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ABSTRACT Multistability is an emergent dynamic property that has been invoked to explain multiple coexisting biological
states. In this work, we investigate the origin of bistability in the lac operon. To do this, we develop a mathematical model for the
regulatory pathway in this system and compare the model predictions with other experimental results in which a nonmetabolizable
inducer was employed. We investigate the effect of lactose metabolism using this model, and show that it greatly modifies the
bistable region in the external lactose (Le) versus external glucose (Ge) parameter space. The model also predicts that lactose
metabolism can cause bistability to disappear for very low Ge. We have also carried out stochastic numerical simulations of the
model for several values of Ge and Le. Our results indicate that bistability can help guarantee that Escherichia coli consumes
glucose and lactose in the most efficient possible way. Namely, the lac operon is induced only when there is almost no glucose
in the growing medium, but if Le is high, the operon induction level increases abruptly when the levels of glucose in the
environment decrease to very low values. We demonstrate that this behavior could not be obtained without bistability if the
stability of the induced and uninduced states is to be preserved. Finally, we point out that the present methods and results may
be useful to study the emergence of multistability in biological systems other than the lac operon.

INTRODUCTION

At the molecular level, biological systems function using two

types of information: genes, which encode the molecular

machines that execute the functions of life, and networks of

regulatory interactions, specifying how genes are expressed.

Substantial progress over the past few decades in biochem-

istry, molecular biology, and cell physiology has ushered in a

new era of regulatory interaction research. Recent analysis

has revealed that cell signals do not necessarily propagate

linearly. Instead, cellular signaling networks can be used to

regulate multiple functions in a context-dependent fashion.

Because of the magnitude and complexity of the interactions

in the cell, it is often not possible to understand intuitively

the systems behavior of these networks. Rather, it has

become necessary to develop mathematical models and analyze

the behavior of these models, both to develop a systems-level

understanding and to obtain experimentally testable predic-

tions. This, together with the fact that DNA micro-arrays,

sequencers, and other technologies have begun to generate

vast amounts of quantitative biological data, has accelerated

the shift away from a purely descriptive biology and toward a

predictive one.

Recent computer simulations of partial or whole genetic

networks have demonstrated collective behaviors (commonly

called systems, or emergent, properties) that were not apparent

from examination of only a few isolated interactions alone.

Among the various patterns of complex behavior associated

with nonlinear kinetics, multistability is noteworthy. Multi-

stability corresponds to a true switch between alternate and

coexisting steady states, and so allows a graded signal to be

turned into a discontinuous evolution of the system along

several different possible pathways. Multistability has cer-

tain unique properties not shared by other mechanisms of

integrative control. These properties may play an essential

role in the dynamics of living cells and organisms. More-

over, multistability has been invoked to explain catastrophic

events in ecology (1), mitogen-activated protein kinase cas-

cades in animal cells (2–4), cell cycle regulatory circuits in

Xenopus and Saccharomyces cerevisiae (5,6), the generation

of switchlike biochemical responses (2,3,7), and the estab-

lishment of cell cycle oscillations and mutually exclusive cell

cycle phases (6,8), among other biological phenomena. On

the other hand, there are also serious doubts that multistability

is the dynamic origin of some biological switches (9). Never-

theless, it is generally accepted that two paradigmatic gene-

regulatory networks in bacteria, the phage l switch and the lac
operon (at least when induced by nonmetabolizable inducers),

do show bistability (10–12). In the former, bistability arises

through a mutually inhibitory double-negative-feedback loop,

while in the latter, a positive-feedback loop is responsible for

the bistability.

