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Homeostasis allows living organisms to perform in optimal conditions despite ever-changing surroundings.
Dynamically, it corresponds to a stable steady state, and so its quality can be judged by the volume of the
corresponding basin of attraction and/or the length of the relaxation time. Motivated by the fact that the vast
majority of intracellular processes involve enzymatic reactions and, as some people have suggested, models
similar to those of Brownian motors can be used to study them, here we introduce a simple Brownian motor
model and use it to gain insight into the relation between efficiency and stability properties previously observed
in macroscopic systems. For this, we analyze the existence, uniqueness, and stability of the motor’s steady
state; study its thermodynamic process variables, their relation, and their dependence on the model parameters;
and compare the Brownian motor relaxation time and thermodynamic properties. Finally, since the steady state
is unique and globally stable, we discuss our results from the standpoint of the energetic costs of maintaining
a homeostatic state with short relaxation times.
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I. INTRODUCTION

In 1932 Cannon �1� introduced the concept of homeosta-
sis, stating: “The coordinated physiological processes which
maintain most of the steady states in the organism are so
complex and so peculiar to living beings—involving, as they
may, the brain and nerves, the heart, lungs, kidneys and
spleen, all working cooperatively—that I have suggested a
special designation for these states, homeostasis. The word
does not imply something set and immobile, a stagnation. It
means a condition—a condition which may vary, but which
is relatively constant.” Although a name did not exist for it at
the time, Bernard had already discussed this concept around
1860: “The constancy of the internal environment is the con-
dition for a free and independent life” �2�. Now homeostasis
is regarded as a cornerstone concept in biology. It is found,
to some extent, in all living beings, and allows them to per-
form in optimal conditions in spite of ever-changing sur-
roundings and inputs.

From a dynamical point of view, homeostasis corresponds
to the existence of a stable steady state �3–5�. Hence, the
quality of homeostasis can be judged by the volume of the
steady-state basin of attraction and/or the relaxation time
with which the system returns to the steady state after a
perturbation. Having a large basin of attraction is important
because it allows the system to come back to the steady state
even if it suffers large alterations. On the other hand, a rapid
relaxation time permits the system to quickly recover its op-
timal state after a perturbation. Furthermore, the shorter the
system relaxation time, the smaller the amplitude of the fluc-

tuations in its state variables, caused by an ever-changing
environment.

Previous work on finite-time thermodynamic engines
�6,7�, and on the stretch reflex regulatory pathway of muscle
contraction �8�, has shown that those systems’ stability prop-
erties depend on the same parameters that determine their
thermodynamic characteristics �power, efficiency, etc.�. In-
deed, a trade-off between efficiency and stability properties
has been noted in these two cases, with respect to some
parameters. If these results are more general and they apply
to a wide range of intracellular energy-converting processes,
it would mean that the maintenance of the cell homeostatic
state entails an expenditure of energy, which has to be taken
into consideration to understand how organisms adapt to a
constantly changing environment.

The majority of intracellular energy-converting processes
involve enzymatic biochemical reactions. Moreover, it has
been suggested that the functioning of enzymes resembles
that of Brownian motors in several aspects, and thus that
models very similar to those of Brownian motors can be used
to study enzymatic reactions �9–12�. These considerations
indicate that Brownian motors are excellent candidates to
carry out a case study aimed at gaining insight, at the mo-
lecular level, into the relation between efficiency and stabil-
ity properties noted above. With these ideas in mind, in this
paper we introduce a simple Brownian motor model; analyze
the existence, uniqueness, and stability of the steady state;
study the motor thermodynamic process variables, their rela-
tion to and their dependence on the model parameters; and
compare the Brownian motor dynamic and thermodynamic
properties. Finally, given that the model here studied pos-
sesses global stability, we discuss our results from the stand-
point of the energetic costs of maintaining a homeostatic
state with short relaxation times.
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II. THEORY

Consider a Brownian motor—see Fig. 1—in which a mol-
ecule flips between potentials U0�x� and U1�x� with switch-
ing rates f�x� from U0 to U1 and g�x� from U1 to U0. Assume
as well a constant external force −Fe acting upon the Brown-
ian molecule—the corresponding potential being Ue=Fex.
Let �0�x , t�dx and �1�x , t�dx, respectively, denote the prob-
abilities that the molecule is located in the interval �x ,x
+dx� under the influence of potentials U0 and U1 at time t.
The dynamics of �0�x , t� and �1�x , t� are described by the
following set of Smoluchowsky equations �13�:

