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1. Introduction

The knowledge of the complete genome of a given species is just a small pieceof the
information thought to be useful in the understanding of one of the most complicated and
important puzzles in science: “How does a biological system work?”. To fully understand
the behavior of an organism, an organ, or even a single cell, we need to understand the
underlying gene regulatory dynamics. Given the complexity of even a singlecell, answering
this questions is impossible at the moment and will remain so for the foreseeable future.
However, by analyzing the simplest genetic regulatory systems we may be ableto develop
the mathematical techniques and procedures required to tackle ever more complex genetic
networks in the future.

In this paper, we review our efforts of the past few years to understand, via mathemati-
cal modeling, the dynamic behavior of one of the most studied gene regulatory networks in
bacteria: the tryptophan operon. As we shall see, it is possible to obtain valuable informa-
tion with relatively simple models, despite all of the assumptions underlying them.

2. A Brief Historical Review

During the Enlightenment, in the latter part of the 18th and early part of the 19thCenturies,
scientific disciplines started to be hierarchically classified. This classificationinto the so
called exact sciences(physics and mathematics) and those of thelife sciences(biology
and medicine) has led to the notion that these two broad divisions have evolved following
distinct, separate, and sometimes even contradictory or conflicting pathways. The truth,
however, is far different. Since the origins of modern science, there have been people mak-
ing important contributions to both the exact and life sciences as well as the very interface
between them. William Harvey discovered blood circulation with the aid of a mathemati-
cal model. Electrodynamics started with the work of Galvani and Volta (both physicians)
on animal electricity. Later, Helmholtz (also a physician, but better known forhis contri-
butions to physics) invented the myograph and the ophthalmoscope, recorded for the first
time the velocity of a nervous impulse, discovered the first law of thermodynamics (based
on metabolic considerations), and helped to settle the foundations of all modern theories of
resonance with his studies on auditory physiology.

During the 20th century, electrophysiology (the science that studies the interactions
between biological tissues and electromagnetic fields) advanced enormously. Archibald
V. Hill, Bernard Katz, Max Planck, Walter Nernst, Kenneth S. Cole, Alan L.Hodgkin,
Andrew, F. Huxley, Erwin Neher, and Haldan K. Hartline, among others,made important
contributions to its progress. Some remarkable events in the history of electrophysiology
were: the explanation for the origin of the action potential, elucidated by Hodgkin and
Huxley with the aid of highly sophisticated mathematical models; the Huxley cross-bridge
model for muscle contraction; and the invention of the patch clamp technique byNeher.

Charles Darwin published his theory of evolution through natural selectionin 1859.
From the beginning, it was clear that this theory lacked proper statistical foundations, and
this was its main weakness. Indeed, an apparent contradiction between Darwinism and
Mendel’s laws of inheritance arose immediately after the Mendelian laws were rediscovered
in 1900. This gap was closed through the work of many mathematicians who, between
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1860 and 1940, developed the necessary statistical tools to fuse geneticsand Darwinism.
The result is what we know today as population genetics or neo-Darwinism.Some of
the most important contributors to this success were: Fleeming Jenkin, FrancisGalton,
Karl Pearson, Raphael Weldon, Godfrey H. Hardy, Ronald A. Fisher, Sewall Wright, and
Theodosius Dobzhansky. Interestingly, Godfrey H. Hardy and Ronald A. Fisher are well
known in the mathematical community for their contributions to real analysis and number
theory [Hardy], and probability and statistics [Fisher].

Molecular biology consolidated between 1940 and 1960, and until 1970 twodifferent
schools were recognized: the structural and the informatics schools. The physicists W. H.
Bragg and W. L. Bragg (father and son) founded the structural school in Cambridge. They
invented X-ray crystallography in 1912, and the structural analysis of biological molecules
soon started in their lab. Some of the best known structuralists were W. T. Astbury , John
D. Bernal, Max Perutz, and John C. Kendrew (all of them from Cambridge), as well as
Linus Pauling from Caltech. The structuralists were convinced that no newphysical laws
were required to explain vital phenomena. They endeavored to explain thefunction of
biomolecules (and so of tissues and organs) from their inner structure. The secondary pro-
teinic structure known as the alpha helix, and the structures of hemoglobin and myoglobin
are some of the most important discoveries from this school.

Inspired on the uncertainty principle of quantum mechanics, Niels Bohr proposed that
new principles from physics may be necessary to understand life. With this assertion, Bohr
founded the informatics school of molecular biology. Max Delbrück and Erwin Schr̈odinger
(both physicists) were two of the most important spokesmen for this school. When the Nazis
took power in Germany, Delbrück moved to the USA were he started a very successful
collaboration with Salvador Luria on bacteriophage research. This collaboration greatly
advanced our knowledge of the molecular basis of genetics. On the other hand, Schr̈odinger
had to move to Dublin after the Nazis invaded Austria, and there he published alittle book
entitledWhat is life?, which was tremendously influential on the development of molecular
biology.

