we obtain

K-1

Pritgor =y (1—e)(™ — vk 1)y,

=1

which leads to

K— K—
Prilg = Z (I =e)n Z (1 =) (or = T(vg—1))L4,-
=1 =1

Define
=1
_ { 1)}( 1 ) (49)
abiy+ (A =)o —T(ka)), [=2,....K-1,
which, after some algebra based on formulas (3.8), (4.2), and (4.6), can be rewritten as
(b= 1) al—k+2 1
2a —a el ko (4.10)
KT —-K+1), a=1,
Hence ;,_, =0 a
K— 1 K-2
Prig_, = Z (1—c)n EZ[)’,(),. (4.11)
1=1 =1

5. Solution of the Poisson equation for functions from £

The action of the operator #r on the space ¥ can be identified with the (2K — 3) x (2K — 3) matrix

Cy C
C:( 0 01)’ (5.1)
0 C
where
0 —CK-1
e 0 —CK-1
Co = . : (5.2)
0 —Ck-1
Ck-2 —Ck-1

for K > 4 and Cy = (—¢;) for K=3,
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0 =B
1 0 —B>
C()] = E : 5 (53)
0 —Bxo
and
0 —a
be, 0 —a(l —c;)
1
C] = E b03 ’ (5 4)

0 —a(l — cx_,)

bex 1 —a(l —ck 1)

where the unspecified elements are all zero. We have
(I-C) ' = ((10 —Co)™" (Lo = Co) ' Cui(ly - Cl)l)
0 (L —cp)! ’

where I, and I; are identity matrices of dimension K — 2 and K — 1, respectively.
Let the observable ¢ € ¥ be of the form

K-2 K—1
b= a0+ an, (5.5)
=1 =1

where of, /=1,...,K —2 and o, / =1,...,K — 1, are constants. Then the solution of the Poisson equation (1.2) is
given by
K-2 K—1
£=>"M0+3" A, (5.6)
=1 =1
where
A o o
= (I()_C())_l +C01([1 —Cl)_l (57)
A?(—Z o‘(1)@2 ot
and
4, o
==t o . (5.8)
A11<—l %

From now on we assume that ¢, and the corresponding solution f of the Poisson equation, are respectively given by
(5.5) and (5.6). In the next two lemmas, we will provide explicit formulae for A} and A(,).

Lemma 1. We have

S @ DS )
! a'v(4;) 2(a + b)a*tK=2y(Ax_y)

Proof. Referring to Appendix A we note that the matrix Cj is of the form (A.1) with entries given by

Cy V(A],l)
=2= =2,...,K—1
Vi a [ZV(A[)’I ) ’ )
1 —
S =— =1, K—1
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Iﬁ _ av(4))
" aKv(dg_)]
it follows from (3.11) and (3.13) that
op(dy) _atE
v(dk-1) R
which leads to

S, [T 0= L {5 a1
- /- T 1, a=1,

and can be rewritten as

S0, T 5o et )
T om bd T at Dy(dg)
Setting /= K — 1 in the last formula and adding 1 gives, by (3.9),
2(a+b)
det(l, — C)) = ——=
et =) =5

which completes the proof by making use of formula (A.4).

Lemma 2. We have

0o Jj=1
4] =

where

/30—"11“1/3 i=1,...,K-2
J b jJ_7"'7

and P; is given by (4.10).

Zl: 0 — B} )v(4)) / K2
(OC ) 3 V(UA,-> Z/:l

Proof. The form of the matrix Cy; and (5.8) leads to

o B
= . A
Co(l, —Cy) : =
0611<,1 Bis
Consequently,
A o —
L=t :
A?(fz “272 - [’)272

B

0
B

The matrix Cy is of the form (A.1) with entries given by

V(A[_])
Y, =c = I=2,...,K-2
V1 Ci V(A/)’ ) ) )
Ax—
b= g, =K g

(59)

(5.10)
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we have

det(lo — Co) = 7\/(1‘1](,1) s

and the s; in (A.2) in this case are given by

I
s?-v(L_JA,-)7 l=1,...,K-2,
j=1

which implies (5.9) using (A.4) with t; = ¢ — . O

Finally, the specific representations for ¢ and f'allows us to derive the following formula for the variance of ¢ from

(1.3).