��0�x,t�
�t

=
�2

�x2 �D0�x��0�x,t�� −
�

�x
�F0�x� − Fe

�0�x�
�0�x,t��

− f�x��0�x,t� + g�x��1�x,t� , �1�

��1�x,t�
�t

=
�2

�x2 �D1�x��1�x,t�� −
�

�x
�F1�x� − Fe

�1�x�
�1�x,t��

+ f�x��0�x,t� − g�x��1�x,t� , �2�

where Di�x� and �i�x� �i=0,1� are the diffusion and the vis-
cosity coefficients when the molecules are in a potential Ui,
and

Fi = −
dUi

dx
�3�

is the corresponding force.
In the limit of large switching rates f and g �the transitions

are rapid compared with the diffusion dynamics�, the follow-
ing quasi-steady-state approximation can be made �13�:

f�x��0�x,t� = g�x��1�x,t� . �4�

With this, the equation governing the dynamics of the prob-
ability distribution ��x , t�=�0�x , t�+�1�x , t� is

���x,t�
�t

= −
�J�x,t�

�x
, �5�

where

J�x,t� = −
�

�x
�D�x���x,t�� +

F�x� − F̃e

��x�
��x,t� �6�

is the probability current, and

D�x� =
D0�x�g�x� + D1�x�f�x�

g�x� + f�x�
, �7�

1

��x�
=

�0�x� + �1�x�
2�0�x��1�x�

, �8�

F�x� = F0�x�
g�x�

g�x� + f�x�
2�1�x�

�0�x� + �1�x�

+ F1�x�
f�x�

g�x� + f�x�
2�0�x�

�0�x� + �1�x�
, �9�

F̃e�x� = 2Fe
�1�x�g�x� + �0�x�f�x�

��0�x� + �1�x���f�x� + g�x��
. �10�

Assume for the sake of simplicity that D1�x� and D2�x�
are constant and equal to each other, as are �0�x� and �1�x�.
This implies �see Eqs. �7�–�10�� that

D = D1 = D2, � = �1 = �2,

F�x� =
F0�x�g�x� + F1�x�f�x�

f�x� + g�x�
, F̃e�x� = Fe. �11�

We see from Eq. �5� that the current J is constant in the
steady state. Furthermore, following �14�, the general steady-
state solution of Eq. �5�, with the simplifying assumptions in
�11�, is

�*�x� =
e−��x�

Z
−

J

D
e−��x��

0

x

e��x��dx�, �12�

where

��x� = −
1

D�
�

0

x

�F�x�� − Fe�dx�, �13�

while Z and J are constants to be determined from the nor-
malization and boundary conditions imposed on the prob-
ability density. In particular, if the potentials Ui�x� �i=0,1�
are periodic, with spatial period L, the normalization and
boundary conditions are

�
0

L

�*�x�dx = 1 and �*�0� = �*�L� , �14�

respectively. Equations �12� and �14� further imply that

f g < f f g > f

x
0 L/2 L

U

U

1

e
U
0

FIG. 1. �Color online� Schematic representation of the Brownian
motor considered here. U0 and U1 represent the alternate potentials
between which the molecule flips, while Ue is the external potential
that acts upon the molecule at all times. Recall that a potential U
and its corresponding force F are related by F=−dU /dx. f and g
respectively represent the transition rates from U0 to U1 and from
U1 to U0.
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0 = �*�L� − �*�0� =
e−��L� − e−��0�

Z
−

J

D
e−��L��

0

L

e��x��dx�.

�15�

Hence, the potential ��x� must be nonperiodic in order for
the steady-state current J to be nonzero. If this is the case, we
have from Eq. �15� that

Z =
D

JL

e−��L� − e−��0�

e−��L� ��
0

1

e��L��d��−1

, �16�

with �=x /L. Finally, by substituting �16� into �12� and nor-
malizing the density, we obtain

J =
D

L2� e−��L�

e−��L� − e−��0��
0

1

e−��L��d��
0

1

e��L��d�

− �
0

1

e−��L���
0

�

e��L���d��d��−1

�17�

for the probability current.
It is a direct consequence from �15� �see also �16�, Sec.