Some of those recruited by Schrödinger’s book were James Watson and Francis Crick
(who later discovered the structure of DNA in 1953), Maurice Wilkins (whoprovided es-
sential physical data to Watson and Crick), Seymour Benzer (who sequenced the first gene),
and François Jacob (who discovered mRNA and, together with JacquesMonod, the regula-
tory mechanisms of thelac operon.

During the second half of the 20th Century, biomathematics, also known as mathemat-
ical biology, developed as a branch of applied mathematics. Biomathematics is anactive
field of research and interest in it is accelerating as is the number of individuals working on
it. It is essentially dedicated to mathematical modeling biological phenomena. Biomath-
ematicians have made important contributions to ecology (through population dynamics),
epidemiology, pattern formation (through the study of reaction diffusion equations), molec-
ular biology, integrative physiology, and medicine. Some of the most best known biomathe-
maticians are B. van der Pol, A. J. Lotka, V. Volterra, A. Turing, J. M. Smith, A. T. Winfree,
etc. Readers interested in learning more about the common history of biology,mathematics,
and physics are recommended to read References [1, 2, 3, 4, 5, 6].
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3. Systems Biology

A new designation for an area of interdisciplinary research in biology, currently termed
systems biology, emerged a few year ago; it continues with the long tradition described in
the previous section, and especially with the long tradition of an integrative approach in
physiology. The closest ancestors to what is called systems biology are systems theory and
cybernetics. Since systems biology inherits part of the philosophy and the goals of both, it
is interesting to briefly review these latter two.

Systems theory is an interdisciplinary field which studies relationships betweensystems
as a whole. It was founded in the 1950s and focuses on organization and interdependence of
relationships. Systems dynamics is a central part of systems theory; it provides methods for
understanding the dynamic behavior of complex systems. Such methods rely on the recog-
nition that the structure of any system—the multi-circular, interlocking, sometimes time-
delayed relationships among its components—is often just as important in determining its
behavior as the individual components themselves. Indeed, in many cases, it is impossible
to explain the behavior of the whole system in terms of the behavior of its separated parts
only. Examples are chaos theory and social dynamics.

Cybernetics is the study of communication and control, typically involving regulatory
feedback, in living organisms, in machines, and in combinations of the two. Itis an ear-
lier but still-used generic term for many of the subject areas that are subsumed under the
headings of adaptive systems, artificial intelligence, complex systems, complexity theory,
control theory, decision support systems, dynamical systems, informationtheory, learning
organizations, mathematical systems theory, operations research, simulation, and systems
engineering.

Contemporary cybernetics began in the 1940s as an interdisciplinary studyconnecting
the fields of control theory, electrical network theory, logic modeling, neuroscience, and
human physiology. The emphasis of cybernetics is on the functional relations that hold
between the different parts of a system; rather than the parts themselves. These relations
include the transfer of information, and circular relations (feedback) that result in emergent
phenomena such as self-organization. The name cybernetics was coinedby its intellectual
father, Norbert Wiener, to denote the study of “teleological mechanisms” (i.e. machines
with corrective feedback) and was popularized through his bookCybernetics, or Control
and Communication in the Animal and Machine(1948). Wiener was, incidently, one of the
most influential and original mathematicians of the first half of the 20th century.

Systems biology is an academic field that seeks to integrate different levels ofinforma-
tion, and so to understand how biological systems work. By studying the relationships and
interactions between various parts of a biological system (e.g., gene and protein networks
involved in cell signalling, metabolic pathways, organelles, cells, physiological systems, or-
ganisms, etc.) it is hoped that eventually a comprehensive model of the wholesystem can be
developed. As the intellectual grandchild of what was originally called humanphysiology
it endeavors to expand physiology to include biochemistry as well as molecular biology.

In contrast to much of molecular biology, systems biology does not seek to break down
a system into all of its parts and to study each part of the process at a time with the hope of
being able to reassemble all the parts into a whole again. Systems biology beginswith the
study of genes and proteins in an organism using high-throughput techniques to quantify
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changes in the genome and proteome in response to a given perturbation. These techniques
include microarrays to measure the changes in mRNAs and mass spectrometry,which is
used to identify proteins, detect protein modifications, and quantify protein levels. How-
ever, systems biology is much more since it balances these molecular details against whole
system performance and behavior. Using this integrated knowledge, the system biologist
can formulate hypotheses that explain a system’s behavior. Importantly, these hypotheses
can be used to mathematically model the system. Models are then used to predict how
different changes in the environment affect the system itself, and so they can be iteratively
tested for their validity.