Proposition 1. We have

K=2 = ,
Z: (247 — o) v(4))(er — er1) t1 ; (24] — )0y v(A;)u(4,)”,
where
=00 —cod |, I=1,...,K—1, and of=0o% , =0. (5.11)
Moreover,
K-2 K-2
ZA(;V(A[)(EI — €1+1) = Ze,(oc? — B(;)V(Al) (512)
=1 I=1
Proof. Let () denote the scalar product in L(v). Since o(¢)* = (2f — ¢, ¢), we obtain, by (5.5) and (5.6),
K-2 k-1 K=2 k-1
= <Z (ZA? —o)0; + Z (ZA} —a)n,, Za?@; + Za}n,>.
=1 =1 = =1
The elements #;, j=1,...,K — 1, are orthogonal in L*(v) and
1
[ @) =0, ) =334 )uta)’
Y
From (4.3) we obtain
J00n@) =0, (0,0) =v()(1 +cs.0)
We also have
—v(d4;), j=I1+1;
<9/79/>:{ (A1), Jj ' '
0, otherwise, when j # [,
and
U Jj= l;
nbr =< —crmn, j=1+1;
0, otherwise.
Therefore
K=2 K=2 K1
(247 — o) (0,,0;) + > (24) — o)ty gy my)- (5.13)

=1 =1
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Since (0;,0,) = 0 for |j — {| > 1, the first term in (5.13) is equal to

K-3 1+1

(249 = o) (o101, 01) + 05(01,02)) + > (247 — o)) Y~ 4(0,,0,)

=) vt
+ (245, — oy _,) (o5 (02, Ox2) + oty_3(Ok—2, Ox—3))-
Note that

o001, 01) + 053(01, 02) = ov(Ar) (1 + ¢2) — ov(dr) = v(di)(er — e2),
where we have used the formula (5.11) for e, ;. Similarly, we have

I+1

Z (0, 0;) = v(4;)(er — ery1)

Jj=1-1
for 2 <1< K — 3 and, since ox_»cx_| = —ex_1, we also have
ok -2 {0k -2, Ok —2) + oax—3(0x_2, Ox_3) = v(Ax_2)(ex— — ex_1),

which completes the proof of the first part.
For the proof of (5.12), set

A= KZIZ <“? - /3?)V(Af) = iij(Af),

where 7; = o) — pY, and observe that we defined % , in (5.11) to be equal to 0. From (5.10) we also have 8} , = 0. Thus
we can set tx_; = 0. Substituting (5.9) into the right hand side of (5.12) gives
K-2 1 K-2 1
D (er—ern) Y Ty =AY (er—er)y UA/'>
=1 =1

I=1 =1

which can be rewritten as

K-2 ! 1+1 K-2 1 1+1

<€[ Z ‘L'j\’(Aj) — €41 Z ‘EjV(Aj) + €1+1‘E1+|V(A1+1)> — AZ <€1V(UA]~> — €41V <UAJ> + €1+1V(A1+1)>
=1 =1 =1 =1 i=1 J=1

K-1 K-1

K-1
= etv(A;) — ek Z v(4;) — A Z ev(A4;) + Aeg_;.
=1

Since Zj.:lrjv(/lj) = A, the proof is complete. O

6. Calculation of the variance for some specific observables

Example 1. In connection with the Ornstein—Weiss formula [14] for the measure theoretic entropy, see also [3,8], the
deviation of the entropy from its average value, ¢ =log|T’| — [log|T”(y)|v(dy), appears as described in [2]. Thus we
first examine the variance of the function

bo(y) = log|T'(y)| = 4,

where A is the Lyapunov exponent for 7. We have

K-2

A= /logIT’(y)\V(dy) —V(_UA,) loga + v(dx 1) logb. (6.1)

J=1
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Let
loga — 4, I=1,
o) =< ¢l | +loga — 4, [=2,...,K-2, (6.2)
ck_109 ,+logh—1, I=K-1.

From (4.3) and (6.1) it follows that
v(4) = o v(4;1) + (loga — )v(4;), 1=2,...,K—2.
Thus

dv(4,) = (loga — A)v (UA) LK=2
and o | = 0. Hence
K-2
= Z 06(1)91.
=1
Using Proposition 1 and Lemma 2 we obtain

k-2 )
o)’ = ZZela?v(A,) - Z o v(dr) (e — ern),
=1 =1

where ¢, =loga— Afor /=1,...,K —2 and ex_| =logh — 4. Thus

K-2
a
U(¢O) - 2 loga — A ZO‘ v(A;) — 052_2\)(14](,2) logz

=1

Since
, a
loga — A =v(dk-1) logE,

we conclude that

oo = (est) (285U 1)

For the case of ¢ # 1, from (3.11) it follows that

; (U ) Z 1l(av(A,)—lv(Al)):ail—(K;(;)fng')7 (6.3)
and for a =1 we have
I (U ) - i 64

