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Abstract. Using the Perron-Frobenius operator we establish a new functional central
limit theorem for non-invertible measure preserving maps that are not necessarily ergodic.
‘We apply the result to asymptotically periodic transformations and give a specific example
using the tent map.

1. Introduction. This paper is motivated by the question “How can we
produce the characteristics of a Wiener process (Brownian motion) from a
semidynamical system?”. This question is intimately connected with central
limit theorems for non-invertible maps and various invariance principles.
Many results on central limit theorems and invariance principles for maps
have been proved (see e.g. the surveys by Denker [5] and Mackey and Tyran-
Kaminska [17]). These results extend back over some decades, and include
the work of Boyarsky and Scarowsky [3], Gouézel [8], Jabtonski and Malczak
[12], Rousseau-Egele [25], and Wong [32] for the special case of maps of the
unit interval. Martingale approximations, developed by Gordin [7], were used
by Keller [13], Liverani [16], Melbourne and Nicol [19], Melbourne and T6rék
[20], and Tyran-Kaminska [27] to give more general results.

Throughout this paper, (Y,B,v) denotes a probability measure space
and T : Y — Y a non-invertible measure preserving transformation. Thus
v is invariant under T, i.e. v(T~(A)) = v(A) for all A € B. The transfer
operator Pr : L'(Y,B,v) — L'(Y,B,v), by definition, satisfies

VPrfw)gly) vidy) = F(y)a(T(y)) v(dy)

for all f € LY(Y,B,v) and g € L¥(Y,B,v).
Let h € L*(Y,B,v) with {h(y) v(dy) = 0. Define the process {w,(t) : t €
[0,1]} by
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[nt]—1
1 .
(1.1) wy(t) = NG ; hoT? forte[0,1],n>1

(the sum from 0 to —1 is set equal to 0), where [z] denotes the integer part
of x. For each y, w,(-)(y) is an element of the Skorokhod space DJ0, 1] of
all functions which are right continuous and have left-hand limits, equipped
with the Skorokhod metric
os(1, ) = inf (sup |(t) —(s(t))|+ sup [t —s(t)]), ,¢ € D0, 1],
5€S te[0,1) te[0,1]

where S is the family of strictly increasing, continuous mappings s of [0, 1]
onto itself such that s(0) = 0 and s(1) =1 [1, Section 14].

Let {w(t) : t € [0,1]} be a standard Brownian motion. Throughout the
paper the notation

wn, =/ w,

where 7 is a random variable independent of the Brownian process w, denotes
the weak convergence of the sequence wy,, in the Skorokhod space D|0, 1].

Our main result, which is proved using techniques similar to those of
Peligrad and Utev [22] and Peligrad et al. [23], is the following:

THEOREM 1. Let T be a non-invertible measure preserving transforma-
tion on the probability space (Y,B,v) and let T be the o-algebra of all T-
invariant sets. Suppose h € L*(Y,B,v) with { h(y) v(dy) = 0 is such that

(1.2) in_gmu nz_:lpf’lh‘k < 00.
Then " -
(1.3) w, — nw,

where n = E,(h*|T) and h € L2(Y, B,v) is such that Prh =0 and
= 0.
2

li !
el

Recall that T is ergodic (with respect to v) if, for each A € B with
T~Y(A) = A, we have v(A) € {0,1}. Thus if T is ergodic then 7 is a
trivial o-algebra, so 1 in (1.3) is a constant random variable. Consequently,
Theorem 1 significantly generalizes [27, Theorem 4|, where it was assumed
that T is ergodic and there is @ < 1/2 such that

1
(h—h)oT’
0

|5 P, = 00
k=0

(we use the notation b(n) = O(a(n)) if limsup,,_, ., b(n)/a(n) < o).
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Usually, in proving central limit theorems for specific examples of trans-
formations one assumes that the transformation is mixing. For non-invertible
ergodic transformations for which the transfer operator is quasi-compact on
some subspace F' C L?(v) with norm |- | > ||-||2, the central limit theorem
and its functional version was given in Melbourne and Nicol [19]. Since qua-
sicompactness implies exponential decay of the L? norm, our result applies,
thus extending the results of [19] to the non-ergodic case. For examples of
transformations in which the decay of the L? norm is slower than exponential
and our results apply, see [27].

In the case of invertible transformations, non-ergodic versions of the cen-
tral limit theorem and its functional generalizations were studied by Volny
[28-31] using martingale approximations. In a recent review by Merlevede
et al. [21], the weak invariance principle was studied for stationary sequences
(X1)rez which, in particular, can be described as X = X o T*, where T
is a measure preserving invertible transformation on a probability space and
Xy is measurable with respect to a o-algebra F{ such that Fy C T_l(]:o).
Choosing a o-algebra Fy for a specific example of invertible transformation
is not an easy task and the requirement that Xy is Fo-measurable may some-
times be too restrictive (see [4, 16]). Sometimes, it is possible to reduce an
invertible transformation to a non-invertible one (see [20, 27]). Our result in
the non-invertible case extends [22, Theorem 1.1], which is also to be found in
[21, Theorem 11], where a condition introduced by Maxwell and Woodroofe
[18] is assumed. In [27] the condition was transformed to equation (1.2). In
the proof of our result we use Theorem 4.2 in Billingsley [1] and approxima-
tion techniques which were motivated by [22]. The corresponding maximal
inequality in our non-invertible setting is stated in Proposition 1, and its
proof, based on ideas of [23], is provided in Appendix 4.4 for completeness.
As in |22], the random variable 7 in Theorem 1 can also be obtained as a
limit in L', which we state in Appendix 4.4.