IV� that, for the assumptions we have made, the steady-state
solution �* in �12� is globally asymptotically stable in the
sense that every initial �init will converge to �* in L1 norm.

The rate of approach of a nonequilibrium ��x , t� to the
steady-state solution �*�x� can be estimated as follows. Let
�*�x� be the steady-state solution of �5�, and consider another
solution ��x , t� written as

��x,t� = �*�x� + ��x,t� . �18�

From �18� and the fact that � and �* are both solutions of Eq.
�5�, it follows that � satisfies the Fokker-Planck equation

���x,t�
�t

= D
�2��x,t�

�x2 −
�

�x
�F�x� − Fe

�
��x,t�� .

Assume that ��x , t�=e�t��x�; then ��x� and � satisfy the ei-
genvalue equation

���x� = D
�2��x�

�x2 −
�

�x
�F�x� − Fe

�
��x�� . �19�

The eigenvalues of the Fokker-Planck operator determine
the stability of the steady-state solution of �5�. Since we
know that �* is globally stable, then all of the eigenvalues
must satisfy �n	0. It follows from a comparison of Eqs. �5�
and �19�, with D and � constant, that the eigenfunction asso-
ciated with the null eigenvalue corresponds to the steady-
state solution of �5�. A relaxation time 
n can thus be defined
for every nonzero eigenvalue �n as


n = −
1

�n
. �20�

Finally, the largest nonzero eigenvalue—which is the one
with the smallest absolute value—dominates the long-term
dynamics of ��x , t� as it approaches the steady-state solution
�*�x�.

Following Qian �13�, thermodynamic steady-state process
variables can be defined for a Brownian motor as follows.
The average energy rate that a molecule, moving in the ef-
fective potential ��x�, obtains from the potentials U0 and U1
is

E = �
0

L

F�x�J�x�dx . �21�

Similarly, the power exerted against the external force can be
calculated as

P = �
0

L

Fe�x�J�x�dx . �22�

From Eqs. �21� and �22� and the first law of thermodynam-
ics, the heat production rate is

Q = E − P . �23�

Finally, the efficiency of energy conversion is

� =
P
E . �24�

If we assume that Fe is constant and that the Brownian motor
is in a steady state, then �21� and �22� become

E = J�
0

L

F�x�dx �25�

and

P = JFeL . �26�

III. MODEL DEVELOPMENT AND RESULTS

Define the forces Fe, F0�x�, and F1�x� by

Fe =
D�Ve

L
, F0 = 0, F1 = �2D�V/L , 0 	 x 	 L/2,

− 2D�V/L , L/2 	 x 	 L .
	

�27�

Let ��x� be given by

��x� =
f�x�

f�x� + g�x�
= �a , 0 	 x 	 L/2,

b , L/2 	 x 	 L ,
	 �28�

and assume that 0	b	1 /2	a1. That is, f �g if x
L /2, and g� f otherwise. A schematic representation of
the resulting model is pictured in Fig. 1.

We have from �11�, �27�, and �28� that

F�x� = ��x�F1�x� . �29�

Furthermore, it follows from Eqs. �13�, �27�, and �29� that
the normalized potential ��x� takes the form
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��x� = �− �aV − Ve/2�2x/L if 0 	 x 	 L/2,

− �aV − Ve/2� + �bV + Ve/2��2x/L − 1� if L/2 	 x 	 L .
	 �30�

In Fig. 2 the potential � is plotted as a function of x. After
substituting this expression for � into �17�, the probability
current becomes

