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Abstract 
 

In this chapter we present an overview of different mathematical and numerical 
approaches to describe stem cell proliferation and differentiation and the development of 
small cancer stem cell populations that are origins of neoplasm disease. The purpose of 
this chapter is not to scare the reader with complex mathematical and numerical analysis. 
Instead we aim to summarize the wide range of possibilities that mathematics and 
computer sciences can offer to experimentalists and theoretical biologists. 

We briefly introduce recently developed models that address different aspects of 
stem cell dynamics and cancer development. First we focus on models of periodic 
hematological diseases having origin in abnormal behavior of hematopoietic stem cells in 
bone marrow. We also present models, less organ specific, describing the differentiation 
and possible mutation of stem cells which can give rise to cancer. We introduce a simple 
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model which simulates the crucial interplay of proliferating and quiescent stem cells, and 
we discuss its potential application to treatment design. One of the presented models 
illustrates in detail the role of nuclear factor κB-complex in proliferation of adult neural 
stem cells. Finally the reader will become acquainted with a computational model 
approach able to simulate stem cell dependent tissue development, homeostasis, and 
recovery from external perturbations. 
 
 

Introduction 
 
Recent research confirms that many neoplastic diseases like breast cancer [1], [2], 

prostate cancer [3], liver cancer [4], or leukemia [5], can occur because of mutations in 
normal stem and/or early progenitor cells. Moreover, it has been shown that various genes 
regulating the self-renewal in normal cells are also found in cancer cells [6]. It is known that 
most cancers are not clonal, but consist of heterogeneous sub-populations with distinct 
characteristics within a single neoplasm. These sub-populations are similar to the hierarchical 
tree of stem cell lineages. These results manifest the so-called stem cell cancer hypothesis, 
claiming that some cancers have stem cell origin. Moreover, it is known that the self-renewal 
ability in cancer stem cells (CSCs) is poorly controlled, leading to abnormal differentiation 
and faster proliferation in cancer tissue [7]--[9]. Hence, it appears likely that CSCs are often 
responsible for recurrences of the disease after treatment. 

It is well known that key to tumor control is early detection of neoplasmatic changes in 
healthy tissue. It is important to understand the mechanism of carcinogenesis and the 
complexity of its progress and development. Modern life sciences, such as biology, molecular 
biology, medicine or oncology, are based primarily on experiments and clinical observations. 
Scientists try to understand the dynamics and particular function of selected signaling 
pathways, proteins and drugs focusing mainly only on statistical results of experiments. 
Although necessary, this knowledge does not reveal the general dynamics and the complexity 
of the problem even in case of single cell. It is crucial for future research and application in 
medicine to understand the ‘engine’ that drives the whole biochemical machinery. 

Mathematical modeling and computational approaches have become more accepted by 
experimentalists and clinicians in recent years as contributing to new understandings of 
complicated cell mechanisms and tissue physiology. Indeed, even a single cell or small tissue 
samples are complex dynamical systems that adapt to environmental challenges in space and 
time - which renders them suitable to modeling. Mathematical models and numerical 
simulations can explain and uncover some still unknown aspects of cell behavior and tissue 
function. Models based on key biological mechanisms can give interesting insights and 
formulate predictions that cannot be derived from specific experiments or statistical data 
alone. Therefore, novel research approaches should incorporate interdisciplinary dialogs 
between biology, mathematical modeling and computer simulations to validate experimental 
data and non-intuitive scenarios such as the stem cell hypothesis (Figure 1). 

Mathematical models can be classified into macroscopic and microscopic models 
depending on their level of description. Macroscopic models usually describe the evolution of 
sub-populations and interactions (competition and/or cooperation) between them rather than 
between individual entities. 
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Figure 1. The schematic representation of modern biology, which should base on experiments run in 
laboratories, theory and should be also supported by mathematical models and computer simulations. 

Microscopic models describe cellular and sub-cellular interactions between cells, and are 
based on processes like (a) chemical signaling between cells, and between cell and 
surrounding environment through the emission of activating or/and inhibiting cytokine 
signals; (b) protein and cyclin synthesis; (c) molecular interactions between proteins and 
protein complexes which can take place in the cell cytoplasm, in the nucleus or at the 
membrane. 

From a mathematical and numerical point of view we furthermore distinguish between 
continuous and discrete models with respect to time. Continuous models describe the rate of 
change of for example cell density or protein concentrations over time. On the other hand in 
discrete models individual entities such as cells in populations or molecules in chemical 
concentrations are described at fixed separated time points. According to this distinction, in 
the following we first present some continuous modeling approaches that discuss stem cell 
dynamics in terms of cell populations or protein concentrations. Later on we discuss discrete 
models and develop an agent-based model of cell dynamics. 

 
 

Continuous Mathematical Models 
 

Continuous Models of Periodic Hematological Diseases 
 
All blood cells arise from a common origin in the bone marrow, the hematopoietic stem 

cells. These stem cells can differentiate into one of three major cell lines: leukocytes, 
platelets, and erythrocytes. The exact details of how the numbers of circulating cells of each 
type are regulated remain somewhat obscure, though the broad outlines are clear. 
Interestingly, mathematical modeling of periodic hematological diseases has allowed us great 
insight into these regulatory processes. 
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In periodic chronic myelogenous leukemia (PCML) the leukocyte count varies 
periodically, typically between values of 30 to 200×109 cells/L. This is far above the normal 
value of 6×109 cells/L. The variation occurs with a period in the range of 40 to 80 days, 
which is very long in comparison with the maturation and lifespan of stem cells and 
leukocytes. In addition, oscillations may also occur in platelets and occasionally in 
reticulocytes. In these cases the platelet and reticulocyte periods are the same as the leukocyte 
periods [29] [30]. It has been argued that this, in addition to the occurrence of the 
Philadelphia chromosome in all differentiated lineages, is indicative of the stem cell origins of 
PCML [30]. 