The outline of the paper is as follows. After the presentation of some
background material in Section 2, we turn to a proof of our main Theorem 1
in Section 3. Section 4 introduces asymptotically periodic transformations
as a specific example of a system to which Theorem 1 applies. We analyze
the specific example of an asymptotically periodic family of tent maps in
Section 4.4.

2. Preliminaries. The definition of the Perron-Frobenius (transfer) op-
erator for 1" depends on a given o-finite measure p on the measure space
(Y, B) with respect to which T is non-singular, i.e. u(T~1(4)) = 0 for
all A € B with u(A) = 0. Given such a measure the transfer operator
P:LYY,B,u) — LY(Y,B, ) is defined as follows. For any f € L'(Y,B, ),
there is a unique element Pf in L'(Y, B, 1) such that
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(2.1) VPr)udy) = | fly)u(dy) forall AeB.
A T-1(4)

This in turn gives rise to different operators for different underlying measures
on B. Thus if v is invariant for T, then T is non-singular and the transfer
operator Pr : LY(Y,B,v) — L'(Y,B,v) is well defined. Here we write Pr to
emphasize that the underlying measure v is invariant under 7.

The Koopman operator is defined by

Urf=foT

for every measurable f : Y — R. In particular, Ur is also well defined
for f € LY(Y,B,v) and is an isometry of L'(Y,B,v) into L1(Y,B,v), i.e.
NUrflli = |Ifll1 for all f € L'(Y,B,v). Since the measure v is finite, we
have LP(Y,B,v) C L'(Y,B,v) for p > 1. The operator Ur : LP(Y,B,v) —
LP(Y,B,v) is also an isometry on LP(Y,B,v).

The following relations hold between the operators Ur, Pr: L'(Y, B,v)
— LYY, B,v):

(2.2) PrUrf=f and UrPrf=E,(f|T (B))

for f € LY(Y,B,v), where E, (- |T~Y(B)) : L}(Y,B,v) — LY (Y, T~Y(B),v) is
the operator of conditional expectation. Note that if the transformation T'
is invertible then UrPrf = f for f € L(Y,B,v).

THEOREM 2. Let T be a non-invertible measure preserving transforma-
tion on the probability space (Y,B,v) and let T be the o-algebra of all T-
invariant sets. Suppose that h € L*(Y,B,v) is such that Prh = 0. Then

Wn —d \/ﬁwv

where n = E,(h*|T) is a random variable independent of the Brownian mo-
tion {w(t) : t € [0,1]}.

Proof. When T is ergodic, a direct proof based on the fact that the family

{T‘”+j(8), % hoT" 7 :1<j<n,n> 1}
is a martingale difference array is given in [17, Appendix A] and uses the
martingale central limit theorem (cf. [2, Theorem 35.12]) together with the
Birkhoff ergodic theorem. This can be extended to the case of non-ergodic T’
by using a version of the martingale central limit theorem due to Eagleson
[6, Corollary p. 561]. m

EXAMPLE 1. We illustrate Theorem 2 with an example. Let 7" : [0,1] —
[0,1] be defined by
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2y, y €[0,1/4),
2y —1, y € [3/4,1].

Observe that the Lebesgue measure on ([0,1],8([0,1])) is invariant for T

and that 7 is not ergodic since T71([0,1/2]) = [0,1/2] and T~1([1/2,1]) =

[1/2,1]. The transfer operator is given by

1 1 1 1 1 1 1 1
Prfy) = 3 f<§ y) Lo,1/2)(y) + 3 f<§ y+ Z) +3 f<§ Y+ 5) L1/2,1)(v)-

Consider the function

1, yel0,1/4),
sy ) 1 e /AL,

-2, ye[l/2,3/4),

2, ye€[3/4,1].

A straightforward calculation shows that Prh = 0 and E, (h? |Z) = 1jg 19+
4 - 1[1/2,1)- Thus Theorem 2 shows that

wp, =4 /E,(h? | T) w.

In particular, the one-dimensional distribution of the process v/ E, (h?|Z)w
has a density equal to

11 <x2>+1 1 <:132> cR
— ——exp| —— ———exp|l——), =« .
2 V2nt P\ 2t) T 2VEm P\ &
In general, for a given h the equation Prh = 0 may not be satisfied.
Then the idea is to write h as a sum of two functions, one of which satisfies
the assumptions of Theorem 2 while the other is irrelevant for the conver-

gence to hold. At least a part of the conclusions of Theorem 1 is given in the
following

THEOREM 3 (Tyran-Kaminska [27, Theorem 3]). Let T' be a non-invert-
ible measure preserving transformation on the probability space (Y,B,v).
Suppose h € L*(Y,B,v) with {h(y) v(dy) = 0 is such that (1.2) holds. Then

there eists h € L2(Y,B,v) such that Prh =0 and

I
—

n

%j (h—ﬁ)oTj—>0

I
o

in L*(Y,B,v) as n — oo.