Recent analysis has revealed that cell signals do not necessarily propagate linearly. In-
stead, cellular signalling networks can be used to regulate multiple functions in acontext
dependent fashion. Because of the magnitude and complexity of the interactions inside the
cell, it is often impossible to understand intuitively thesystems behaviorof these networks.
Rather, it has become necessary to develop mathematical models and analyzethe behavior
of these models, both to develop a systems-level understanding and to obtainexperimentally
testable predictions.

New approaches to these problems are constantly being developed by quantitative sci-
entists, such as computational biologists, statisticians, mathematicians, computer scientists,
engineers, and physicists, to improve our ability to create, refine, and retest the models until
the predicted behavior accurately reflects the seen phenotype.

The reader interested in reading more about the definition and philosophy of systems
biology may find References [7, 8, 4, 9, 5, 10, 11, 12] appealing.

4. The Central Dogma of Molecular Biology

The central dogma of molecular biology deals with the information flow between DNA,
RNA, and proteins. The standard information-flow pathway can be summarized in a very
short and oversimplified manner as follows: DNA→ RNA → proteins. Proteins in turn
facilitate the previous two steps, as well as the replication of DNA. This whole istherefore
broken down into three steps: transcription, translation, and replication. Nevertheless, in-
formation can flow backwards in some steps; see Figure 1. Below, two of theprocesses
accounted for by the central dogma (transcription and translation) are briefly reviewed.

Transcription

Transcription is the process through which a DNA amino acid sequence is copied by an
enzyme known as RNA polymerase to produce a complementary RNA. In otherwords, it
is the transfer of genetic information from DNA into RNA. In the case of protein-encoding
DNA, transcription is the beginning of the process that ultimately leads to the translation of
the genetic code (via the mRNA intermediate) into a functional peptide or protein.

In prokaryotic cells, like bacteria, transcription initiation takes place throughthe fol-
lowing steps:

• RNA polymerase (RNAP) recognizes and specifically binds to a DNA segment
known as the promoter. At this stage, the DNA is double-stranded and (closed).
This RNAP/wound-DNA structure is referred to as the closed complex.
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Figure 1. The 1970 version of the Central Dogma. The arrows represent the flow of infor-
mation. Solid arrows representprobableinformation flow, while dotted arrows represent
possibleinformation flow. Note that information flow from proteins to RNA or DNA is
regarded as impossible

• The DNA is unwound and becomes single-stranded (open) in the vicinity of the ini-
tiation site. This RNAP/unwound-DNA structure is called the open complex.

• The RNA polymerase transcribes DNA into RNA.

Promoters can differ instrength; that is, how actively they promote transcription of their
adjacent DNA sequence. Promoter strength is in many (but not all) cases,a matter of how
tightly RNA polymerase and its associated accessory proteins bind to their respective DNA
sequences. The more similar the sequences are to a consensus sequence, the stronger the
binding is.

Translation

In prokaryotic cells, a nascent messenger RNA (mRNA) molecule is bound by a ribosome,
where it is translated. The mRNA is read by the ribosome as triplet nucleotide sequences
(codons). Complexes of initiation factors and elongation factors bring aminoacylated trans-
fer RNAs (tRNAs) into the ribosome-mRNA complex, matching the codon in the mRNA
to the anti-codon in the transfer RNA (tRNA), thereby adding the correct amino acid in the
sequence encoding the gene. As the amino acids are linked into the growing peptide chain,
they begin folding into the correct conformation. This folding continues untilthe nascent
polypeptide chains are released from the ribosome as a mature protein.
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5. The Tryptophan Operon

An operon is a DNA segment that includes an operator, a common promoter, and one or
more structural genes. All of these structural genes are controlled as asingle unit to produce
messenger RNA (mRNA). Operons occur primarily in very simple organisms asprokary-
otes and nematodes. The operon concept was introduced by FrançoisJacob and Jacques
Monod in 1961, though their studies on what is now known as the lactose operon.

A promoter is a short DNA sequence that provides a site for RNA polymerase to bind
and initiate transcription; thus, it is located before the structural genes. Close to the pro-
moter, and usually beside it, lies an operator sequence. An operator is a segment of DNA
that regulates the activity of the operon promoter by interacting with a specificprotein. This
protein can act either as a repressor or as an activator. The operon may also contain regu-
latory genes, such as a repressor gene, which codes for a protein that binds to the operator
and inhibits transcription.

Tryptophan (Trp) is one of the 20 main amino-acids in the genetic code (codon UGG).
It is an essential amino acid because it cannot be synthesized by mammals, and therefore
must be part of our day-to-day diet. Among other important substances, tryptophan is a
precursor for serotonin (a neurotransmitter) and melatonin (a neurohormone).