Cyclical neutropenia (CN) is characterized by oscillations that are most prominent in 
neutrophils. Neutrophil numbers fall from normal or above normal levels to almost zero, and 
rise again, with a period of about 19-21 days in humans [31]--[33]. The disease also occurs in 
grey collies, with a shorter period of 11-16 days [34]. Interestingly, the platelet numbers 
typically oscillate as well, with the same period as neutrophils, but with a mean around the 
normal platelet level. Reticulocyte levels may also oscillate, again with the same period as 
neutrophils and platelets. 

In both PCML and CN, the hypothesis that oscillations originate in stem cells is related to 
the fact that oscillations occur in different lines. However, in many earlier mathematical 
models, only one cell line, or one line coupled to the stem cells, is represented. In this context 
it is not possible to examine the effects of a destabilization in one line or in the stem cell 
compartment on whole system. For example, while Pujo-Menjouet et al., ([35]) explored how 
long period oscillations (as seen in PCML) could arise within the context of a G0 stem cell 
model, the stem cell model alone could not predict whether leukocytes and platelets would 
oscillate at the levels observed in PCML. Similarly, Bernard et al., ([36]) were able to 
duplicate various features of cyclical neutropenia with an integrated mathematical model of 
the HSC and peripheral neutrophil control. However, since their model did not include 
platelet and erythrocyte regulation it is unknown if their simulated neutropenic conditions 
would be consistent with observed platelet and erythrocyte data in CN. 

Cyclical thrombocytopenia (CT) is a rare hematological disorder described mostly in 
adults and characterized by periodic platelet count fluctuations of unknown etiology. The 
incidence of the statistically significant periodic platelet data is equally distributed between 
men and women. Sometimes this disease is associated with bleeding symptoms which have 
no apparent cause other than thrombocytopenia. Although, in general, human platelet levels 
remain relatively stable for years (150×109 - 450×109 platelets/L with an average of 290×109 

platelets/L), many factors can influence an individual's platelet count (e.g. exercise, racial 
origin, some diseases, pregnancy). In CT the platelet counts oscillate from very low (1×109 

platelets/L) to normal or very high levels (2000×109 platelets/L). This hematological disorder 
was reviewed by Go ([37]), Swinburne and Mackey ([38]), Cohenand Cooney ([39]), and has 
been the subject of mathematical modeling (Santillan et al. ([40]), Von Schulthess and 
Gessner ([41])). 

In previous work leukocyte ([42], [43], [36]), erythrocyte ([44]--[46]) and platelet ([47], 
[40]) dynamics have been modelled separately, with the goal of building quantitative 
understanding of cellular production within the context of periodic hematological disorders. 
Colijn and Mackey [48] linked these models together, connecting models for the three distinct 
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cell lines to a mathematical model of the stem cell population ([49]--[51], [35]). The model 
has four distinct compartments representing hematopoietic stem cells and circulating 
leukocytes, platelets and erythrocytes. The stem cells are pluripotential and self-renewing, 
and can differentiate into the leukocyte, erythrocyte or platelet lines. Alternatively, stem cells 
may re-enter the proliferative phase of the stem cell compartment. The stem cell and 
leukocyte compartments are modelled using the stem cell model connected to a neutrophil 
population as in [36]. The platelet and erythrocyte compartments are simplified 
approximations of earlier modelling efforts. The full model is described by a system of five 
highly nonlinear differential delay equations, cf. [48], [52] for full details of the model 
development as well as its usage in understanding PCML and CN. 

In [48] Colijn and Mackey analyzed data taken from published studies of periodic 
chronic myelogenous leukemia. These data were previously analyzed for significant 
periodicity using Lomb periodogram ([53]) techniques by Fortin and Mackey ([30]). Each 
primary study presented time series of patient leukocyte counts, and some also provided 
platelet and reticulocyte data. Based on estimates of parameters for a typical normal human, 
they systematically explored the changes in some of these parameters necessary to account for 
the quantitative data on leukocyte, platelet and reticulocyte cycling in these PCML patients. 

Their results indicate that the oscillatory nature of PCML is probably generated through a 
bifurcation in the dynamics of the coupled hematopoietic stem cell compartment and the 
regulation of differentiated leukocytes. Based on the simulations, the critical model parameter 
changes required to simulate the periodic chronic myelogenous leukemia patient data are the 
amplification in the leukocyte line, the differentiation rate from the stem cell compartment 
into the leukocyte line, and the rate of apoptosis in the stem cell compartment. There was a 
suggestion that changes in the numbers of proliferating stem cells may be important in 
generating PCML. 

In [52] Colijn and Mackey used the model from [48] to understand the dynamics of CN 
in nine grey collies and 27 CN patients and the effects of treatment with granulocyte colony 
stimulating factor (G-CSF). Their results lend credibility to the hypothesis that the origins of 
oscillation in cyclical neutropenia are a destabilization in the stem cell compartment, induced 
by changes in the neutrophil line; the oscillations are then transmitted to the other lines. A 
biological interpretation of their model simulations is that CN is due to a decreased 
amplification (increased apoptosis) within the proliferating neutrophil precursor 
compartment, and a decrease in the maximal rate of re-entry into the proliferative phase of the 
stem cell compartment. 