We will use the following two results for subadditive sequences.
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LEMMA 1 (Peligrad and Utev [22, Lemma 2.8]). Let V,, be a subadditive
sequence of non-negative numbers. Suppose that y .- n=%/2V, < co. Then

m23 -

n%gnoo \/—Z 2]/2 o

LEMMA 2. Let V, be a subadditive sequence of non-negative numbers.
Then for every integer r > 2 there exist two positive constants C1,Cy (de-
pending on r) such that

Zr]/Q_Z 3/2— QZ ]/2

7=0

Proof. When r = 2, the result follows from Lemma 2.7 of [22], the proof
of which can be easily extended to the case of arbitrary r > 2. u

3. Maximal inequality and the proof of Theorem 1. We start by
first stating our key maximal inequality which is analogous to Proposition 2.3
in [22].

PROPOSITION 1. Let n,q be integers such that 29~1 < n < 24, If T is
a non-invertible measure preserving transformation on the probability space

(Y,B,v) and f € L*(Y,B,v), then

(1) || max Zfow\ <V BIf = UrPrflls +4V2 A4(f)),
" 2
where
q—1 ' 27
(3.2 2400 = Y27 Yo Pho|
j=0 k=1

In what follows we assume that T is a non-invertible measure preserving
transformation on the probability space (Y, B,v).

PROPOSITION 2. Let h € L?(Y,B,v). Define

m- . 1 .
(3.3) T z::o hoTV and wym(t) = N Z R 0 T

for mk € N and t € [0,1]. Let us take an m such that the sequence
|maxi<j<i |Wkm(l/E)| ||2 is bounded. Then

lim || sup. Iwn 1(t) = Wi m)m (D) |2 = 0.
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Proof. Let k, = [n/m]. We have
(knt]—1

1 Vm ,
U D S I G [ o
] mkn ]—0
which leads to the estimate
3.4) |l sup |wn,1(t) — wi,m (D) 12
0<t<1
3m 1 knm

< — .

< 2 Do T2+ (1 2 ) a0 e
Since h € L*(Y, B, v) we have

lim — H max \hoTl|H2 =0.

n—o00 \/_

Furthermore, since the sequence ||max1§l§k |wg 1 (1/E)]| ||2 is bounded by as-
sumption, and lim,,_,oo(1—+/k,m/n) = 0, the second term on the right-hand
side of (3.4) also tends to zero. m

Proof of Theorem 1. From Theorem 3 it follows that there exists h e
L?(Y,B,v) such that Prh = 0 and

n—1
1
3.5 li (h — h T =o0.
.5) i | S -Rer]
7=0
For each m € N, define
[kt]—1

By, 0 T

Sl

<.
I
o

Z and Wy ,(t) =
]:
[0,

for ke Nand ¢t €
implies

(3.6) Whgm —* B, (h2,| ) w
as k — oo, where Z,, is the o-algebra of T™-invariant sets. Proposition 1,

applied to T™ and ﬁm, gives

<
| s (@ (18] 2 < 3o

1]. We have PTmhm = 0 for all m. Thus Theorem 2

Therefore, by Proposition 2, we obtain

fin[| sup [in1(8) = Wiy (t)] [l2 = 0

n—oo 0

for all m € N, which 1mphes, by Theorem 4.1 of [1], that the limit in (3.6)
does not depend on m and is thus equal to \/ B, (h? |T)w
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To prove (1.3), using Theorem 4.2 of [1] we have to show that

(3.7) hm lim supl| Sup [Wn (t) = Wi, ) m ()] ]2 = 0.
— 00 St

n—oo

Let hy, and wg,,, be defined as in (3.3). We
(3.8) | sup |wn(t) = Wi ym)m(B)] ll2
0<t<1

< |l sup |wn(t) = W o] (8] ]2
0<t<1

+ || sup |wp,/m Wiy, /] (t .
||0<tp| Jm)m () = W ) (8] |2

Making use of Proposition 1 with 7" and h,, we obtain
o0 27
S 3Pt
| o2 i (1/R) 12 < Bl —UrmPr hm|!2+4\/§jz_(:)2 ;PT o,
However,
PTmhm:
by (2.2), and thus
[e'¢) 27 1 [e'e) m27
3.9 2‘]'/2H PimhmH - 2‘]'/2H Pih

and the series is convergent by Lemma 1, which implies that the sequence
|maxi<j<|wg m(l/k)|||2 is bounded for all m. From Proposition 2 it follows
that

lim || sup |wn(t) = Wi /m)m(t)] ]2 = 0.
n—oo 0<t<1

We next turn to estimating the second term in (3.8). We have

)= il ] 2 o |
I sup ok m(t) = D (B)l 2 < || max Z JoT™ ||,

< 3|/ hun — hun — U Pron (hey — B |12
%) 27
F V2SS Pl (o — o)
§=0 i=1

by Proposition 1. Combining this with (3.9) and the fact that Prmhy, = 0
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leads to the estimate