The lac operon, the phage-l switch, and the trp operon,

are three of the best known and most widely studied systems

in molecular biology. The inducible lac operon in E. coli is the

classic example of bistability. It was first noted by Monod and

co-workers more than 50 years ago, although it was not fully

recognized at the time. The bistable behavior of the lac
operon has been the subject of a number of studies. It was

first examined in detail by Novick and Weiner (13) and Cohn

and Horibata (14). Later experimental studies include those
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of Maloney and Rotman (15) and Chung and Stephanopou-

los (10). Over the last few years, the lac operon dynamics

have been analyzed mathematically by Wong et al. (16),

Vilar et al. (17), Yildirim and Mackey (18), Santillán and

Mackey (19), Yildirim et al. (20), Tian and Burrage (21), and

Hoek and Hogeweg (22). This was possible because this

system has been experimentally studied for nearly 50 years

and there is a wealth of biochemical and molecular infor-

mation and data on which to draw. Recently, Ozbudak et al.

(23) performed a set of ingenious experiments that not only

confirm bistability in the lac operon when induced with the

nonmetabolizable inducer thiomethylgalactoside (TMG), but

also provide new and novel quantitative data that raise ques-

tions that may be answered via a modeling approach.

Previous studies have analyzed bistability and its dynamic

properties as a systems phenomenon. However, to our knowl-

edge, none of them have dealt with questions like: ‘‘How did

multistability arise within the context of gene regulatory

networks?’’ or ‘‘What evolutionary advantages do bistable

regulatory networks have when compared with monostable

ones?’’ In this article, we address these issues from a mathe-

matical modeling approach, basing our examination on the

dynamics of the lac operon.

THEORY

Model development

A mathematical model for the lac operon is developed in

Appendices A–C. All of the model equations are tabulated in

Table 1 and they are briefly explained below. The reader may

find it useful to refer to Fig. 1, where the lac operon regu-

latory pathway is schematically represented.

The model consists of three differential equations (Eqs.

1–3), that respectively account for the temporal evolution

of mRNA (M), lacZ polypeptide (E), and internal lactose (L)

concentrations.

Messenger RNA (mRNA) is produced via transcription of

the lac operon genes, and its concentration decreases because

of active degradation and dilution due to cell growth. The

value gM represents the degradation plus dilution rate, kM is

the maximum transcription rate per promoter, and D is the

average number of promoter copies per bacterium. The func-

tion PRðAÞ (defined in Eq. 9) accounts for regulation of

transcription initiation by active repressors. The fraction of

active repressors is proportional to r(A) (compare Eq. 10);

since repressors are inactivated by allolactose (A), r is a de-

creasing function of A. Furthermore, the rate of transcription

initiation decreases as the concentration of active repressors

increases. Concomitantly, PR is a decreasing function of r,

and thus it is an increasing function of A. The function

PDðGeÞ (Eq. 9) denotes the modulation of transcription ini-

tiation by external glucose, i.e., through catabolite repression.

Production of cyclic AMP (cAMP) is inhibited by extracel-

lular glucose. cAMP further binds the so-called cAMP re-

ceptor protein (CRP) to form the CAP complex. Finally,

CAP binds a specific site near the lac promoter and enhances

transcription initiation. The probability of finding a CAP mole-

cule bound to its corresponding site is given by pc (Eq. 8) and

is a decreasing function of Ge. Moreover, PD is an increas-

ing function pc and, therefore, a decreasing function of Ge.

The translation initiation rate of lacZ transcripts is kE,

while gE is the dilution and degradation rate of lacZ poly-

peptides. Let B and Q, respectively, denote the b-galactosidase

and permease concentrations. Given that the corresponding

parameters for lacY transcripts and polypeptides attain sim-

ilar values, that b-galactosidase is a homo-tetramer made up

of four identical lacZ polypeptides, and that permease is

a lacY monomer, it follows that Q ¼ E and B ¼ E/4 (Eqs. 5

and 6).

Lactose is transported into the bacterium by a catalytic

process in which permease protein plays a central role. Thus,

the lactose influx rate is assumed to be kLbL(Le)Q, with the

function bL(Le) given by Eq. 11. Extracellular glucose

TABLE 1 Full set of equations for the model of lactose operon

regulatory pathway depicted in Fig. 1

Eq. No.