Tryptophan can be synthesized by bacteria likeE. coli through a series of catalysed re-
actions. The catalyzing enzymes inE. coli are made up of the polypeptides encoded by the
tryptophan operon genes:(trpE, trpD, trpC, trpB, andtrpA). These genes are transcribed
from trpE to trpA. Finally, transcription is initiated at promotertrpP, which is indeed lo-
cated just before the genetrpE.

The trp operon is regulated by three different negative-feedback mechanisms: repres-
sion, transcription attenuation, and enzyme inhibition. Below, these regulatory mechanisms
are briefly reviewed. It is convenient for this to refer to Figure 2.

The trp operon is a repressible operon. This happens because there is an operator trpO
overlapping with the operon promoter,trpP. When an active repressor is bound totrpO
it blocks the binding of a mRNA totrpP and prevents transcription initiation. Thetrp
repressor normally exists as a dimeric protein (called thetrp aporepressor) and may or may
not be complexed with tryptophan (Trp). Each portion of thetrp aporepressor has a binding
site for tryptophan.

When not complexed with tryptophan, thetrp aporepressor cannot bind tightly to the
operatortrpO. However, if two tryptophan molecules bind to their respective binding sites,
the trp aporepressor is converted into the functional repressor. The resulting functional
repressor complex can bind tightly to thetrp operator, and so the synthesis of tryptophan
catalyzing enzymes is prevented. This fact completes the repression negative-feedback
mechanism: An increase in the concentration of tryptophan induces an increase in the con-
centration of the functional repressor complexes, thus preventing the synthesis of trypto-
phan.

Transcription attenuation works by promoting an early termination of mRNA transcrip-
tion, see Figure 3. The transcription starting site in thetrp operon is separated fromtrpE
by a leader region responsible for attenuation control. The transcript ofthis leader region
consists of four segments which can form three stable hairpin structures between consecu-
tive segments. The first segment contains two tryptophan codons in tandem.If there is an
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Figure 2. Schematic representation of thetrp operon regulatory mechanisms.

abundance of tryptophan, and thus of loaded tRNATrp, the ribosome rapidly finishes transla-
tion of the first two segments, and so it promotes the formation of a stable hairpinstructure
between the last two segments. mRNA polymerase molecules recognize this hairpin struc-
ture as a termination signal, and transcription is prematurely terminated. However, if the
ribosome stalls in the first segment due to lack of tryptophan, hairpin development between
Segments 2 and 3 (the antiterminator) is facilitated, and transcription proceedsuntil the end.

Finally, anthranilate synthase is the first enzyme to catalyze a reaction in the catalytic
pathway that leads to the synthesis of tryptophan from chorismate. This enzyme is a het-
erotetramer consisting of two TrpE and two TrpD polypeptides. Anthranilate synthase is
inhibited by tryptophan by negative-feedback. This feedback inhibition isachieved when
the TrpE subunits in anthranilate synthase are individually bound by a tryptophan molecule.
Therefore, an excess of intracellular tryptophan inactivates most of theanthranilate synthase
protein, avoiding the production of more tryptophan.

We recommend References [13, 14, 15] for those interested in reading more about the
regulatory mechanisms in thetrp operon.
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Figure 3. A) In the tryptophan operon there is a leading region between thepromoter and
the structural genes. The transcript (cyan) of thetrp leading region comprises four equally
large segments, which can fold to form three different hairpin structures. B) After Segments
1 (purple) and two (green) have been transcribed, they form a hairpin(the Hairpin 1:2) and
it causes the polymerase to stop. A ribosome may then bind to the nascent mRNA and
starts translation; transcription is resumed when the ribosome disrupts Hairpin1:2. C)
Segment 1 contains two Trp codons in tandem. Hence, under conditions of low tryptophan,
there is a reduced number of loaded tRNATrp, and so the ribosome gets stacked in Segment
1. Transcription continues anyway, so that Segment 2 forms a hairpin with Segment 3
(yellow) when the latter is transcribed. Hairpin 2:3 is recognized as an antiterminator by
the polymerase, and so transcription proceeds until the end of the structural genes. D)
Conversely, if there is an abundance of tryptophan, the ribosome rapidlystarts translation
of Segment 2, and precludes formation of Hairpin 2:3. Then, when Segments 3 and 4
are transcribed, they form a hairpin that is recognized as a terminator; it destabilizes the
polymerase-DNA complex and prematurely aborts transcription.

6. Mathematical Modelling

The tryptophan operon has been the object of intensive studies for morethan fifty years. The
detailed knowledge we have today regarding the regulatory mechanisms in thisoperon is
impressive. We mainly owe this knowledge to the research carried out at Charles Yanofsky’s
lab at Stanford University. However, there are still some open questionsconcerning the
dynamic tryptophan operon behaviour. One of this questions is why the tryptophan operon
involves three, apparently redundant, negative feedback regulatorymechanisms: repression,
transcriptional attenuation, and enzyme inhibition. Together with other groups, we have
addressed this question from a mathematical modelling perspective to try to gainmore
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insight. The rest of this section describes our results.