I 80, 1 (8)= (0] I < 3= | §<h—ﬁ> o7+ | jﬁ;w

0<t<1 ‘2

4\/5 [e'¢) i m27 .
o 2.2 | S]],
7=0 i=1
which completes the proof of (3.7), because all terms on the right-hand side
tend to zero as m — oo, by (3.5) and Lemma 1. =

4. Asymptotically periodic transformations. The dynamical prop-
erties of what are now known as asymptotically periodic transformations
seem to have first been studied by Ionescu Tulcea and Marinescu [10]. These
transformations form a perfect example of the central limit theorem results
we have discussed in earlier sections, and here we consider them in detail.

Let (X, A, 1) be a o-finite measure space. Write L (y) = L1(X, A, u).
The elements of the set

D) = {f € L) : > 0 and | f(2) plde) =1}

are called densities. Let T : X — X be a non-singular transformation and
P : L'(u) — L'(n) be the corresponding Perron-Frobenius operator. Then
(Lasota and Mackey [15]) (T, p) is called asymptotically periodic if there
exists a sequence of densities ¢g1,...,¢g, and a sequence of bounded linear
functionals Ay, ..., A such that

=0
Lt ()

T
(4.1) T [P (=37 2(A)gs)|
j=1

for all f € D(u). The densities g; have disjoint supports (g;g; = 0 for ¢ # j)
and Pgj = go(j), where « is a permutation of {1,...,7}.

If (T, ) is asymptotically periodic and » = 1 in (4.1) then (7', i) is called
asymptotically stable or exact by Lasota and Mackey [15].

Observe that if (T, 1) is asymptotically periodic then

1 T
g« = ; Z gj
7=1
is an invariant density for P, i.e. Pg, = g.. The ergodic structure of asymp-

totically periodic transformations was studied by Inoue and Ishitani [9].

REMARK 1. Let pu(X) < oo. Recall that P is a constrictive Perron—
Frobenius operator if there exist § > 0 and x < 1 such that for every density
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f we have
lim sup S P"f(z)p(dr) < k

n—o00
A

for all A € A with p(A) < 4. It is known that if P is a constrictive op-
erator then (7, ) is asymptotically periodic ([15, Theorem 5.3.1], see also
Komornik and Lasota [14]), and (T, u1) is ergodic if and only if the permu-
tation {a(1),...,a(r)} of the sequence {1,...,7} is cyclical ([15, Theorem
5.5.1]). In this case we call r the period of T

Let (T, i) be asymptotically periodic and let g, be an invariant density
for P. Let Y = supp(g«) = {z € X : g«(z) >0}, B={ANY : A€ A}, and

v(A) = S g«(z) p(dz), A€ A
A

The measure v is a probability measure invariant under 7'. In what follows we
write LP(v) = LP(Y,B,v) for p = 1,2. The transfer operator Pr : L!(v) —
L(v) is given by

(4.2) 4.Pr(f) = P(fg.) for f € L'(v).

We now turn to the study of weak convergence of the sequence of processes
[nt]—1

1 .
wn(t) = 7n > hoT,
=0

where h € L?(v) with {h(y) v(dy) = 0, by considering first the ergodic and
then the non-ergodic case.

4.1. (T, ) ergodic and asymptotically periodic. Let the transformation
(T, ) be ergodic and asymptotically periodic with period r. The unique
invariant density of P is given by

1 T
9e==> 9
j=1

and (77,g;) is exact for every j = 1,...,r. Let Y; = supp(g;) for j =
1,...,r. Note that the set B; = {J,—, T~ ""(Y;) is (almost) T"-invariant and

v(Bj\Y;)=0for j =1,...,r. Since the Y; are pairwise disjoint, we have
T
1
BAfI1T) =) o Vv y, - for f € L),
k=1 Yy

where Z, is the o-algebra of T"-invariant sets. But v(Y;) = 1/r, and thus

T

43)  E(fIZ)=r> | f@)vdy) 1y, =>_ | F@)oew) ndy) 1y,

k=1Y; k=1Y;
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THEOREM 4. Suppose that h € L*(v) with {h(y) v(dy) = 0 is such that

(4.4) i::l n—3/2 H :é)

Then

1 r—1 )
T2<oo, where hr:WZhoT.

d
wy, —° ow,

where w 1s a standard Brownian motion and o > 0 is a constant. Moreover,
if 32521 Ve (W) (T (y)) | v(dy) < oo then o is given by

(4.5) a2zr(§h§<y) y) + 2 Shr (T3 ))V(dy)).
Yy =171

Proof. We have h, € L*(v) and { h,(y) v(dy) = 0. Let
1 .
Wy (t) = —= Z h,oT™ for keN,te|0,1].