An analysis of data from the grey collies as well as human patients under treatment with 
G-CSF implies that G-CSF leads to an increased amplification (lower rate of apoptosis) in the 
proliferating neutrophil precursors, and there was on average a higher rate of differentiation 
into the neutrophil line than without the treatment. As in the untreated subjects all of these 
changes are consistent with laboratory and clinical findings. 

Recently Apostu and Mackey ([54]) used the model presented in [48] to elucidate the 
nature of cyclical thrombocytopenia. They concluded that the platelet fluctuations in 
amegakaryocytic CT are caused by a cyclic inhibition of megakaryocytopoiesis, accentuated 
by an increased platelet maturation time and a reduced release of platelets per megakaryocyte. 
Their results suggest that the onset of oscillations in autoimmune CT can be explained by an 
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accelerated peripheral destruction of platelets, exacerbated by an increased maturation of 
megakaryocytes and a slow relative growth rate of megakaryocytes. 

 
 

A Continuous Model of Stem Cell and Cancer Stem Cell Proliferation, 
Differentiation and Maturation 

 
The hypotheses and implications of mathematical models describing population dynamics 

of CSCs and their differentiation have recently been discussed [10]. In this paper a predictive 
model concerning self-renewing brain CSCs has validated principles according to which 
cancers can occur as a result of mutations in normal stem cells, early progenitor cells and 
even mature cells. 

The model, a large system of ordinary differential equations, contains many nonlinear 
terms. We refrain from discussing the mathematics in detail, and refer to the original 
publication [10]. However, in the following we describe the model assumptions, present the 
main results and their biological interpretation. Ganguly and Puri distinguish seven main 
types of cells - stem cells (SC); early progenitor cells (EP); late progenitor cells (LP); mature 
cells (MC); abnormal stem cells (SCA); abnormal early progenitor cells (EPA) and abnormal 
progeny (tumor) cells (AP). Each cell type is considered as a separate model compartment, 
with cell population growth being modeled by considering individual rate expressions for 
each given cell type. Figure 2a shows a schematic representation of the model. SCs can self-
renew with probability PSC (both daughter cells retain stem cell features) or differentiate and 
transfer to the EP compartment. Stem cell DNA can mutate during the replication with 
probability MSC such that the daughter cell which inherits the mutated gene is transferred into 
the SCA population. EP cells, as well as EPA cells, undergo only a limited number (k) of self-
renewal steps. Thus, cells with identical self-renewal capacity are grouped into k sub-
compartments. However, cells belonging to the kth compartment can not self-renew any more. 
If EPi (EPA,i) cells undergo cell division they self-renew into a subgroup EPi+1 (EPA,i+1) with 
given probability PEP (PEP,A), which is assumed to be equal for all sub-populations, 
respectively. Dividing cells that do not supply the EPi+1 (EPA,i+1) compartment differentiate 
into LP (AP, in case of abnormal cells) cells. Moreover, at each division EPi cells are subject 
to mutations defined by mutation probability MEP, which is assumed to be identical for each 
EPi compartment. Naturally, the AP compartment is supplied by EPA cells. Finally, cells that 
reach the MC or AP compartment die due to apoptosis. 

Without mutations SC, EP and LP populations converge to a steady state, and for specific 
apoptosis rates the MC population remains constant. A sudden damage to the mature tissue 
(caused for example by acute radiation or surgery) activates tissue healing signals resulting in 
increased SC and EP cell proliferation rates. If mutations are enabled, SC and EP cells can 
produce SCA or EPA cells, respectively, that eventually form the AP compartment. Stochastic 
numerical simulations of this model show that an oncogenic event in SC leads to faster 
enrichment in AP cells, compared to the case of mutations in EP cells. Hence, the increase of 
the growth rate of EPA cells leads to faster proliferation and increased cancer risk. It has been 
also concluded that AP cell growth rate increases as the mean time between two consecutive 
insults decreases. 
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Figure 2. a) Multi compartment block diagram of a mathematical model developed by Ganguly and 
Puri, [10]. Here: SC represents the population of stem cells; EP early progenitor cells; LP late 
progenitor cells; MC mature cells; SCA abnormal stem cells; EPA abnormal early progenitor cells and 
AP abnormal progeny (tumor) cells. The EP cells as well as EPA cells are split into k sub-compartments 
that contain identical cells regarding the type, which differ only with respect to the number of times 
they have undergone self-renewal. For more details see text. The solid lines indicate the direct transition 
from one compartment to another one, while dashed lines stand for feedback interaction loops. b) Two 
compartment block diagram of the mathematical model developed by Solyanik et al., [9]. Here x(t) is 
the fraction of proliferating cells given at time t; y(t) is the fraction of quiescent cells given at time t; b 
is the cell division rate  of the proliferating cells and d is the cell death rate of quiescence cells. 
P(x(t),y(t)) and Q(x(t),y(t)) describe the intensity of cell transition from proliferating to quiescent 
compartment and vice versa, respectively. c) Stem cells and differentiated cells defined by their 
proliferation capacity and differentiation level. Non-differentiated stem cells have unlimited replicative 
potential and self-renewing ability. Stem cell progeny will differentiate with each proliferation and lose 
replication capacity. 