_M ¼ DkMPDðGeÞPRðAÞ � gMM (1)

_E ¼ kEM � gEE (2)

_L ¼ kLbLðLeÞbGðGeÞQ� 2fMMðLÞB� gLL (3)

A ¼ L (4)

Q ¼ E (5)

B ¼ E=4 (6)

PDðGeÞ ¼ pp 1 1 pcðGeÞ kpc � 1
� �� �

1 1 pppcðGeÞ kpc � 1
� � (7)

pcðGeÞ ¼ Knh

G

Knh

G 1 Genh

(8)

PRðAÞ ¼
1

1 1 rðAÞ1 j123 rðAÞ
1 1 j2rðAÞð Þ 1 1 j3rðAÞð Þ

(9)

rðAÞ ¼ rmax

KA

KA 1 A

� �4
(10)

bLðLeÞ ¼ Le

kL 1 Le
(11)

bGðGeÞ ¼ 1� fG

Ge

kG 1 Ge
(12)

MðLÞ ¼ L

kM 1 L
(13)

Differential Eqs. 1–3 govern the time evolution of the intracellular

concentration of mRNA (M), polypeptide (E), and lactose (L) molecules.

Ge and Le, respectively, stand for the extracellular glucose and lactose

concentrations. A, Q, and B represent the intracellular allolactose, permease,

and b-galactosidase molecule concentrations. The functions PD, PR, bL,

and bG, respectively, account for the negative effect of external glucose on

the initiation rate of transcription (via catabolite repression), the probability

that the lactose promoter is not repressed, the positive effect of external lac-

tose on its uptake rate, and the negative effect of external glucose on lactose

uptake (inducer exclusion). The expression 2fMM is the rate of lactose me-

tabolism per b-galactosidase. Finally, pc and r represent internal auxiliary

variables.
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negatively affects lactose uptake (so-called inducer exclu-

sion), and this is accounted for by bG(Ge) (Eq. 12), which is

a decreasing function of Ge. Once inside the cell, lactose is

metabolized by b-galactosidase. Approximately half of the

lactose molecules are transformed into allolactose, while the

rest enter the catalytic pathway that produces galactose. In

our model, fMMðLÞ, withM defined in Eq. 13, denotes the

lactose-to-allolactose metabolism rate, which equals the

lactose-to-galactose metabolism rate. Allolactose is further

metabolized into galactose by b-galactosidase. From the

assumptions that the corresponding metabolism parameters

are similar to those of lactose, and that the allolactose pro-

duction rate is much higher than its degradation plus dilution

rate, it follows that A � L (Eq. 4).

Parameter estimation

All of the parameters in the model are estimated in Appendix

D. Their values are tabulated in Table 2.

METHODS

Numerical experiments and analytical studies

We carried out stochastic simulations with the above-described model. This

was done by means of Gillespie’s Tau-Leap algorithm (24,25), which we

implemented in Python (http://www.python.org/download/).

All of the analytical results we used to study the model dynamic behavior

are explained in detail in the Appendices.

RESULTS

A mathematical model for the lac operon regulatory pathway

was developed as explained in Theory, above. The model

equations are tabulated in Table 1. These equations deter-

mine the time evolution of variables M, E, and L, which

respectively stand for mRNA, lacZ polypeptide, and internal

lactose concentrations. Special attention was paid to the

estimation of the model parameters from reported experi-

mental data. The model parameters are tabulated in Table 2.

Below we describe the results obtained from this model.

The model steady states and their stability are analyzed in

Appendix E. As seen there, depending on the values of Le
and Ge, there can be up to three steady states. For very low

Le values, there is a single stable steady state corresponding

to the uninduced state. As Le increases, two more steady

states appear via a saddle-node bifurcation. One of these new

fixed points is stable, corresponding to the induced state,

while the other is a saddle node. With further increases in Le
the saddle node and the original stable steady-state approach

until they eventually collide and are annihilated via another

saddle-node bifurcation. Afterwards, only the induced stable

steady state survives.