We can apply Theorem 1 to deduce that

Wy, —* E,(h2|T)w ask— oo,

where 7, is the o-algebra of all T"-invariant sets and

(4.6) E,(2|T,) = lim ~E, ((ShroT”f‘L).

n—oo N
=0

On the other hand, we also have

o ’I“j o ’I“j
S Ernl - S g, - o S,
j=0 k=1 j=0 j=1 k=1
Thus the series

fe'e) n—1

il

n=1 k=0 2

is convergent by Lemma 2. From Theorem 1 we conclude that there exists
h € L?(v) such that

—% |[A]|zw
since T is ergodic. But
Ihlle = VE, (B} T,),

by Proposition 2. Hence E,(h?|Z,) is a constant and from (4.3) it follows
that for each k = 1,...,r the integral ka h2(y) v(dy) does not depend on k.
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Thus
o = |[nl3 =r | h2(y) v(dy).

Since v is T"-invariant, we have

n—1
LS i) ) = | Rw) vldy)
Y, j§=0 Yy

By assumption the sequence (37, SY he(y)he (T77 (y)) v(dy))n>1 is conver-
gent to 277§y hr(y)h ~(T" (y)) v(dy), which completes the proof when

combined with (4.6) and (4.3). =

2. (T, ) asymptotically periodic but not necessarily ergodic. Now let us
consider (7, 1) asymptotically periodic but not ergodic, so that the permu-
tation « is not cyclical and we can represent it as a product of permutation
cycles. Thus we can rephrase the definition of asymptotic periodicity as fol-

lows.
Let there exist a sequence of densities

I )\l,Tl

(47) gi,1,---591r15--5 9115 -+ -5 Gl

and a sequence of bounded linear functionals A1 1,..., A1, A1, ...

such that

(4.8)  lim HP"( ZZA ivj gm)‘ gy =0 forall fe L' (),
n—oo /”’

=1 j=1

where the densities g; ; have mutually disjoint supports and, for each 7,

Pgij = gij+1 for 1 <j <r;—1, and Pg;,, = g;1. Then

= 9i,j
7
7 =1

is an invariant density for P and (7, g;) is ergodic for every i =1, ...

g« be a convex combination of g}, i.e.

!
g = aig;
=1

where a; > 0 and Zizl a; = 1. For simplicity, assume that a; > 0.

, 1. Let
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Let Y; = supp(g;) and Y; j = supp(gi ), j=1,...,r, i =1,... . If T is
the o-algebra of all T-invariant sets, then

E,(f|T) = ZV | £ .=i§f p(dy) 1y,

=1 Y i=1Y;

Now, if Z, is the o-algebra of all T"-invariant sets with r = Hﬁzl ri, then

Ti

l
1T = 3oy 20 § vy 1y,
]1

=1 Yi j

for f € L'(v), which leads to

~

T

E,(f1Z,) ZZU Y)gi.5(y) ldy) 1y,

Using similar arguments to those in the proof of Theorem 4 we obtain
THEOREM 5. Suppose that h € L*(v) with {h(y)v(dy) = 0 is such that
condition (4.4) holds. Then
wy, =%,
where w s a standard Brownian motion and n > 0 is a random variable

independent of w. Moreover, if 3322, {7 () (T (y)) | v(dy) < oo then n
is given by

l
":;V&> <Y5 ) +23" | bk (T ) v(dy)) 1y,

J=1Yi1

REMARK 2. Observe that condition (4.4) holds if

[ee]
Pk
S PRl
n=1 \/ﬁ
The operator Pr is a contraction on L*(v). Therefore

IP2fll2 < IFIL2IPEFIN? for £ € L®(v), n > 1,

which allows us to easily check condition (4.4) for specific examples of trans-
formations T'. It should also be noted that, by (4.2), we have

IPEfIl = 1P (fg)llpry for f € L), n>1.

4.3. Piecewise monotonic transformations. Let X be a totally ordered,
order complete set (usually X is a compact interval in R). Let B be the
o-algebra of Borel subsets of X and let u be a probability measure on X.
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Recall that a function f: X — R is said to be of bounded variation if
var( —supZ|f xi—1) — fx;)] < oo,

where the supremum is taken over all finite ordered sequences (x;) with
x; € X. The bounded variation norm is given by

IfllBv = [1fll L2y + var(f)

and it makes BV = {f : X — R : var(f) < oo} into a Banach space.
Let T : V — X be a continuous map, V C X be open and dense with
w(V) =1. We call (T, u) a piecewise uniformly expanding map if:

(1) There exists a countable family Z of closed intervals with disjoint
interiors such that V' C |J.z Z and for any Z € Z the set ZN(X\V)
consists exactly of the endpoints of Z.

(2) For any Z € Z, T|zny admits an extension to a homeomorphism
from Z to some interval.