 
Interaction between Quiescent and Proliferating Stem Cells Described by 
a Continuous Mathematical Model 

 
Another interesting model postulated by [11], later discussed by [12], investigates the 

behavior of proliferating (x(t)) and quiescent cancer cell (y(t)) populations, based on 
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experimental data. Proliferating cells can divide with constant rate β or lose their division 
ability and therefore transit to the resting phase. Resting cells can either return to the 
proliferating state or die with constant rate δ (Figure 2b). The interactions between these two 
cancer cell sub-populations are described by the following system of coupled ordinary 
differential equations 

 

  

d

dt
x(t) = βx(t)

cell proliferation}
− P(x(t),y(t))x(t)

transition from proliferating
to quiescent compartment6 7 4 4 8 4 4 

+ Q(x(t),y(t))y(t)

transition from quiescent to
proliferating compartment6 7 4 4 8 4 4 

,

d

dt
y(t) = P(x(t),y(t))x(t)

transition from proliferating
to quiescent compartment6 7 4 4 8 4 4 

− Q(x(t),y(t))y(t)

transition from quiescent to
proliferating compartment6 7 4 4 8 4 4 

− δy(t)
cell death}

,

   (1) 

 
where P(x(t),y(t)) and Q(x(t),y(t)) describe the intensity of cell transition from proliferating to 
quiescent state per day and vice versa. It is additionally assumed that the transition from the 
quiescent to the proliferating state depends on the number of proliferating cells only. 
Moreover, the transition of quiescent cells into the proliferating compartment Q(x(t),y(t)) 
increases with increasing x(t) at low levels, but decreases when the number of proliferating 
cells becomes very large. It has been experimentally observed that cells can only proliferate in 
the sufficient presence of biological and physical factors. Hence, P(x(t),y(t)) depends on the 
number of all cells, and the authors proposed the following function 

 
)]()([))(),(( tytxtytxP αγ += , 

 
where α and γ describe the proliferating and quiescent cells’ nutrient consumption, 
respectively. 

With negligible transition form quiescent to proliferating compartment due to the large 
duration of growth delay i.e. Q(x(t),y(t)) = 0 [11] the system goes to a stable equilibrium at 
(r/(a + r), a/(a + r)). If Q(x(t),y(t)) ≠ 0 a mathematical analysis of (1) becomes more difficult, 
and numerical simulations have to be used to reproduce the experimental data [12]. The 
experiments were done by Wallen et al., [13], [14], who cultivated the three unfed mouse 
mammary tumor cell lines 66, 67 and 68H for two weeks. In both, simulations and 
experiments it has been shown that more than 98% of unfed cells where alive after two weeks 
(initially the population grew exponentially before reaching a plateau), and only a small 
fraction of cells was still proliferating (for details see [13], [14]). We understand that a certain 
ratio of cells dies over time. However, the overall cell population remains constant as long as 
there is a sufficient fraction of proliferating cells. 

The advantage of this kind of modeling approach is the estimation of treatment success 
prior to clinical application, as most cancer treatment protocols mainly eradicate proliferating 
cells. It seems to be possible to fit experimental data for a potential two weeks trial to 
estimate the long-term behavior of proliferating and quiescent populations such as cancer 
stem cells. 
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A Continuous Mathematical Model for Nuclear Factor κB Complex 
Determinating the Proliferation of Adult Neural Stem Cells 

 
The mathematical models described above simulate macroscopic properties of tissues or 

cell cultures, and neglect details of molecular mechanisms governing cell proliferation and 
cancer development. Since molecular biology can only investigates subsets of mechanisms 
that determine the cell behavior, mathematicians should develop multi-scale models that link 
different levels of complexity, for example, overexpression of proteins at the cellular level 
with the proliferation of cells at tissue level. The next model we would like to discuss in more 
detail focuses on the role of sub-cellular processing on single stem cell dynamics. 

In a recent study it has been shown that the nuclear factor κB (NF-κB) plays an essential 
role in proliferation of neural stem cells (NSCs) [15]. In fact, most substances or conditions 
positively modulate proliferation of NSCs via the NF-κB pathway. Following these findings, 
Piotrowska et al., [16] have proposed a simple continuous mathematical model (containing 
two ordinary differential equations) for NF-κB dependent proliferation of NSCs. 

NF-κB protein is a transcription factor, crucially involved in many biological and 
physical processes such as regulation apoptosis and survival genes, inflammation, cancer, 
innate immunity [17], [18], as well as memory formation and learning [19]. Furthermore, NF-
κB is directly responsible for cell growth and proliferation [20]. The most frequent form of 
NF-κB is a heterodimer composed of two subunits: p50 and p65. Activation of NF-κB is 
mainly controlled at the posttranscriptional level by complex formation with the inhibitory 
protein IκB in the cytoplasm. After binding of the stimulating agent (e.g., tumour necrosis 
factor (TNF) or erythropoietin (EPO)) to a receptor in the cell membrane, the signal is 
transduced via intermediate kinases to the IKKα/β/γ complex (Figure 3a). This leads 
subsequently to phosphorylation of IκB and its proteasome degradation. This degradation 
triggers the translocation of NF-κB into the nucleus followed by binding to regulatory DNA-
sequences and initiation of a transcription process [21]. 