Table 1. Mathematical model of the tryptophan operon. These equations govern the
dynamic evolution of the concentration of mRNA,M ; enzyme,E; and intracellular
tryptophan, T . The positive terms on the right-hand side of the equations standfor
the production rates of the corresponding variables, while the negative terms stand

for loss due to dilution (due to cell growth) and degradation. The term ρT/(Kρ + T )
represents tryptophan consumption during the synthesis of all proteins. The constant
kM is the rate of transcription initiation per promoter, kE is the rate of translation

initiation per mRNA, and kT is the rate of tryptophan production per enzymeE. The
terms γM , γE and γT are the dilution plus degradation rates. Finally, the functions

RR(T ), RA(T ), andRI(T ) are all nonlinear decreasing functions ofT , and
respectively represent the three different regulatory mechanisms present in the

tryptophan operon: repression, transcription attenuation, and enzyme inhibition.

dM

dt
= kMDRR(T )RA(T ) − γMM,

dE

dt
= kEM − γEE,

dT

dt
= kT ERI(T ) − ρ

T

Kρ + T
− γT T,

RR(T ) =

P

KP

1 +
P

KP
+

R

KR
+

(

T

T + KT

)2
,

RA(T ) =
1 + 2α

T

KG + T
(

1 + α
T

KG + T

)2
,

RI(T ) =

(

KI

T + KI

)2

.

We have developed a mathematical model of the tryptophan operon regulatory path-
ways, which takes into account all three known regulatory mechanisms: repression, tran-
scription attenuation, and enzyme inhibition. The model equations are presented in Table 1.
These equations govern the dynamic evolution of the concentration of mRNA,M ; enzyme,
E; and intracellular tryptophan,T . The positive right-hand-side terms at the equations stand
for the production rates of the corresponding variables, while the negative terms stand for
loss due to dilution (due to cell growth) and degradation. The termρT/(T + Kρ) repre-
sents tryptophan consumption during the synthesis of all types of proteins.The constant
kM is the rate of transcription initiation per promoter,kE is the rate of translation initiation
per mRNA, andkT is the rate of tryptophan production per enzymeE. The termsγM ,
γE , andγT are the dilution plus degradation rates. Finally, the functionsRR(T ), RA(T ),
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andRI(T ) are all nonlinear decreasing functions ofT , and respectively represent the three
different regulatory mechanisms present in the tryptophan operon: repression, transcription
attenuation, and enzyme inhibition. To derive these functions we took into consideration
all of the biochemical reactions underlying the regulatory mechanisms described above,
used chemical kinetics, and made quasi-steady state assumptions for all fast processes. The
meaning of the parameters in the functionsRR(T ), RA(T ), andRI(T ) is as follows:P
represents the intracellular mRNA polymerase (mRNAP) concentration,KP is the dissocia-
tion constant for the mRNAP-promoter complex formation reaction,KR is the dissociation
rate for the repressor-operator complex formation reaction,KT is the dissociation constant
for the reaction in which a tryptophan binds one of its corresponding binding sites in the
aporepressor,α is a constant associated to the strength of transcription attenuation,KG is
the dissociation rate for the tryptophan-tRNATrp complex formation reaction,andKI is the
dissociation rate for the reaction in which a tryptophan molecule binds one of itsbinding
sites in the anthranilate synthase enzyme.

It is important to mention that, although not introduced here, special attention was given
to the estimation of all the model parameters from reported experimental data. The esti-
mated parameter values are tabulated in Table 2. The reader interested in the derivation
of the model equations, as well as in the estimation of the model parameters, may consult
Reference [16].

Table 2. The model parameters as estimated in Reference [16]

µ ≈ 2.3 × 10−2 min−1 P ≈ 1, 500 mpb O ≈ 2 mpb
R ≈ 400 mpb KT ≈ 20, 000 mpb KR ≈ 0.1 mpb

KP ≈ 22.5 mpb α ≈ 18.5 KG ≈ 2, 500 mpb
KI ≈ 2, 050 mpb γM ≈ 0.69 min−1 γE ≈ 0.01 min−1

ρ ≈ 1.2 × 105 mpb Kρ ≈ 5, 000 mpb τE ≈ 1 min
kM ≈ 5.1 min−1 kE ≈ 30 min−1 kT ≈ 3.2 × 104 min−1

7. Dynamic Influence of the Three Regulatory Mechanisms in
the trp Operon

Once we had the model, the next step was to analyze the dynamic influence of the three
different regulatory mechanisms. To test the effect of enzyme inhibition, the model was
modified to mimic a tryptophan operon in which enzyme inhibition is the only regulatory
system, as well as a trp operon lacking enzyme inhibition. Then, we simulated derepression
experiments, in which a bacterial culture that has grown for a long time in a medium rich in
tryptophan (to shut the trp operon off) is suddenly shifted to a tryptophan-free medium (so
the operon is reactivated).