(3) There exists a function g : X — [0,00), with bounded variation,
g x\v = 0 such that the Perron-Frobenius operator P : LY(p) —
LY(p) is of the form

2T~ 1(z)
(4) T is expanding: sup,cy g(x) < 1.
The following result is due to Rychlik [26]:

THEOREM 6. If (T, u) is a piecewise uniformly expanding map then it
satisfies (4.8) with g;; € BV. Moreover, there exist constants C > 0 and
0 € (0,1) such that, for every function f of bounded variation and alln > 1,

1P f = QN1 < CO"[flBv,

l
where r = [[;_, r; and

i

:ZZL:Z:: S wu(dz) gw

This result and Remark 2 imply

COROLLARY 1. Let (T, ) be a piecewise uniformly expanding map and
v an invariant measure which is absolutely continuous with respect to u. If
h is a function of bounded variation with E,(h|Z) = 0 then (4.4) holds.

REMARK 3. AFU-maps (uniformly expanding maps satisfying Adler’s
condition with a finite image condition, which are interval maps with a
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finite number of indifferent fixed points), studied by Zweimiiller [35], are
asymptotically periodic when they have an absolutely continuous invariant
probability measure. However, the decay of the L' norm may not be ex-
ponential. For Hélder continuous functions h one might use the results of
Young [34] to obtain bounds on this norm and then apply our results.

4.4. Calculation of variance for the family of tent maps using Theorem 4.
Let T be the generalized tent map on [—1, 1] defined by

(4.9) To(z) =a—1—alzx| forzxe|[-1,1],

where a € (1,2]. The Perron-Frobenius operator P : L'(1) — L(p) is given
by

1
(4.10) Pf(w) = = (f(q (@) + f (g (@))1[-1a-1 (@),
where 1, and 1] are the inverse branches of T,:
,y_T+1l—a 4y r+l—a
(411) wa (IIJ‘) - a ) wa ({Z}) - a )

and f is the normalized Lebesgue measure on [—1,1].

Ito et al. [11] have shown that the tent map (4.9) is ergodic, thus having
a unique invariant density g,. Provatas and Mackey [24] have proved the
asymptotic periodicity of (4.9) with period r = 2™ for

V2™ g < 22" form=0,1,....

Thus, for example, (T, ;1) has period 1 for 2'/2 < a < 2, period 2 for 2'/4 <
a < 212 period 4 for 2178 < a < 21/4 etc.

Let Y = supp(g,) and v,(dy) = ga(y)p(dy). For all 1 < a < 2 we have
T,(A) = A with A = [T2(0),7,(0)] and g,(z) = 0 for x € [-1,1] \ A. If
V2 < a < 2 then g, is strictly positive in A, thus Y = A in this case. For
a < /2 we have Y C A. The transfer operator P,: L'(v,) — L'(v,) is given
by
P(f9a)

Ya

Pof = for f e Ll(Va)a

where P is the Perron-Frobenius operator (4.10).

If h is a function of bounded variation on [—1, 1] with Sl_l h(y) vo(dy) =0

and
[nt]—1

wp(t) = % Z hoTy,
=0

then there exists a constant o(h) > 0 such that

wy, =% o(h)w,
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where w is a standard Brownian motion. In particular, we are going to study
o(h) for the specific example of h = h, for a € (1, 2], where

ho(y) =y —mq, ye[-1,1], and me= | yga(y)dy.
[_171]

PROPOSITION 3. Let m > 1 and oL/ < 212" Then
o(hgam)ala —1) et

(4.12) o(hg) = V2 @ (a2 1) kl:IO(a?“ —1)2,

where

(413)  o(hgm)? =2\ hyom (y) fazm () vaor (dy) — | hZom (y) Ve (dy),
fazm =) Pl hom.
n=0

In general, an explicit representation for (4.13) is not known. Hence,
before turning to a proof of Proposition 3, we first give the simplest example
in which o(h,2m)? can be calculated exactly.

EXAMPLE 2. For a = 2 the invariant density for the transformation 7},
is go = % -1y and the transfer operator Py : L'(15) — L'(12) has the
same form as P in (4.10):

Pof =5 (fouz + foug).

Since Sl_l ydy = 0, we have ho(y) = y. We also have Pahy = 0. Thus

1

S Yy dy =1/3
-1

o(hy)® =

and Proposition 3 gives o(hy) for a = 21/2"  m > 1.

We now summarize some properties of the tent map [33], which will
allow us to prove Proposition 3. Let Iy = [x*(a),z*(a)(1 + 2/a)] and I; =
[—z*(a),2*(a)], where z*(a) is the fixed point of Tj, other than —1, i.e.

X a—1
v'(a) = a+1
Define transformations ¢;, : I; — [—1, 1] by
1 a
a = — a = — — ]_
b1a(T) (a) x and  ¢og(x) (a) T—a
We have
z*(a)

(4.14) b1 (@) = —2"(a)z and g, (v) = —= (z+a+1).
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Then for 1 < a < v/2 the map T2 : I; — I, is conjugate to T2 : [-1,1] —
[—1,1]:

(4.15) Ty = hpia0 T2 0 ¢},
and the invariant density of 7, is given by
1
(4.16) 9a(y) = 5= @ (aga2 (0a(¥))11,(Y) + ga2 (P10 (¥) 11 (y))-

LEMMA 3. Ifa € (1,V?2] then
a—1 (a—1)z"(a)