J =
4D

L2 
 e−2B

eA−B − 1
� eA − 1

A
+

eB − 1

B
��eAeB − 1

B
+ eBeA − 1

A
�

−
1

A
� eA − 1

A
− 1� −

1

B
�1 −

1 − e−B

B
� −

eA − 1

A
·

1 − e−B

B
�−1

,

�31�

where A=aV−Ve /2 and B=bV+Ve /2.
From �21�, �22�, �24�, and �30�, the average rate of energy

input, power output, and efficiency of this model are

E =
3

4
D�VJ�V,Ve�, P =

1

2
D�VeJ�V,Ve�, � =

2

3

Ve

V
,

�32�

where J�V ,Ve� is given by �31�. We can use �31� and �32� to
analyze the model steady-state thermodynamic behavior. To
reduce the number of parameters, consider the case a=1 and
b=0. That is, A=V−Ve /2 and B=Ve /2. The resulting current
J is plotted vs Ve in Fig. 3 for different values of V. Notice
that, in all cases, J decreases monotonically with Ve, the
probability current J vanishes when Ve=V, and the curves J
vs Ve are concave. The maximum J value, J*�V�=J�V ,Ve
=0�, increases together with V, as well as the concavity of
the J vs Ve curves. The graph of J*�V� vs V is shown in Fig.
4. Note that J* increases monotonically as the depth �V� of
the potential U1 increases.

The dependence on V and Ve of the power �P� exerted by
the Brownian motor against the external force −Fe is shown
in Fig. 5. There, P is plotted vs Ve for different values of V.
In all cases, P is zero at Ve=0 and Ve=V, and the P vs Ve
curves are convex with a single maximum. The value of Ve
that maximizes P decreases as V increases, while the maxi-
mum P value �P*� increases monotonically with V, as also
shown in Fig. 6. Interestingly, the P* vs Ve curves resulting
from this model behave similarly to those reported in analo-
gous studies on Brownian motors �17,18�

Finally, as seen in �32�, the Brownian motor efficiency �
varies linearly with Ve. In particular ��Ve=0�=0 and ��Ve
=V�=2 /3.

Let ��x� be one eigenfunction of the Fokker-Planck op-
erator in Eq. �19� and � its corresponding eigenvalue. Fol-
lowing �9,10,14�, Eq. �19� can be transformed into the
Schrödinger-like equation

�2��x�
�x2 − VS�x���x� =

�

D
��x� , �33�

via the change of variable

��x� = ��x�e��x�/2,

with ��x� as defined in Eq. �13�, and

VS�x� = �1

2

���x�
�x

�2

−
1

2

�2��x�
�x2 . �34�

Substitution of �30� into �34� yields

VS�x� = ��A/L�2, 0 	 x 	 L/2,

�B/L�2, L/2 	 x 	 L .
	 �35�

Assume that the solution of �33� takes the form

��x� = �− �a cos��ax� + �a sin��ax� , 0 	 x 	 L/2,

− �b cos��bx� + �b sin��bx� , L/2 	 x 	 L .
	
�36�

Substitution of �35� and �36� into �33� leads to the conclusion
that ��x� must satisfy the equations

− �a
2��x� − �A/L�2��x� = ��/D���x� if 0 	 x 	 L/2,

x
L/2 L

-aV+Ve/2

-(a-b)V+Ve

FIG. 2. �Color online� Normalized potential �, as given by Eq.
�30�, vs x.

0 0.2 0.4 0.6 0.8 1
Ve / V

0

1

2

3

4

5

6

J

FIG. 3. �Color online� J �in units of D /L2� vs Ve �normalized to
V� for various values of V. The line patterns are as follows: – V
=1D�, ¯ V=2D�, – – V=5D�, –·– V=10D�, and –··– V=20D�.
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− �b
2��x� − �B/L�2��x� = ��/D���x� if L/2 	 x 	 L ,

where � is an eigenvalue of the Fokker-Planck operator de-
fined in �19�, and � /D is an eigenvalue of the Schrödinger-
like equation �33�. These equations further imply that

− � = D��a
2 + �A/L�2� = D��b

2 + �B/L�2� .

Moreover, since A=V−Ve and B=Ve,

− � �
D

L2 �V − Ve�2, �37�

whenever 0	Ve	V. Equation �37� provides an upper bound
for the eigenvalues �n of the Fokker-Planck operator in Eq.
�19�, and is consistent with the fact that the steady state is
globally stable ��n0, ∀n�. Finally, from �20� and �37�, an
upper bound can be calculated for the relaxation times that
govern the return of the system to the steady state after a
perturbation:


 	
L2

D�V − Ve�2 . �38�

Given that, of all the relaxation times, the largest one domi-
nates the system dynamics as it approaches to the steady

state, the upper bound provided by �38� is an estimation of
how rapidly the steady state is approached. The smaller the
value of the right-hand side of Eq. �38�, the more rapid the
approach to the steady state. Bier et al. �19� extensively stud-
ied the relaxation time on a potential slope back to a Boltz-
mann distribution, starting from a Dirac � distribution cen-
tered at the point of interest. In agreement with our results,
they found that the relaxation time is inversely proportional
to the square of the potential depth.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have used a simple Brownian motor
model to gain insight into the relation between stability �re-
laxation time� and thermodynamic �power, efficiency, etc.�,
properties commonly observed in energy-converting sys-
tems. We will discuss our results in this section from the
standpoint of the energetic costs concomitant with the main-
tenance of a short relaxation time and its consequences for
cellular homeostasis.

The model introduced here considers a diffusing over-
damped molecule that flips between two periodic symmetric
potentials U0 and U1, while subjected to a constant external
force −Fe. The potential U0 is constant and equal to zero,
which means that the molecule diffuses freely under its in-
fluence. Conversely, the potential U1 is piecewise linear, con-
cave, and has a single minimum at x=L /2, where L is the
potential spatial period. Thus, under the influence of U1, the
molecule tends to fluctuate around the point of minimum
potential. This setup is commonly thought to be the underly-
ing mechanism for motor protein motion, and it has been
suggested that similar models can be used to study enzyme
function �9–12�.

In the present model, flux results from varying the transi-
tion rates between potentials U0 and U1 along the x axis �see
Fig. 1� which is also how isotropy is broken. These systems
have been termed “feedback control ratchets” by Cao et al.
�20�, and transport in them was derived and studied by
Ciudad et al. �21�. Indeed, by taking a=1 and b=0 in Eq.
�28�, we go to the case studied in Ref. �21�. This assumption
means that, whenever the Brownian molecule is under the
influence of U0 and 0	x	1 /2, it immediately flips to U1

0 5 10 15 20
V

0

1

2

3

4

5

6
J*

FIG. 4. �Color online� Maximal current value J* �in units of
D /L2� vs V.

0 0.2 0.4 0.6 0.8 1
Ve / V

0

1

2

3

4

5

P

FIG. 5. �Color online� Plots of P �in units of D2� /L2� vs Ve

�normalized to V� for various values of V. The line patterns are as
follows: – V=1D�, ¯ V=2D�, – – V=5D�, –·– V=10D�, and –··–
V=20D�.

0 5 10 15 20
V

0

1

2

3

4

5

P*

FIG. 6. �Color online� Maximal power output value P* �in units
of D2� /L2� vs V.
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and remains there, diffusing to x�1 /2, whereas, if 1 /2x
	1 and the molecule is under the influence of U1, it rapidly
flips to U0 and remains there, diffusing freely.

The fact that this model is analytically solvable allows a
complete analysis, using standard techniques, of its thermo-
dynamic characteristics �power, efficiency, etc.� and of its
steady-state stability. In particular, we have proven that our
model has a unique globally stable steady state. Therefore,
we focus the forthcoming discussion on the system relax-
ation time, which determines the drive-away dynamics of the
Brownian motor and, as discussed in the Introduction, needs
to be short to preserve cellular homeostasis.

From Eq. �31�, the probability current is determined by D,
L, V, and Ve. In particular,

J �
D

L2

when Ve and V are fixed. The dependence of J on Ve and V
can be analyzed from Fig. 3. Notice that �for fixed values of
D, L, and V� J decreases monotonically as Ve increases and
is zero at Ve=V. Furthermore, the J vs Ve curves are concave,
and their concavity increases together with the value of V.
Finally, the maximum J value, reached at Ve=0, is an in-
creasing function of V �cf. Fig. 4�.

The average speed of a molecule moving under the influ-
ence of the external force −Fe and the potentials U0 and U1 is
v=JL �13�. Therefore, we can conclude from the consider-
ations in the previous paragraph that v decreases as the ab-
solute value of the external force, Fe, increases �Fe�Ve�, that
the maximum speed is reached at Fe=0 and is a growing
function of the depth �V� of the potential U1, and that v is
proportional to D /L.

For the power P exerted by the Brownian motor against
the external force �−Fe�, it follows from �31� and �32� that it
is proportional to D2� /L2. Furthermore, P also depends on
Ve and V. The curves P vs Ve are convex with a single
maximum, P is zero at Ve=0 and Ve=V, the Ve value that
maximizes P is close to V /2 when V�0 and decreases as V
increases, and the maximum P value increases with V.