FIGURE 1 (A) Schematic representation of the lac operon regulatory

mechanisms. This operon comprises genes lacZ, lacY, and lacA. Protein

LacZ is a permease that transports external lactose into the cell. Protein LacY

polymerases into a homo-tetramer named b-galactosidase. This enzyme

transforms internal lactose (Lac) into allolactose (Allo) and galactose (Gal),

and further transforms allolactose into galactose. Allolactose can bind to the

repressor (R) inhibiting it. When not bound by allolactose, R can bind to a

specific site upstream of the operon structural genes and thus avoid

transcription initiation. External glucose inhibits production of cAMP

which, when bound to protein CRP to form complex CAP, acts as an

activator of the lac operon. External glucose also inhibits lactose uptake by

permease proteins. (B) Graphical representation of the interactions

accounted for by the lac operon mathematical model. The meaning of the

variables appearing in this figure is as follows. Ge and Le stand for external

glucose and lactose concentrations; M, Q, and B denote mRNA, permease,

and b-galactosidase, molecule concentrations, respectively; and L, A, and G

correspond to the intracellular lactose, allolactose, and galactose molecule

concentrations. All of the processes underlying the lac operon regulatory

pathway are represented by rectangles. Inputs (outputs) are denoted with

empty arrowheads (circles). Finally, plus and minus signs stand for the effect

each input variable has on every output variable.

TABLE 2 Value of all of the parameters in the equations of

Table 1, as estimated in Appendix D

m � 0.02 min�1 KG � 2.6 mM

D � 2 mpb nh � 1.3

kM � 0.18 min�1 j2 � 0.05

kE � 18.8 min�1 j3 � 0.01

kL � 6.0 3 104 min�1 j123 � 163

gM � 0.48 min�1 rmax � 1.3

gE � 0.03 min�1 KA � 2.92 3 106 mpb

gL � 0.02 min�1 kL � 680 mM

kpc � 30 fG � 0.35

pp � 0.127 kG � 1.0 mM

fM � 2 [0, 4.0 3 104] min�1 kM � 7.0 3 105 mpb

The term mpb indicates molecules per average bacterium.
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Ozbudak et al. (23) carried out a series of clever exper-

iments regarding the bistable behavior of the lac operon in

E. coli. In these experiments, the Le values at which the bi-

furcations take place were experimentally determined for

various extracellular glucose concentrations, using a non-

metabolizable inducer (TMG). In the present model, the

usage of a nonmetabolizable inducer can be modeled by

setting fM ¼ 0; recall that this parameter stands for the

maximum rate of lactose-to-allolactose and of lactose-to-

galactose metabolism.

Using the procedure described in Appendix E, we

numerically calculated the model Le bifurcation values for

several Ge concentrations when a nonmetabolizable inducer

is employed. The results are shown in the bifurcation dia-

gram of Fig. 2 A, and compared with the experimental results

of Ozbudak et al. (23). The agreement between the exper-

imental data and the model predictions is sufficiently close to

give us confidence in the other results we report here.

Ozbudak et al. further assert that, when their experiments

were repeated with the natural inducer (lactose), they were

unable to identify any bistable behavior. This result, and other

studies reporting similar conclusions (22), have sparked

a lively debate about whether bistability is a property of

the lac operon under naturally occurring conditions, or it is

only an artifact introduced by the use of nonmetabolizable

inducers.

To investigate the effects of lactose metabolism, we

recalculated the bifurcation diagram of Fig. 2 A with dif-

ferent values of the parameter fM. Bifurcation diagrams in

the Le versus Ge parameter space, calculated with fM ¼ 0,

3.6 3 103, 1.5 3 104, and 4.0 3 104 min�1, are shown in

Fig. 2, B–D. From these results we conclude that the main

effects of lactose metabolism on the Le versus Ge bifurcation

diagrams are

The border between the uninduced monostable and the

bistable regions is located at higher Le values as fM

increases.