(4.17) Mg = —5— 5 m,2
and
(4.18) (ha + ha o Tp) 0 6} = “—CZLM hoa,

Proof. Equation (4.17) follows from (4.16) and (4.14), while (4.18) is a
direct consequence of the definition of ¢, the fact that I, C [0,1], and
(4.17). =

Let m > 1. For ol/2m*t < 21/2™ there exist 2™ disjoint intervals in
which g, is strictly positive and they are defined by

Y}m = ds‘]_T}L([T(me (0)7 Ta2m (0)])7

where

Djm = ¢ima2m*1 ° ¢im71a2m*2 0+ 0@iya2 © Pira
and j = 14+iy +2i0+---+2™ 4, 4, = 0,1, k = 1,...,m. We have
To(Y]") =Y/ for 1 <j <2™ —1and T,(Y3n) = Y{". In particular,
(4.19) YVt =g (V™) for m >0,
where Y = [T%(0), T,2(0)].

LEMMA 4. Define
r—1
1
(4.20) By = 7 kzzoha oTk  forr>1,ae(1,2.

Let m >0 and r =2™. If ol/4r ¢ < 2172 then
(4.21) S h2r,a(y)h2r,a(T3m(y)) Va(dy)
Y1m+1
(1—a)’z*

_ (a)2 S h ( h rn
- 2242 r,a2 y) r,az( a2 (y)) Vg2 (dy)
v

for all n > 0.
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Proof. First observe that
1 r—1
(4.22) hora=—= Y hgaoTi".
vr k=0

Let n > 0. Since ¢, (doa(y)) =y for y € [~1,1], a change of variables using
(4.19) and (4.16) gives

(4'23) S h2r7a(y)h2r7a(Ta2rn(y)) Va(dy)

m—+1
Yl

:% | hara(Gns (W) hara (T3 (Y0, (1)) Va2 (dy).

ym

We have T2F o ¢! = ¢} oT¥, for all k > 0 by (4.15). Thus T2 o ¢, =
$oa © T3 and from (4.22) it follows that

—1
h2r7a S ¢Oa = Z h2 ,a © ¢Oa a2’

By Lemma 3 we obtain

_ 1 —a)z*(a)
I Gl LA O
27 ¢0a \/ia 2
Hence ( o (@)
1—a)x*(a
hora © Py = ~———F—— Ny 42,
27 ¢Oa \/ia ,2

which, when substituted into equation (4.23), completes the proof. =

2m+1

Proof of Proposition 3. First, we show that if m > 1 and 21/
21/2™ then

<a<

o(hgam) ot k k
(4.24) o(ha) = e 1] 2@ )@ — ).
k=0

Let m > 1 and 21/2™ T ¢ < 21/2™ Since the transformation T, is asymp-
totically periodic with period 2™, Theorem 4 gives

o(ha)? = 2" (| Wy a) valdy) £23° | haaly (y)ham o (T2 (1)) va(dy)).
ym j=1Ym

We have a2 € (21/2",21/ 2m71] and the transformation T2 is asymptotically
periodic with period 7 = 2™~1. From (4.21) with r = 2™~! and Theorem 4
it follows that

(a—1)%x

*(a 2
502 (@) o(hg2)?.

J(ha)Q =
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Thus equation (4.24) follows immediately by an induction argument on m.

Finally, for each £ =0,...,m — 1 we have
2k 2k 3
x(a )(a _1)_a2k+1(a _1)_a2k+1_1

and equation (4.12) holds. Since a®” > v/2 the function f,2m is well defined

and
o

S a2 (Y) farm (Y) Vo (dy) = Z S hgam (y)hgam (T(:L?m (y)) Va2 (dy),

n=0
which completes the proof. m

Appendix A. Proof of the maximal inequality

Proof of Proposition 1. We will prove (3.1) inductively. If n = 1 and
q = 1 then we have

Ifll2 < If = UrPrfll2 + |UrPrfll2 = If — UrPrfll2 + A1(f)

by the invariance of v under T. Now assume that (3.1) holds for all n < 2771
Fix n, 297! <n < 29. By the triangle inequality

k—1 k—1
J _ J
A 37T < e [520 - viPe o)
k—1
J
+1r£,?%<n ;UTPTfoT ‘
We first show that
k-1
(A.2) \1%35” (f — UrPrf) oTﬂ(H <3vn|f = UrPrfla
sh<n | 4=
Observe that
k—1 ' n—1 )
5| 0 = UrPep o < [ - Urprny o)
j= j=

k

n—j

+113]?§‘ng UrPrf)oT ‘
]:

Since Pr(f — UrPrf) =0, we see that

H S - 0o || = valf - UrPrsle
§=0
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For every n the family {Z;?:l(f—UTPTf)oT"_j :1 <k <n}isamartingale
with respect to {T™""*(B) : 1 < k < n}. Thus by the Doob maximal
inequality