The changes of active NF-κB concentration in a cell (x(t)) can be described by a 
nonlinear ordinary differential equation, such as 
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    (2) 

 
where 1 - x(t) and δ(t) denote the scaled concentrations of inactive NF-κB and IκB at time t, 
respectively, and J1, J2, k, α and β are nonnegative constants [16]. The first term in Eq. (2) 
represents the activation of NF-κB via phosphorylation of IκB by the IKK complex due to the 
stimulus represented by α; while the second term models the deactivation of active NF-κB by 
NF-κB driven autoregulatory expression of IκB. Both terms are governed by so-called 
Michaelis-Menten kinetics, with J1 and J2 being the Michaelis-Menten constants [22]. The 
last term in Eq. (2) corresponds to the degradation of active NF-κB. 
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a) 

 
b) 

Figure 3. a) Schematic representation of signal transduction leading to NF-κB driven proliferation. 
After binding of an NF-κB activator (i.e. TNFα or EPO) to its receptor (TNFR), the signal is transduced 
to the IKKα/β/γ complex. This complex phosphorylates inhibitory protein IκB, which is then 
ubiquitinated and proteosomally degraded. The degradation triggers the translocation of NF-κB into the 
nucleus of the cell, followed by initiation of transcription by binding to regulatory DNA sequences. It 
leads to transcription of specific target genes and finally to proliferation of NSCs. Figure modified after 
Piotrowska et al. [16]. b) Graph of y(t)-solutions to Eqs. (2)–(5) proposed in [16] for different values of 
parameter ]5,0[∈α , which represents the relative cell number. Here α stands for relative 

concentration of the NF-κB activator such as TNFα or EPO. Simulation has been performed for the 
initial data x(0) = 0.1, y(0) = 1. All other model parameter values are as in Table 1 in [16]. Figure is 
reproduced from [16] by permission. 
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Experiments have shown a negative correlation between active NF-κB and IκB [23]. 

Therefore, the concentration of IκB (denoted by δ(t)) is assumed to be a decreasing function 
of active NF-κB (denoted by x(t)), which can be modelled by a Hill function: 

 

)(
)( 0 tx

t
+

=
θ

θδδ ,        (3) 

 
where δ0 and θ are positive constants. 

Piotrowska et al. were able to relate the cellular concentration of active NF-κB with NSC 
proliferation speed. Since in vitro cultivated cells are not affected by factors that limit 
proliferation, the change of cell number y(t) can be described by 

 

  

d

dt
y(t) = γ f x(t)[ ]

dependence
on NF−κB

1 2 3 
y(t)

proliferation6 7 4 8 4 

,       (4) 

 
with positive constant γ. Both, low and pathologically high NF-κB concentrations 
(hyperactivation) lead to cell death in the NSC population and only for intermediate values of 
active NF-κB cells are stimulated to proliferate [19] (compare with Fig. 3 in [16]). Based on 
these observations a reproduction function such as  
 

22 ))(())(( dtxbtxf −−= ,       (5) 

 
can been assumed, where b and d are positive constants to mark the physical level of NF-κB 
needed for cells to proliferate, with d > b and d + b < 1. The local and global existence, non-
negativity and boundness of solutions for bounded initial data as well as the analytical 
analysis of steady state existence and stability can be found in [16]. The solutions of the 
system (2-5) strongly depend on the constants d and b, and parameter α (the stimulus) as well. 
For fixed parameter values (see Table 1. in [16]) and α ≠ 0.5244 or α ≠ 3.408 there is only 
one biologically relevant steady state of the system (2-5). For )408.3, 0.5244(∈α , the 

population of in vitro cultivated NSCs will either grow infinitely, or the population will die 
out, otherwise. 

Figure 3b visualizes the change of cell number over time (y(t)-solution to Eqs. (2-5)) for 
α parameter values in the interval [0,5]. Recall that α is the stimulus for the activation of NF-
κB via phosphorylation of IκB by the IKK complex. For a very small stimulating signal there 
is a little activation of NF-κB, insufficient for cells to proliferate (compare to Figure 5 and 
Figure 9 in [16]). As α increases the concentration of active NF-κB increases, and after 
reaching a threshold level the cells will start to proliferate. However, increasing α above 
another critical threshold results in hyperactivation of NF-κB and subsequent cell apoptosis. 
The model was compared with in vitro experimental data of NSCs after exposure to 0 
(control) and 10 ng/ml TNF [16]. In the model as well as in experiments presented in [16], 
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adult NSCs respond to TNF with significantly increased proliferation compared to untreated 
cells, see Figure 10 in [16]. 

The discussed model differs from previous models describing the NF-κB activation in 
fibroblasts [23]--[25]. For simplicity, only interactions between IKK complex and inactive 
NF-κB, IκB and active NF-κB, and proteasomal degradation of active NF-κB are considered. 
Focussing only on these crucial interactions reduces the system to two nonlinear ordinary 
differential equations, which enables mathematical analysis of the dynamics. For more 
complex systems (20 equations with more than 30 independent model parameters, [23], [24]) 
such an analysis is impossible and numerical simulations alone have to be used to study 
system properties. 

So far we have discussed NF-κB as a modulator of NSC proliferation. However, the 
dependence of proliferating cancer stem cells on NF-κB has been observed recently, too [26]-
- [28]. With parameter adaptation, the discussed model can be adapted to study cancer cell 
and cancer stem cell dynamics. Such a simple model could give useful insights into cancer 
development, as it can provide a potent tool for predicting results of proliferation assays and 
NSCs expansion. 