The width of the bistable region increases as both Ge and

fM increase.

For very high values of fM (larger than 2.5 3 104

min�1), bistability is not present at very low Ge
concentrations, and only appears (via a cusp catastro-

phe) after Ge exceeds a threshold.

In their experiments, Ozbudak et al. (23) let a bacterial

culture grow for a long time (more than four hours) in a

medium with constant glucose and TMG concentrations.

Then they measured the expression level of gene lacZ in

every bacterium and plotted the corresponding histogram.

When the Ge and TMG concentrations were set such that the

induced and uninduced stable steady states were both avail-

able, a bimodal distribution for the lacZ expression level was

observed. Otherwise, they obtained unimodal distributions.

Ozbudak et al. later repeated the same experiments using

lactose as an inducer, and observed only unimodal distribu-

tions, even for saturating values of Le. Thus, they did not find

any evidence of bistability with lactose as an inducer. Ac-

cording to the bifurcation diagrams in Fig. 2, these findings

can be explained if fM ’ 4:03104min�1. In that case, even

when Le is as high as 1000 mM, the system should be in the

monostable uninduced region, or close to it, and thus any

sign of bistability will be hard to detect. To test this hy-

pothesis we carried out stochastic simulations by means

of Gillespie’s Tau-Leap algorithm (24,25), which we

FIGURE 2 (A) Bifurcation diagram

in the Le versus Ge parameter space,

calculated with fM ¼ 0. As discussed

in the text, this choice of the parameter

fM simulates induction of the lac

operon with a nonmetabolizable in-

ducer, like TMG. The dots correspond

to the experimental results of Ozbudak

et al. (2004). Panels B–D show bifur-

cation diagrams calculated with the

following lactose metabolism rates:

fM ¼ 3.6 3 103 min�1, fM ¼ 1.5 3

104 min�1, and fM¼ 4.0 3 104 min�1,

respectively.
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implemented in Python. In these simulations we set the val-

ues of Ge and Le, and let the system evolve for 20,000 min,

recording the value of all variables every minute. We per-

formed these numerical experiments with Le ¼ 1000 mM,

and Ge ¼ 4, 10, 20, 40, 100, 200, 400, and 1000 mM.

In Fig. 3 we show the histograms of the internal lactose

molecule count calculated from these numerical experi-

ments. Notice that:

Unimodal distributions, corresponding to the uninduced

steady state, were obtained for Ge ¼ 100, 200, 400,

1000 mM. In all these cases, the number of lactose

molecules per average bacterium is small—as com-

pared with the corresponding numbers in the induced

state—most of the times, and the frequency of higher

molecule counts rapidly decays.

We obtained unimodal distributions as well for Ge ¼ 4,

10, 20 mM. These distributions correspond to the in-

duced steady state, and the number of lactose mole-

cules per average bacterium fluctuates around values

larger than 2 3 107 mpb.

Of all the calculated distributions, only that for Ge ¼ 40

mM vaguely resembles a bimodal distribution.

Following Santillán and Mackey (19), we analyze the

effect of inducer exclusion on the bistable behavior of the lac
operon. For this, we construct—by setting bG(Ge) ¼ 1 in

Eq. 3—an in silico mutant strain of E. coli in which this regu-

latory mechanism is absent, and recalculate the bifurcation

diagram in the Le versus Ge parameter space. The result is

shown in Fig. 4. As seen there, the absence of this mechanism

moves the bifurcation region downwards, so the monostable

induced region starts at Le values similar to those obtained

when TMG is used as inducer (Fig. 2 A). If this mutant strain

can be engineered, it may be possible to identify bistability

with experiments like those of Ozbudak et al. (23).