Example 2. Now consider
p(y)=y—-m, yev,
where

m=3 /A (dy) = ;U,V(A,). (6.5)

=1

It follows directly from (3.11), (3.13) and (4.6), that

b(a+b)(b—1)%d _
{ (Hz(){g—l)) ]_ZTI’ a#l,

(K=2)(1-2K)
6 b

a=1.
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First we are going to rewrite ¢ as a function from . We have

vy —m, =1,
yr (6.7)
coy—1 + v —m, l:2,,K—1

From (4.3) and (6.5) it follows that ox_; = 0. Thus

K—1 K-2
b= n+> wb. (6.8)
=1 =1

Proposition 1 leads to

> (b—1)(a—7d*+3b— dab + a®b) b—1\ 2a+1—(K—1)Kv(4,) b—1\’
o(¢)” = 6a—1) (m+a—l)+ 1 (m+ _1> for a#1
(6.9)
and
o= E=D@-13K+13) o (6.10)

33.20

The detailed calculations are given in Appendix B.

Example 3. Again consider ¢(y) = y — m and assume that K= 3. Then

a+1 1 a+1
b= 4) = —— A)) = —
a ’ V) a+2’ V) a+2
We have
miaerafl
T 2a%(a+2)°
and
(a+1)(a+a®+1)
G(d))zz 3 3 .
12a3(a + 2)
The Lyapunov exponent is equal to
A= lo +a+110 atl
Tay2 BT 2%,

and

ol =00 (106, l)zl

Note that o(¢,) = 0 iff @ = (1 + V/5)/2. Let us write

1—a
=— 0,1).
a=—2,2€(0,1)

The graphs of o(¢) and o(¢,) as functions of o are shown in Fig. 1. In this case T, is conjugated to the map F,, in
(2.4), studied in [13].

Example 4. When ¢(y) =y — m and b =a we have a > 1 and we must have a € (\/Z, 2] since (a,b) € D*. For a given
K >3, a = s¢ is a solution of the equation

K —2K 141 =0.
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a b
A A

03T

0.2 7

01T

0 H— 0.0

T ; ; ; ; ; ; ; ; ; ; ; ; ; ; +
t f f t t t t t t t t t t t t t t t +
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 1. Plots of ¢ as a function of o for Example 3 (a) a(¢) as a function of « € (0,1) (b) o(¢o) as a function of a € (0, 1).

Thus the sequence (sk) is increasing and converges to 2 as K — oo. The first two terms are equal to
1+v5  1+3v19-3V33 4+ v/19+3V33

2 3 §4 = 3 .
Let gk denote the variance for the function ¢ as in Example 2 with a = s¢. From (6.9) it follows that

§3 =

02 = syd, (é (s2 — 1lsg +4) + (2sg + D)v(dg 1) — K(K — 1)v(A1)v(AK,1)).

Since v(dg_1) — 1/2 and K(K — 1)v(4,) — 0 as K — oo, we have o> — 1/3, which is the variance for ¢(y) =y in the
case of the symmetric tent map 7(y) = 1 — 2|y| on the interval [—1,1].
If a is in the interval (1, \/ﬂ then there is a band splitting [15] and 7'is no longer exact. In [9]it is shown how to relate

the variance of ¢ for a € (272", 21/"] to the variance of ¢ for «*", which belongs to (v2,2].
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Appendix A. A matrix formula

Let y,,d;,, i = 1,...,n be given. Consider a square n X n-matrix of the form
0 -0
7, 0 -0
C= R S (A1)
0 =0,
Vw0
Then

n

det(l — 6) =I+Z5j ﬁ Vis

=1 imjtl

where [ is the identity matrix of dimension » and the matrix (/ — 6‘)’1 is given by
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b= T T -
(1—=52)7, 1—s _‘_i _w
) 1:!’;’,‘
(I —s3)7273 (1 —53)7, l—s; —28 s
/4 H],i
i=4 s
n—1 n—1
(T=sp) [Ty Q=s0m) I v 1—s, _sn_,l
i=2 i=3
(-sftn 0-s s (s 1o
where
/ n
>0 1T »
e A "
det(/ — C)
Let = (71,..., rn)T be an arbitrary vector. Then
! Al
~ 772 Az
- N (A3)
T, A4,
where

which can be rewritten as

i ﬁ SIZTJ H Vi
A, _J=t = gl = ) (A.4)
II % H Vi

i=1+1 i=1+1

Appendix B. Calculation of 6(¢)* in Example 2

Lemma 1 with o} = 1 yields

d

I _ -
4, = 2 (B.1)
Making use of the relations (3.4), (3.11), (3.13), and
- _v(Ai)
() = i) = =2,

we obtain

1 &l 1 &l ab(a+ b)(b —1)*d
— S 4! - 1)y 4,) = A )v(A)u(4)) = !
2; )" = gy 2 YAV ADRA) = =50