H max
1<k<n

2t <3| - vinener]
j=1

j=1
=2vn|f = UrPrfll,

which completes the proof of (A.2).
Now consider the second term on the right-hand side of (A.1). Writing
n =2m or n = 2m + 1 yields

k—1 -1
_ il < 2j‘ ‘ Ql‘
49 o |3 UrPrioT| < s |5 50T+ g, UrPrsoT)
where f1 = Ur2Prf + UrPrf. To estimate the norm of the second term on
the right-hand side of (A.3), observe that

m
212 2112
AP T S g s e TR
which leads to

(A-4) | max [UrPrfo T < Vm+T[Prfls,

since v is invariant under 7. Further, since m < 2971, the measure v is in-
variant under 72, and f; € L?(Y, B, v), we can use the induction hypothesis.
We thus obtain
-1
| max |3 proT®||| < Vm@GIA - UrePrafills + 42 A, (1)
S

We have fi; — Up2Pr2f1 = UrPrf — Up2Pra f, by (2.2), which implies
1f1 = Ur2Pr2 filla < [[Prfll2 + |Pr2 fll2 < 2 Pr fll2,

since Pr is a contraction. We also have

q—2 27 q—2 2J
Aga(f) = 32 Yo Pl = S| o P,
j=0 k=1 j=0 k=1
q—2 27
= ;) 9—i/2 kZ:l P2 (U Prf + UTPTf)H2
q—2 27+1

— 2—j/2 Z ’Pé?fHQ = \/§(Aq(f) - ”PTf||2)
k=1
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Therefore
H 1<l<}§n ‘ZZ l Jre Qj‘ HQ < Vm (84,(f) = 2|Prfll2),
- = j=0

which combined with (A.1) through (A.4) and the fact that /m +1 <
V2m < /n leads to

k
> for || <3VRIS —UrPrflla+ Vi +1[Prfle

‘ max
1<k<n

+V2m (4V2 A(f) — V2| Prfll2)
<V @||f = UrPrfllz +4V2 Ay(f)). =

Appendix B. The limiting random variable 7. Finally, we give a
series expansion of E,(h%|Z) in Theorem 1 in terms of h and iterates of T

PROPOSITION 4. Suppose h € L*(Y,B,v) with \h(y) v(dy) = 0 is such
that

e} 27
(B.1) ZQ‘J/2H Zp@huz < 0.
7=0 k=1
Then the following limit exists in L':
(B.2) lim 7(5 EY E,(h*|T) +Z S“‘”S”OT |Z)7

where 7L is the o-algebra of all T-invariant sets and S,, = Z;:& hoT7,n € N.
Moreover, if h € L2(Y,B,v) is such that Prh =0 and

—0 asn— o

S - (h — h oTJ
=5

2
then
" 2
(B.3) E,(h*|T) = lim E(Su 1)
n—oo n

Proof. We first prove that the series on the right-hand side of (B.2) is
convergent in L'(Y, B,v). Since Z C T~% (B) for all j, we see that

B, (S9iSy o T | T) = By (By(Sy: Sy o T? | T~% (B)) | 7).
As Sy 0 T? is T~?' (B)-measurable and integrable we have

Ey(Sy;Sy; o T? | T2 (B)) = Sos 0 T¥ E,(Sy; | T~ (B)).
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However, E,(Sy | T2 (B)) = U2J77 ' Sy; from (2.2). Consequently,

27
(B.4) Ey(Sy; Sy 0T |T) = E, (Sm S Phh ( I).
k=1

Since the conditional expectation operator is a contraction in L', we have

J
1Bu(S2: S5 0 T | DIy < |

which, by the Cauchy—-Schwarz inequality, leads to
1Bu(S2:55 0 T | Dlls < 1S o kz_lpéﬂhuz.

Since [|Sgifl2 < [max;<;<0i]Si|[|2, the sequence 1S5 ]|2/27/% is bounded,
by (B.1), Lemma 2, and Proposition 1. Hence

o] J
5 ISy oIS, PR CZ IS8 PiAl _
: 27

2]/2 ’

which proves the convergence in L' of the series in (B.2).
We now prove the equality in (B.2). Since

S3m = (Sym1 + Spmar 0 T*" )2
=82, 452, 0T 4285 1S 0 T
we obtain
E,(S3n | T) = 2B, (Spn1 | T) + 2By (Sym1 Sym—r o T | ),
which leads to

E, (S} | T) | S2JS2JOT |7)

Bl D) g7+ S .
7=0

Thus the limit on the left-hand side of (B.2) exists for the subsequence

n = 2" and the equality holds. An analysis similar to that in the proof of

Proposition 2.1 of [22] shows that the whole sequence is convergent, which

completes the proof of (B.2).

We now turn to the proof of (B.3). Let I be such that Prh = 0. Define
S, = P &h o TY. Substituting % into (B.1) and (B.4) gives

_ Q2
E,(h?|T) = lim G

n—o00 n
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We have
E,(S2|T) E,(S?|1) 52 sz
n n

<
1

n n 1

< H i _ i i + i
I | RYACRRVATH | PY | VAR VAR P
by the Holder inequality, which implies (B.3) when combined with the equal-
ity

n—1
| Y hor||, = valihls.
§=0

and the assumption
— Y (h—h)oT’
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