From these observations it is clear that both the velocity v
and the power P can be enhanced by increasing the diffusion
coefficient D and/or decreasing the spatial period L. From
Eq. �38� the relaxation-time upper bound 
 increases with L
and decreases with D. Thus the parameters D and L have a
similar effect on the Brownian motor thermodynamic prop-
erties �v and P� and the relaxation time associated with its
steady state. Increasing D and/or decreasing L make the
power and the velocity increase and increase the rapidity
with which the steady state is approached.

The Brownian motor velocity v �31�, power output P
�32�, efficiency � �32�, and relaxation-time upper bound 

�38� depend on both Ve and V. When V is kept constant,
increases in Ve lead to decreases in v �see Fig. 3 and remem-
ber that v�J� and to increases in � and 
 �indeed 
→� as
Ve→V�. In contrast, the curves P vs Ve are convex with a
single maximum, and the Ve value that maximizes P de-
creases as V increases. Thus, if V is high enough, a regime
can be found where the system has a high power output, its
steady state has a short relaxation time, and has a high ve-

locity. Nonetheless, since Ve is necessarily small in this re-
gime, the efficiency of energy conversion is also small.

It is interesting to analyze how the properties of the
Brownian motor depend on the value of the parameter V. In
Fig. 4, the maximum current value J*�V�=J�V ,Ve=0� is
plotted vs V, and J* is a monotonically increasing function of
V. Since v=JL, the maximum speed is also an increasing
function of the depth �V� of the potential U1. We have seen
that the curve P vs Ve is zero at Ve=0 and Ve=V, and that it
has a single maximum P* at an intermediate Ve value. Notice
from Fig. 6 that P* increases together with V. Furthermore,
from �38� the minimum value of the relaxation-time upper
bound decreases as V increases. That is, larger V values im-
ply a more rapid approach to the steady state. Finally, in this
model, the maximum possible efficiency is always 2 /3, re-
gardless of the V value �32�. To conclude, as the thermody-
namic properties �v and P� improve, the steady-state relax-
ation time decreases, and the efficiency remains unaffected
as V increases.

In summary, after analyzing the effects of all the model
parameters on the relaxation time of the system steady state
as well as on thermodynamic properties like the system ve-
locity, power, and efficiency, we find that every parameter
affects both the system dynamics and thermodynamic char-
acteristics. We conclude that all the parameters have a simi-
lar effect on the velocity, the power output, and the system
relaxation time such that when the first two quantities in-
crease, the last one decreases. With respect to the efficiency,
the parameters can be classified into those that affect the
efficiency, and those that do not. In the cases where the ef-
ficiency is affected, we noticed that it always increases when
the power and the velocity decrease, and vice versa. The
trade-off found between power and efficiency could be pre-
dicted beforehand because it has been observed in all kinds
of energy-converting systems, both biological and artificial.
More original is the fact that we found parameters that affect
both the systems’ relaxation time and its thermodynamic per-
formance, some of which have to be tuned to reach a good
compromise between those characteristics.

The trade-off observed between the system efficiency and
the rapidity with which it returns to the steady state after a
perturbation is particularly relevant from a biological view-
point. All living cells have a finite availability of energy,
which has to be distributed among the different energy con-
suming cellular activities. Improvement of one of such pro-
cess necessarily has a deleterious effect on the others. This
may explain why all organisms have reached an optimal
compromise among their energy-consuming tasks. The re-
sults of the present work suggest that the system stability
properties—in particular the relaxation time—need to be
taken into account in this equation as well. In agreement with
previous studies on macroscopic systems �6–8�, our results
suggest that decreasing the relaxation time of a cellular pro-
cess has a negative effect on its efficiency, and therefore
involves an energetic cost. If, as suggested by some authors
�9–12�, mathematical models similar to those for Brownian
motors can be used to model enzymatic reactions and, as we
suspect, the present results are more general than the context
in which we have derived them, then the maintenance of the
cell homeostatic state entails an expenditure of energy, which
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has to be taken into consideration to understand how organ-
isms adapt to a constantly changing environment.
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