(B.2)
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From Proposition 1 it follows that

K=2
(ZA - 061) (4r)(er — eir1) 2291 ﬁ[ v(4 Za/" —e1),

1 =1

k

-2

I

where /3, = B,/2 since A)._, = b/2, by (3.7) and (B.1), and the ¢, defined in (5.11) are given by e; = v, — m. We have
e; — ey = v — vy, and from (4.6) we obtain

U — U = — % (b—1)(a+ a5, (B.3)

Thus, if @ # 1 then

B o ) +b 1
e =10 m= a—1 Uy Uiyl m 1

Consequently,
KZZML Ar)(er — erp1) = _axly, +LA L (B.4)
— 11 €)= €] a—1 1727 a—1,"% .
where
K=2
Ag =Y (20— B)v(4y), (B.S5)
=1
)
Ay = Z oav(Ar) (07 = v141), (B.6)
Z Biv(An) (v = vigr).- (B.7)

To compute A; as defined in (B.6), note that from (6.7) we obtain

ouv(d;) = j:V(A_/) <Uj "’Z%D - ( > UA>

which, by (4.6), leads to
av(d,) = b1 (a+1)a1*Kiajv(A)f m+b71 v UA (B.8)
P T2 —) = / a—1 — ) ’
By (3.11), we have

! I+1 _
Za/v(A,):w7 I=1,.. K—1. (B.9)
Consequently,
b—1 b—1\ ([
o0v(d)) = maz K™ — 1)v(4,)) - (m+a — 1)\}(U1Aj>. (B.10)

From (B.10) and (B.3) we obtain

Z_azv(m)wﬁvm) %“"Z z>*(m+7) UA> ~Ur1)-

I=1 j=1

We have

>

— a(@ — 1)v(d)) = (b —1)a*>Xa(a®~ ; 1)(a* ' = 1)(a® - 1)d, _a K=3(a — 12b(a+b)(b— 1)°d
7 (a—1)(a*+a+1) a>+a+1

2a*a— 1) (m Lbe 1)

a2 +a+1 a—1

I
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and

=1

=1

Consequently,

(a+1)(b-17 (b-=1(a+1) bh—1 b—1\°

A =— - - 27
! (2(a2+a+1) 20a—1) "t [
Next we compute A, as defined in (B.7). From (4.10) and (B.3) we obtain

X )= ) = = “C TGS @ et

=1

__(a+l)(b—l)3d1 «— ad — &NV — 4
LAY )@ )

(a+ Db - 1 dia (@2 = 1)(@ !~ 1)(a* — 1) abla+b)(b—

k=2 [ 1 k-1 K-1 b1
ZV UAj (0 — vi41) ;v v,—vKlzv m_vK*:"H_a,l_

4a— 1 a*¥5(@ — 1)(@+a+1) 4@ +a+l)

which gives

Azza(a—l)(b—l)z (m+b—l>.

2@ +a+1) a—1

It only remains to compute A, as defined in (B.5). To do this observe that

K-1 K-1
A() =2 Z (X]V(A[) — ZBIV(AI
=1 =1

since ox_| = fx_; = 0. By (4.10) and (B.9), we have

N __b-1 s KN _ b-1 , g a(@® —1)v(dg_1)
;ﬁlv(A,)fz(%l) <a ;av(A;)—a> *72(%1)(“ e~ hde)

b1 (ablatb)(b-1)d
72(5171)( a+1 a),

which leads to
K-1
_a b—1 alb—1)
;ﬁ]v(A,) =i (m+—a — 1) TS
From (B.10) it follows that
1a K-1 1 h— 1\ K I
ZO{[V 41)2<a121a V(A/)—l — (m—ﬁ—aj) v UA, .