After carrying out these simulations we observed that, when enzyme inhibitionreg-
ulates Trp production by its own, the enzyme activity returns to its steady state almost
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immediately [16]. Thus, this mechanism is quite efficient, from the viewpoint of control
theory, in maintaining a steady state. Apparently, the reason for this high controlling effi-
ciency is that when Trp concentration is high, tryptophan acts as a bufferwhich captures the
enzymes that catalyze Trp production, and these enzymes are rapidly released when the Trp
concentration decreases. On the other hand, in the simulations in which enzyme inhibition
is absent, we observed that the operon produces enzymes at high rates, and this results in
an overshoot of Trp production; approximately sixty times the production in normal condi-
tions [17]. In our interpretation, this overshot is due to the much longer characteristic times
of repression and attenuation. In conclusion, it seems that enzyme inhibitionincreases the
operon stability because, due its rapid response, it relieves the system from the necessity to
synthesize large amounts of polypeptide under conditions of tryptophan starvation.

It is known that regulation by transcription attenuation is exercised over therange from
mild to extreme tryptophan depletion, while repression regulates over the range from excess
tryptophan to mild Trp starvation. Thus, transcription attenuation increases the trp operon
sensitivity to changes that alter the need for endogenous tryptophan. Toinvestigate whether
or not this system has any other dynamic effects, an operon reactivationsimulation was
carried out with atrp operon lacking transcription attenuation. The results were then com-
pared with those of the normal operon. Our observations indicate that transcription attenu-
ation makes the system reactivate sooner. Thus, this mechanism accelerates the trp operon
response to nutritional shifts, by increasing its sensitivity range. In conclusion, enzyme
inhibition and transcription attenuation provide the trp operon with important dynamic ad-
vantages. Enzyme inhibition increases the system stability, and transcription attenuation
speeds up its response to nutritional shifts.

We further investigated the stability of the tryptophan operon model by means of the
second Lyapunov method to generalize the results described previously [17]. First, we
proved that the unique fixed point of the system is stable for a wide range of the parame-
ters that determine the intensity of transcription attenuation and enzyme inhibition. After-
wards, we proceeded to analyze the stability strength in thewild-type, inhibition-lessand
attenuation-lessbacterial strains. From this, we concluded, in agreement with the numeri-
cal results, that both regulatory mechanisms strengthen the system stability. Nevertheless,
while the lack of enzyme inhibition greatly weakens the stability of the system fixed-point,
the dynamic influence of transcription attenuation is much less important, since it speeds
up the operon response but only slightly. In conclusion, enzyme inhibition isvery impor-
tant from a dynamic viewpoint. Conversely, the main effect of transcriptionattenuation
is increasing the trp-operon sensitivity range to nutritional shifts, whereas its effect on the
system stability is much weaker.

8. Comparison with Experimental Results and Model Improve-
ment

As we said in the previous section, ourtrp operon model allowed us to study the dynamic
influence of its three different regulatory mechanisms, and analyze them from an evolu-
tionary perspective. However, we still need to test the model feasibility, bycomparing it
with reported experimental dynamic results, before we can be completely confident about
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its predictions. In this respect, there are some experiments carried out by Yanofsky’s group
in which a bacterial culture that had grown for a long time in a medium rich in tryptophan
—to shut the trp operon off— was suddenly shifted to a tryptophan-free medium, and the
temporal evolution of the corresponding genes’ expression level was measured [18]. These
experiments will be referred to as derepression experiments. On the otherhand, Bliss et al.
[19] carried out derepression experiments with anE. coli mutant strain in which enzyme
inhibition is attenuated. They observed that the phase-space trajectories do not converge to
the steady state but oscillate in a limit cycle.

We simulated the derepression experiments of Yanofsky and Horn [18] and compare
them with the model results in Figure 4A). Notice that, according to our model, theoperon
activity level should recover more slowly than it actually does. Moreover,we were also
unable to reproduce the oscillatory behaviour observed by Bliss et al. bymodifying the
parameters corresponding to the enzyme inhibition regulatory function (to mimic their mu-
tant E. coli straint). At this point, we could have started to arbitrarily modify the model
parameters to fit the experimental results, but instead we decided to trust our estimations
and wondered whether some important aspect in the biology had been neglected.
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Figure 4. Plots of enzyme countvs. time resulting from derepression experiments simulated
with the model introduced in [16] (A), with the same model but considering the timedelays
due to transcription and translation (B), and the modified model that considersthe existence
of three different operators, including the time delays (C).