 
 

Discrete Mathematical Models 
 
Systems of coupled differential equations simulate behavior of cells or concentrations of 

molecules. In discrete models the fate of individual cell or molecule is followed. In fact, many 
individual events are crucial to determinate the cells’ phenotype and behavior. Moreover, the 
cell phenotype can change depending on the input it receives from the microenvironment 
according to certain probability distributions. Cellular automaton and agent-based models can 
treat discrete features of cells and the resulting phenotype variability. Thus, in discrete 
mathematical and computer models, time is discretized, and at each time step every cell (or 
agent, for general agent-based models) follows certain defined rules that determine the state 
of the cell and consequently the whole system at this time point. The rules can, and often do 
so, include stochasticity and probability distributions giving the system more realistic non-
deterministic behavior, which allows to study the impact of varying environmental factors. 
Dynamics of single cells are combined to populations and a complex system behavior 
emerges. By virtue of this approach properties of individual agents and their mutation give 
rise to multiple distinct subpopulations, which in cancer modeling can be interpreted as 
different cell types such as stem cells or differentiated cells, and more or less aggressive 
tumor clones. 

In a recent interdisciplinary study using a hybrid continuous-discrete model it has been 
shown that the tumor microenvironment can orchestrate tumor phenotype development and 
selection [55]. Another automaton model has been designed to predict proliferating and 
quiescent cell populations and the tumor volume doubling time which is clinically important 
[56]. It is known that actively proliferating cells are more susceptible to treatment such as 
radiation and chemicals than quiescent cells, resting in G0 phase. These cells stay arrested 
until DNA damage is completely repaired or the cell is sent into apoptosis. Stem cells are 
surrounded and protected by adjacent cells, and are thought to be quiescent under normal 
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conditions. Resting at the time of an environmental insult, stem cells have a higher chance of 
surviving and subsequently re-populating the tissue. 

 
 

A Discrete Cellular Automaton Model of Stem Cells and Tissue 
Homeostasis 

 
A discrete mathematical model of stem cells and their role in tissue homeostasis has been 

developed by Agur and co-workers [57]. The model considers: bone marrow stem cells S, 
differentiated cells D, and null cells N, i.e. empty lattice space. Each cell’s behavior is 
determined by their cell cycle, their internal state and by number and type of cells in the 
neighborhood. The model is defined as a connected, locally finite undirected graph G = (V,E) 
where the vertices V describe the cells and the edges E describe their neighborhood. 
Operators on the set of all states on the graph define the dynamic behavior of the systems. 

The rules of the system are defined such that differentiated cells mature until time Φ 
before they leave the domain (i.e., the bone marrow). Stem cells mature into differentiated 
cell if their age, i.e. internal counter, exceeds Ψ and its neighbors consist of stem cells alone. 
Finally, stem cells proliferate into an empty site after time Θ. A detailed explanation of all 
rules and the proofs can be found in [57]. 

The model characterizes some universal properties of stem cells to produce mature cells 
and recover from severe perturbations. The direct stem cell environment modulates the 
decision to remain quiescent or to proliferate. Eventually the system results in a dense stem 
cell population and the system never dies out. Stem cell maturation Ψ drives the system 
dynamics, and stem cell proliferation Θ and differentiated cell maturation Φ play a secondary 
role only. The disadvantage of such a cellular automaton approach is the necessary simplicity 
- and due to lack of simulations there is a need to prove the dynamics of the proposed rules. 

 
 

An Agent Based Model of Stem Cell and Non-Stem Cell Tissue Dynamics 
 
A more complex discrete modeling technique is agent-based modeling. Agents are 

autonomous entities whose behavior is based on a certain set of rules and in response to the 
local environment [55], [56]. The agents make non-deterministic decisions independently 
from large systems or aims of complex populations. However, as many agents not only 
respond to the environment but also modify it, changes in single cell state and behavior can 
lead to system catastrophes. 

We now construct a small-scale agent-based stem cell and non-stem cell model to 
simulate single cell dynamics and cell-cell interactions as they occur in the early stages of 
tissue or tumor development [58]. We define rules from general biological observations to 
describe individual cell behavior and simulate dynamic patterns of the emerging population 
system. We distinguish between a stem cell and a non-stem cell phenotype, and allow for 
variations of some of the implemented rules to discuss aberrations that lead to cancer 
development. 
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Key cellular behavior events are cell division and cell death. For both events, a chain of 
internal and external signals must occur. Tissue homeostasis is a complex dynamic process 
and cells obey external signals that define cell cycle progression. The environment determines 
the fate of each cell, for example by diffusion of signals or cell-cell signaling. Cells either 
proceed through the cell cycle to undergo mitosis, or rest in the so-called G0 phase. Resting 
cells may re-enter the cell cycle and proceed into mitosis if nearby cells died and need to be 
replaced. In a stable tissue the change in cell number over time should be negligible. 
Whenever a cell dies another one will proliferate, and when a cell proliferates another one is 
sent into apoptosis. This phenomenon is called Moran Process [59]. To avoid overcrowding 
we believe there is a contact inhibition between cells i.e. cells are less likely to divide if they 
are surrounded by other cells, and more likely to undergo mitosis in a microenvironment 
without spatial constraints. The potential to undergo mitosis is different for stem cells and 
differentiated cells. Stem cells are undifferentiated cells with unlimited replicative potential 
and self-renewal capacity. They can divide symmetrically to either form two stem cells or two 
differentiated cells, or asymmetrically to maintain one stem cell and send the offspring into 
differentiation. With each cell division non-stem cells become more differentiated and fulfill 
specific functions. However, these cells lose their replicative potential and die within a short 
time frame (Figure 2c). We define the proliferative potential ps = ∞ for stem cells and pd = 
12±3 for differentiated cells. As the non-stem cells divide their proliferative potential 
decreases, and the daughter cells inherit the potential. Progeny of stem cells with 
differentiation fate get assigned a random pd within the above stated interval. 