FIGURE 3 Normalized histograms

for the number of lactose molecules

per average-size bacterium. This histo-

grams were calculated from the results

of stochastic simulations in which we

let the system evolve, for 10,000 min,

with Le ¼ 1000 mM and Ge ¼ 1000,

400, 200, 100, 40, 20, 10, and 4 mM;

see the main text for details. Notice that

the lac operon remains in the uninduced

state for Ge $ 100 mM, and then it

jumps to the induced state when Ge #

20 mM. Of all the histograms, only that

corresponding to Ge ¼ 40 mM shows a

vaguely bimodal distribution character-

istic of bistability. These results are in

complete accord with the bifurcation

diagrams presented in Fig. 2.
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DISCUSSION

We have developed a mathematical model of the lac operon

that, though not accurate in all detail, captures the essential

system behavior with respect to its bistable characteristics.

The model reproduced the experimental results of Ozbudak

et al. (23), who report the bifurcation diagram for the lac
operon in E. coli, when induced with a nonmetabolizable

inducer.

As mentioned above, there is currently a debate about

whether bistability is a property of the lac operon under

naturally occurring conditions. Ozbudak et al. reported that

bistability was not observed when the natural inducer, lac-

tose, was employed. Later, van Hoek and Hogeweg (22) sim-

ulated the in silico evolution of a large set of lac operons

(under conditions of fluctuating external lactose and glu-

cose), and concluded that bistability is present for artificial

inducers, but not for lactose. Moreover, Narang and Pilyugin

(26) argued, from a modeling study, that E. coli can exhibit

diauxic growth when growing in a mixture of sugars, even

if bistability is absent. To gain further insight into this matter,

we analyzed the influence of lactose metabolism on the

system bistable behavior, by varying the parameter fM (the

maximum lactose-to-allolactose metabolism rate). Below,

we discuss how our results provide a possible explanation

to such apparent absence of bistability, and suggest that

bistability does not disappear because of lactose metabolism,

although it is highly modified.

In terms of external lactose, the bistability region moves

upwards in the Le versus Ge parameter space, as fM in-

creases. If fM . 2.5 3 104 min�1, bistability is not present

in the limit of very low Ge, and it only appears after Ge
surpasses a given threshold, via a cusp catastrophe. We sus-

pect that this last situation is the most likely in wild-type

bacteria, because it becomes practically impossible for the

operon to switch into the induced state when there is an

abundance of glucose. Moreover, there is no resistance, due

to bistability, to activate the lac genes when glucose is

absent, and so to employ the energy provided by lactose.

The fact that Ozbudak et al. (23) did not observe signs of

bistability when lactose is used as an inducer suggests that

fM ’ 4:03104min�1, or higher. In that case, even when

Le is as high as 1000 mM, the (Ge, Le) point lies most of

the time in the monostable uninduced region of the bifur-

cation diagram (see Fig. 2 D), or it is very close to it, and

thus bistability should be very hard to detect. Our stochastic

simulations support this assertion given that, of all the ex-

periments we carried out, only that corresponding to Ge ¼
40 mM and Le ¼ 1000 mM rendered a bimodal like distri-

bution.

According to Ozbudak et al., whenever a bimodal distri-

bution is found, it is considered a proof of bistability. More

precisely, having a bimodal distribution is a sufficient but not

a necessary condition for this behavior: for instance, if we

have large standard deviations, a bimodal distribution will

hardly be noticed even is bistability is present. Then, our nu-

meric experiments confirm that—if fM ’ 4:03104min�1—

identifying bistability via expression-level distributions is

very difficult. We have also shown that if a mutant strain of

E. coli in which inducer exclusion is absent or deficient can

be found, it may be possible to identify bistability with the

methods of Ozbudak et al., even if the natural, induced

lactose is employed.

E. coli and other bacteria can feed on both lactose and

glucose. However, when they grow in a medium rich in both

sugars, glucose is utilized before lactose starts being con-

sumed. This phenomenon, known as diauxic growth (27,28),

represents an optimal thermodynamic solution given that

glucose is a cheaper energy source than lactose since, to take

advantage of lactose, the bacteria needs to expend energy in

producing the enzymes needed to transport and metabolize

this sugar (29).