Transcription and translation are not instantaneous processes. Compared with all the
other biochemical processes involved in thetrp operon regulatory pathways, they take long



14 M. Santilĺan et al.

times to occur. In a previous work [17] we estimated the time delays associated with tran-
scription (τM ' 1 s) and translation (τE < 1 min), but dismissed them apriori because of
their shortness. Here, we take them into consideration to explicitly test their effect on the
system dynamics. To do that, we have to modify the differential equations governing the
dynamics ofM andE as follows:

dM

dt
= kMDRR(TτM

)RA(TτM
) − γMM,

dE

dt
= kEMτE

− γEE,

where the notationXτ means that variableX is delayed a timeτ , i.e.Xτ (t) = X(t−τ). We
then numerically solved these modified equations with the aid of the programxppaut. The
results are plotted in Figure 4B, where we usedτE = 12 s. Notice how, by simply taking
into account such rather short time delays, there is a much better agreement between the
model predictions and the experimental results of Yanofsky and Horn. On the other hand,
despite this success, we were still unable to reproduce the oscillatory behaviour observed by
Bliss et al. [19] by modifying the parameters associated to the enzyme inhibition regulatory
function.

There is one further level of complexity in thetrp operon regulatory pathway that we
have not taken into account in our previous models. Namely the DNA regulatory region
upstream of genetrpE contains three different repressor binding sites, denoted as O1, O2,
and O3, and two repressors can cooperatively bind O1 and O2 [20]. This can be taken into
account by modifying the functionRR(T ) as follows (see the Appendix):

RR(T ) =

P
KP

(

1 + R2T

K1

R

) (

1 + R2T

K2

R

) (

1 + R2T

K3

R

)

+
R2

2T

K1

R
K2

R

(

1 + R2T

K3

R

)

(

kcop− 1
)

+ P
KP

,

where

R2T = RTot

(

T

T + KT

)2

is the amount of active repressor,Ki
R (i = 1, 2, 3) is the dissociation constant for theR2T -

Oi complex formation reaction, andkcop > 1 is a constant accounting for the cooperativity
between Operators O1 and O2. The parameters for this new repression function are also
estimated in the Appendix, and their values are as follows:

K1

R = 0.625 mpb, K2

R = 7.9 mpb, K3

R = 100.0 mpb,
KP = 2 mpb, kcop = 11.1125.

All the other parameters remain set at the values estimated in Table 2.
After modifying the model to take into account the existence of three operators and

the cooperativity observed between Operators O1 and O2, we simulated thederepression
experiments of Yanofsky and Horn [18] with a time delayτE = 6 s; the results are shown
in Figure 4C. Notice that, again, there is an excellent agreement between themodel results
and the experimental data.

As mentioned above, Bliss et al. [19] carried out derepression experiments with an
E. coli mutant strain in which the enzyme anthranilate synthase cannot be inhibited by
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tryptophan, and observed an oscillatory expression of thetrp operon genes. After modifying
the model to account for the time delays due to transcription and translation andthe three
repressor binding sites, we were able to reproduce the oscillations observed by Bliss et al..
For this, we reset the following parameters

KI = 5 × 107 mpb and Kρ = 5, 000 mpb.

The results of these new simulations are plotted in Figure 5. Although there is a good
qualitative agreement between the model simulations and the model results of Bliss et al.,
there are still some important discrepancies. Namely, we obtained a longer oscillation pe-
riod and we had to not only increase the value parameterKI (which corresponds to an
atrophied enzyme inhibition), but also to reduce the value ofKρ (which implies a reduced
catalytic efficiency of anthranilate synthase) to make the system oscillate. As far as we
know, this last modification is not supported by the available experimental evidence on the
effect of the mutation on the enzyme activity. We conclude from this that, most proba-
bly, there are still some important aspects of repression which are not accounted for in the
improved model.
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Figure 5. Plots of mRNA (A), enzyme (B), and tryptophan (C) molecule count resulting
from derepression experiments simulated with the modified version of the model,which
takes into account the time delays due to transcription and translation and the existence of
three repressor binding sites.
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9. Conclusions

We have reviewed out past efforts to understand the dynamic behaviourof the trp operon
from a mathematical modelling approach. To develop the model we took into account the
three different known mechanisms in the operon regulatory pathway. Special attention was
paid to the estimation of the model parameters from reported experimental data.Among
other things, the model was used to analyze the influence of the three different regulatory
mechanisms (in thetrp operon) over the system dynamic behaviour. These studies suggest
that the system has three redundant negative-feedback regulatory mechanisms to guarantee
a rapid response to variation on the growing medium. On the other hand, as seen in Figure
4A, the agreement of the model simulations with the experiments of Yanofsky and Horn
[18] is rather poor. Besides, it is impossible to reproduce the oscillatory behaviour observed
by Bliss et al. while carrying out derepression experiments with mutantE. coli strain in
which anthranilate synthase cannot be inhibited.