In our simulation, we increment time at discrete 1-hour time steps. Cell age is increased 
and the cells progress in the cell cycle subject to certain environmental conditions. At the end 
of mitosis (M phase) proliferation capacity is checked. If the proliferation potential is 
exhausted, i.e. pd = 0, the cell is sent into apoptosis. The flowchart of the simulation process 
and the decisions made by every cell at each time point is shown in Figure 4. 

Now we present some simulations that show the cellular behavior based on the 
implemented rules. First we initialize our system with a single non-stem cell with proliferation 
capacity pd = 10 in the center of the domain. If the cell has passed through the cell cycle it will 
divide because no neighbors are inhibiting it. As a result of this division, the original cell and 
its offspring have both now a proliferation capacity of pd = 9. Both cells will cycle and reach 
mitosis, resulting in four cells all with pd = 8. The emerging population will initially grow 
exponentially without contact inhibition. As the number of cells increases the available space 
for each cell decreases. If there is no space available, then the cell ready to proliferate will be 
sent into G0 phase and stay there until an adjacent grid point becomes vacant. In Figure 5 
proliferation capacity is color-coded, with maximum proliferation potential being red and no 
cell division left - black. As the population grows a proliferation capacity gradient from the 
center to the outer rim is formed. Limited proliferation (Figure 5a) results in population 
number oscillations already at very small cell numbers. Cells in the core of the population are 
contact inhibited and rest. Cells at the outer rim proliferate until all their proliferation capacity 
is exhausted and subsequently die. Previously resting cells will re-enter the cell cycle and start 
to proliferate again and occupy the freed space. This ‘die off – re-population’ process 
continues until all cells have exceeded their proliferation potential and the cluster vanishes. 
However, if we initialize a single stem cell with unlimited replicative potential, all direct 
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offspring of this stem cell will start to populate the domain with maximum proliferation 
capacity pd = 10 (Figure 5b). 

 

 

Figure 4. Cell life cycle scheme. At each time step the cell age increases. The cell will rest in G0 if the 
microenvironment is saturated. If there is space for the cell to divide it will proceed into mitosis (M 
phase). If the proliferation capacity is exhausted the cell will undergo apoptosis; otherwise it will 
produce a daughter cell. 
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a) 

 
b) 

Figure 5. Cell cluster formation from non-stem cells and stem cells. As cells divide they lose 
proliferation capacity (red→black). Initially the populations grow exponentially as each cell 
experiences sufficient space.  As the number of cells increases, cells in the core of the population 
cluster get contact inhibited and sent to rest. When the outer cells die off, cells in the interior will re-
enter the cell cycle and start proliferating again until their proliferation capacity is exhausted, too. a) 
The cell number in populations arising from single cells with limited replicative potential pd = 12 (red, 
t = 1) oscillate over time with cells at the outer rim dieing and cells in the interior re-enter proliferation. 
After t = 148 days no cells with proliferation capacity is left, and at day t = 150 days all cells are dead. 
b) Populations emerging from a stem cell have initial similar behavior than those arising from non-stem 
cells. However, more cells are produced, as the core of the population is direct offspring of the stem 
cell with maximum proliferation capacity. As cells die off the stem cell will generate more potent 
offspring re-populating the cell cluster. 

This results in a larger number of cells in the population. Initially the population growth 
is similar to the population described above (Figure 5a). As the majority of cells die off, 
however, the stem cell will again produce potent progeny that repopulate the domain as 
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before. Hence a population that arises from a stem cell will persist despite intermediate 
oscillations in cell number. 

Tissues and organs are complex, heterogeneous structures with many cells that fulfill 
specific functions. Different stem cell ratios have been estimated or identified for different 
tissues. The fraction of stem cells in the breast, for example, has been reported to be between 
0.2% and 5% [60]. Tissue homeostasis, a ‘stable and constant’ number of cells in the 
population, is assured by the interplay of stem cells and non-stem cells. Differentiated cells 
die off due to normal tissue turnover or when their proliferation capacity is exhausted. Those 
cells have to be replaced by potent cells to maintain tissue integrity. In a theoretical domain of 
constant size, say 100×100 grid points, each cell can occupy one grid point. Furthermore, at 
any time at most one cell can reside on a single grid point. With a small number of stem cells 
arbitrarily distributed in the domain, the size of each of the resulting cell clusters is not 
sufficient to occupy all the space in the domain and single cluster dynamics result in large 
variations in overall cell number. As the stem cell ratio increases multiple clusters arise that 
eventually compete for space. If progeny of stem cells in one cluster die, cells from adjacent 
clusters can replace the vacant space. If these cells later die, the original cells can populate 
this space again and the number of cells in the tissue is maintained. Figure 6a shows a sample 
simulation of 100 initial stem cells forming individual clusters of cells, each of which follows 
the growth dynamics as presented above. Despite of oscillations in cell numbers over time the 
overall tissue structure is preserved. Figure 6b shows plots of cell numbers obtained from 
simulations with 0.2% stem cell ratio, 1% stem cell ratio, and 5% stem cell ratio for five 
different simulations each. With increasing number of stem cells the variation of cell numbers 
in the tissue reduces as discussed. 

 

 
a) 
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Figure 6. (Continued). 

 
b) 

Figure 6. Simulation of tissue homeostasis in a domain of 100×100 grid points holding at the most 
100,000 cells. a) An initial arbitrary distribution of 1% stem cells, i.e. 1000 cells, results in cell cluster 
formation within the first 7 weeks. Despite oscillations in cell numbers the tissue structure is overall 
preserved. b) Plot of cell numbers obtained from simulations with 0.2% stem cell ratio (blue), 1% stem 
cell ratio (green) and 5% stem cell ratio (red). Shown are five different simulations for each stem cell 
ratio and an average over those runs (thick line). With increasing number of stem cells the variation of 
cell numbers in the tissue reduces. 