We have

a+1)

)

(b= 1a** Kzla _(b— D@ *a (@ — D)v(dx 1) _a®b(a+Db)(b—1)'d,

a—l

This and (6.3) imply that

-1 2(a—-1)
which combined with (B.13) gives
_(a— (K — 1)Kv(A1)) (m—i—b_ 1) +a(b— 1) (b-1)(a+b—ab)

a—1 a-1) 2a-1) (a—1)

~
=1
Il

a b—1 b—1)(a+b—ab a  (K—1)Kv(4,
Z“IV(AI):az_l(1n+a >7( ) ),(a | )Kv(4,)

(B.11)

(B.12)

(B.13)

(B.14)
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Substituting Ay, 4;, and 4, into the right-hand side of (B.4) we obtain

a+1 1 b—1\ a+1 b—1\’ (a+170b-17 (a+1)°B-1)
- A+——Ay— A = -
a—1 1—i_afl ’ O(m—‘rafl) afl(m—i_afl) +<2(a1)(a2+a+1) 2(a—1)

% n[+b_1 + a(b_l)z m+b_1 +a—(K—1)KV(A1) m+b_1 2+ Tﬂ+g
a—1 2(a*+a+1) a—1 a—1 a—1 a—1

y (_a(b1)+(b1)(a+bab)>‘

2(a—1) (a—1)
After some algebra we conclude that
K=2
+1)(b—1)(b—ab — a* — 24a°) b—1
249 — ;) v(4;)(v; — v, :(a m-+
Z( 0 = ) v(d) (o) — ) N @ tatl) —

L2at 1= (K= DKv(4) (m+b_ 1)27

a—1 a—1

which together with (B.2) and Proposition 1 gives (6.9).
Now, if @ =1 then

(K—-2)(3/+1-2K)

(K= +1)(+1-K)

v, —m= 3 and o, = 3
Hence

KZ_ZWV(AI)(UI — o) = %

=1
and

=3 (K —2)* (4K +13)(K + 1)

- (U] - m)(ZO([ - ﬁl)v(Al) = 33 .20 ’

which together with (B.2) and Proposition 1 gives (6.10).

References
1] Billings L, Bollt EM. Probability density functions of some skew tent maps. Chaos, Solitons & Fractals 2001;12(2):365-76.
2] Bruin H, Vaienti S. Return time statistics for unimodal maps. Fund Math 2003;176:77-94.
3

4] Dorfle M. Spectrum and eigenfunctions of the Frobenius—Perron operator of the tent map. J Statist Phys 1985;40(1-2):93-132.
5] Hofbauer F, Keller G. Ergodic properties of invariant measures for piecewise monotonic transformations. Math Z
1982;180:119-40.
[6] Isabelle SH, Wornell GW. Statistical analysis and spectral estimation techniques for one-dimensional chaotic signals. IEEE Trans
Signal Process 1997;45(6):1495-506.
[7] Ito S, Tanaka S, Nakada H. On unimodal linear transformations and chaos. II. Tokyo J Math 1979;2(2):241-59.
[8] Kontoyiannis I. Asymptotic recurrence and waiting times for stationary processes. J Theoret Probab 1998;11(3):795-811.
[9] Mackey MC, Tyran-Kaminska M. Central limit theorems for non-invertible measure preserving maps. http://arxiv.org/abs/
math.PR/0608637, 2006.
[10] Mackey MC, Tyran-Kaminiska M. Deterministic Brownian motion: The effects of perturbing a dynamical system by a chaotic
semi-dynamical system. Phys. Report 2006;422(5):167-222.
[11] Melbourne I, Nicol M. Almost sure invariance principle for nonuniformly hyperbolic systems. Commun Math Phys
2005;260(1):131-46.
[12] Meyn SP, Tweedie RL. Markov chains and stochastic stability. Communications and Control Engineering Series. London:
Springer-Verlag Ltd.; 1993.
[13] Mori H, So B-C, Ose T. Time-correlation functions of one-dimensional transformations. Progr Theoret Phys 1981;66(4):1266-83.
[14] Ornstein DS, Weiss B. Entropy and data compression schemes. IEEE Trans Inform Theory 1993;39(1):78-83.
[15] Yoshida T, Mori H, Shigematsu H. Analytic study of chaos of the tent map: band structures, power spectra, and critical
behaviors. J Statist Phys 1983;31(2):279-308.

(1]
(2]
[3] Collet P, Galves A, Schmitt B. Repetition times for Gibbsian sources. Nonlinearity 1999;12(4):1225-37.
[4]
(5]


http://arxiv.org/abs/math.PR/0608637
http://arxiv.org/abs/math.PR/0608637

	Central limit theorem behavior in the skew tent map
	Introduction
	The family of skew tent maps
	Characterizing the rising periodic orbits
	The transfer operator
	Solution of the Poisson equation for functions from {\cal{L}}
	Calculation of the variance for some specific observables
	Acknowledgements
	A matrix formula
	Calculation of  sigma ( phi )2 in Example 2
	References