Given that our models take into account the chemical details of all the regulatory mech-
anisms, and that all the parameters were estimated from experimental results,we interprete
the consistent disagreement observed between the model results and the experiments of
Yanofsky and Horn as a deficiency in the model. Then, we looked in the literature and
found that there are indeed some important aspects which we did not consider. Namely
there are three repressor binding sites, two of which interact cooperatively, and the pro-
cesses of transcription and translation involve non-negligible time delays. Once the model
was modified accordingly, it could reproduce the experiment results of Yanofsky and Horn,
as well as the oscillatory data observed by Bliss et al..

An interesting conclusion, arising from the results discussed in the previous paragraph,
is that the time delays have a strong influence on the system transient behaviour, despite
their rather small value. In our opinion this is important because small time delaysare
usually neglected by employing the argument that they do not have an important effect
on the dynamic system behaviour. If we were only interested on the system stationary
behaviour, we could indeed neglect short time delays because only the long ones can cause
bifurcations. However, if the transients are biologically meaningful (as in this case), no
time delay should be ignored, regardless its value.

Finally, these results and conclusions reveal, in our opinion, the importanceof devel-
oping detailed models whenever the biological information is available. With them, itis
possible to gain a deeper insight into the system dynamics than with simpler phenomeno-
logical models.
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A. Modelling the Three trp Operators

Repression Function

Up to three active repressors,R2T , and one polymerase,P , can bind to thetrp DNA regu-
latory region through the following reactions:

R2T + O
K1

R

� O1

R, R2T + O
K2

R

� O2

R, R2T + O
K3

R

� O3

R,

R2T + O1

R

K2

R/kcop

� O12

2R, R2T + O1

R

K3

R

� O13

2R, R2T + O2

R

K3

R

� O23

2R,

R2T + O12

2R

K3

R

� O123

3R . P + O
KP

� OP ,

These these are not all the possible chemical reactions. However, the equilibrium equa-
tions arising from them, plus the conservation equation for thetrp DNA regulatory region,
form a complete system and therefore there is no need to consider more reactions. In the
above reactions,O, Oi

R, Oij
2R, O123

3R , andOP respectively denote the states in which all
operators are free, in which only Operator Oi is bound by an active repressor, in which
Operators Oi and Oj are both bound by active operators, in which all three operators are
repressor-bounded, and in which a polymerase is bound to the promoter.Furthermore,Ki

R

andKP are the dissociation constants for the Oi:R2T and promoter-polymerase complex
formation reactions, respectively. Finally,kcop > 1 denotes the cooperativity between Op-
erators O1 and O2.

The equilibrium equations for these reactions are:

R2T O = K1

RO1

R, R2T O = K2

RO2

R, R2T O = K3

RO3

R,

R2T O1

R = K2

RO12

2R/kcop, R2T O1

R = K3

RO13

2R, R2T O2

R = K3

RO23

2R,

R2T O12

2R = K3

RO123

3R .

From these equations, and the conservation equation for the total concentration of the
trp DNA regulatory region, we have:

O + O1

R + O2

R + O3

R + O12

2R + O13

2R + O23

2R + O123

3R + OP = OTot,

It then follows that:

RR(T ) =
OP

OTot

=

P
KP

(

1 + R2T

K1

R

) (

1 + R2T

K2

R

)(

1 + R2T

K3

R

)

+
R2

2T

K1

R
K2

R

(

1 + R2T

K3

R

)

(

kcop− 1
)

+ P
KP

.
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Parameter Estimation

According to [20], an active repressor moleculeR2T can bind to three different operator
sites (O1, O2, and O3) all of which overlap thetrp promoter. Additionally, two repressors
bound to O1 and O2 interact in such a way that the corresponding binding energy is larger
than the sum of the binding energies of single repressors separately binding to O1 and
O2. Grillo et al. also report several measurements from which the followingdissociation
constants can be estimated:

K1

R ' 0.625 mpb,
K2

R ' 7.9 mpb,
K3

R ' 100 mpb.

Ki
R denotes the dissociation constant for the reaction in which a repressor molecule binds

the operator Oi alone. Since Grillo et al. also measured the binding energy when Operators
O1 and O2 are simultaneously bound by repressor molecules, the following cooperativity
constant can also be estimated from their experiments:

kcop ' 11.13.

Finally, we used the fact that the operon activity decreases60 times due to re-
pression when there is abundance of tryptophan in the growing medium [13] (that is,
R(0)/R(T ∗

max) ' 60) to estimate parameterKP :

KP ' 5, 000 mpb.

T ∗
max is the maximum steady-state intracellular concentration of tryptophan, and according

to Bliss et al. [19] it is
T ∗

max ' 20, 000 mpb.
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