So far we have only discussed asymmetric stem cell division. For functional tissue it is 
crucial to maintain homeostasis especially after sudden loss of cells and stem cells e.g. during 
exposure to acute radiation or other cellular catastrophes. Symmetric stem cell division is 
needed to preserve a constant stem cell compartment and the tissue integrity. We assume that 
stem cells fate is determined by diffusion of signals in the extracellular matrix [61]. Figure 7 
shows the development of a tissue from initially about 400 stem cells. Very quickly about 
7.200 cells get produced and the domain gets populated to an arbitrarily set density of 75%. 
We simulate at time t = 100 steps a cellular catastrophe by randomly killing 50% of all cells, 
both stem and non-stem cells. The surviving stem cells start immediately to divide 
symmetrically until the pre-catastrophe stem cell compartment is re-established. The newly 
produced stem cells move away arbitrarily and start repopulation of the tissue by asymmetric 
division. Without symmetric stem cell division, the reduced number of stem cells cannot 
produce the cell numbers that have been in the domain previous to the perturbation resulting 
in a less dense tissue (Figure 7b). 
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a) 

 
b) 

Figure 7. Impact of symmetric stem cell division on recovery to homeostasis after catastrophe. Stem 
cell ratio is 5%. At time t = 100 a catastrophe destroys randomly 50% of the cells. a) If stem cells 
cannot divide symmetrically (thin plot) pre-catastrophe cell number cannot be established. Only 
symmetric stem cell division (thick plot) and random cell migration enables quick recovery after a 
disaster. b) Sample simulation for development of a tissue from 5% stem cells with cell migration 
enabled and recovery from a disaster at time t = 100. 
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Conclusion 
 
Mathematical models applied to biology and medicine describe and simulate possible not 

yet know scenarios. Complex biological dynamics, for example cell behavior, tissue recovery 
or cancer development, are reduced to key mechanisms which enable the analysis of how the 
system changes if any of these mechanisms are interrupted. In this chapter we have tried to 
discuss a small selection of representative modeling approaches that can have significant 
implications for stem cell study. Some describe stem cell differentiation and maturation [10], 
interactions between proliferative and quiescent stem cells [11], [12], or cell proliferation 
controlled by signaling pathways [15], while others focus on tissue homeostasis for healthy 
tissue [57], [58]. Most, if not all of the mathematical models of stem cell dynamics have 
subsequent implications to cancer development and treatment. For example, from the last 
presented agent based model [58] and simulations it seems obvious that each tumor reaching 
the clinical significance must contain cancer stem cells to drive the development up to a 
malignant size. Without stem cells, the tumor cell cluster would remain small and be doomed 
to die out. In vivo tumors are known to be heterogeneous in terms of clonogenicity. Using a 
model in which human breast cancer cells were grown in immunocompromized mice, it was 
shown that only a minority of the cancer cells had the ability to form new tumors [62]. The 
disability to form new tumors by the majority of the cancer cells can be explained by a model 
with limited proliferation capacity such as seen in normal cell populations in Figure 5a, which 
are likely to die after a certain number of proliferations [58]. Cancer stem cells have been 
successfully identified in acute myelogenous leukemia [63], [64], breast cancer [62], and 
brain tumors [26], [65], [66], and recently pancreas cancer [67]. 

Current cancer treatment is aimed to eradicate as many cancer cells as possible. A 
treatment protocol that eliminates 99% of the tumor cells may be considered successful. 
However, if only parts of the residual 1% of cancer cells have stem-cell properties, i.e. 
unlimited proliferation capacity, then the tumor will recur. More and more research focuses 
on this small clonogenic sub-population, as tumor treatment may provide better tumor control 
if the cancer stem cells are eradicated [68]. Recently, it have been shown that breast cancer 
initiating cells are more radiosensitive compared to the bulk of cancer cells [69]. Moreover, it 
also has been experimentally proven that glioblastoma stem cells are radioresistant and may 
therefore contribute to treatment failures [70]. 

A major advantage of mathematical models and computer simulations is their ability to 
make predictions of biological systems and their behavior that would be difficult to conduct 
experimentally. As an obvious example, it is challenging to maintain an unfed cell line longer 
than approximately 2 weeks and conducting counts. Moreover, mathematical models give the 
advantage to perform ‘virtual’ experiments instead of complicated lab experiments, which can 
be costly and time consuming. Furthermore, models are reproducible and not subject to 
biological variation, possibly induced by constantly changing external conditions. 
Mathematical/numerical experiments can give many answers since large numbers of variables 
and their dependence on time, space, and each other can be measured. Using mathematical 
models and computer simulations that incorporate new molecular findings may provide a 
platform to improve understanding of spatio-temporal tumor and cancer stem cell dynamics. 
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Models can be developed to investigate the effect of treatment sensitizing or cell-cycle 
synchronizing drugs on treatment outcome, which may subsequently lead to improved tumor 
control. 

In summary, mathematical models have a huge potential in biomedical research, which 
has not yet reached acceptance in many laboratories. We hope that this chapter gives a flavor 
of how models can help developing new hypotheses or testing existing theories. To use 
models as a predictive tool, future research needs to incorporate a dialog between biologists, 
clinicians and mathematicians. We believe that such an interdisciplinary effort will eventually 
lead to insights that can be translated into the clinic to the ultimate benefit of patients. 
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