Consider a bacterial culture growing in a medium con-

taining a mixture of glucose and lactose. According to the

bifurcation diagram in Fig. 2 D, induction of the lac operon,

as glucose is exhausted, can take place in two different ways:

if Le , 600 mM, the cells undergo a smooth transition from

the uninduced to the induced state; otherwise, the lac operon

shifts abruptly from the off- to the on-state when glucose

is almost completely depleted.

To better understand the behaviors described in the pre-

vious paragraph, we carried out numeric experiments in which

the lactose operon is induced by changing the bacterial cul-

ture from a medium rich in glucose (in which it has been

growing for a long time) to a medium with no glucose, while

the lactose concentration is kept constant. Such simulations

were performed by numerically solving the model differen-

tial equations with the Runge-Kutta method, implemented in

Octave’s algorithm, lsode. Our results (not shown) indicate

that it takes .1000 min for the lac operon to become fully

induced when Le ¼ 300 mM, whereas when Le ¼ 1000 mM,

FIGURE 4 Bifurcation diagram, in the Le versus Ge parameter space, for

an in silico mutant strain of E. coli in which the inducer-exclusion regulatory

mechanism is absent. This bifurcation diagram was calculated with fM ¼
4.0 3 104 min�1.

Origin of Bistability in the Lac Operon 3835

Biophysical Journal 92(11) 3830–3842



the operon achieves a 97% induction level 300 min after the

medium shift.

From these results we conclude that, with a very high

external lactose concentration, the lac operon can remain

fully uninduced until glucose utilization is almost completely

given up, because the response time is short in these con-

ditions. That is, the most efficient performance consists of an

abrupt change from the off- to the on-state, driven by a small

variation on the external glucose concentration, if Le is very

high. An analysis of Fig. 2 D reveals that, if Le ¼ 1000 mM,

the system goes from the uninduced to the induced monostable

regions when Ge decreases from 210 to 25 mM.

We have argued that bistability helps to guarantee an

efficient performance of the lac operon in E. coli, when

feeding on glucose, lactose, or both sugars. Could a regu-

latory pathway involving only monostability be equally ef-

ficient? The lac operon in E. coli is an inducible operon. This

means that it is subject to positive feedback regulation

through lactose (allolactose). In our model, this is accounted

for by the fact that PR in Eq. 1 is an increasing function of

A. Therefore, the higher the intracellular level of lactose,

the higher the transcription initiation rate of the lactose

operon genes. Depending on the functional form of PR, we

can have either bistability for some parameter values, or a

unique single stable steady state for all the parameters.

In general, PR needs to be highly sigmoidal to have bi-

stability.

Expression of the lac operon is modulated by external

glucose through the function PD. On the other hand, by

analyzing the model steady state we can see that as Ge
decreases from 210 to 25 mM, the system jumps from the

uninduced to the induced states, and the L* steady-state

value increases by a factor of 56. Substituting all these

values into Eqs. 7 and 8, we conclude that an incremental

increase of PD from 0.14 to 0.26 drives the 56-fold increase

of L*. That is, the following amplification relation is ob-

served:

PDðGe ¼ 25 mMÞ
PDðGe ¼ 210 mMÞ

� �6:5

’ L�ðGe ¼ 25 mMÞ
L
�ðGe ¼ 210 mMÞ ’ 56:

It is well known, since the invention of the regenerative

circuit in the early decades of the 20th Century, that very

large amplifications can destabilize a monostable system

subject to positive feedback (30–32), and that the only way

to get large amplifications is to approach as much as possible

to the stability limit. In Appendix F we analyze the pos-

sibility of having large amplifications, with monostable regu-

lation, in the present model of the lac operon. There we show

that the stability of the steady state is highly compromised

whenever the amplification exponent is .4. Since we predict

an amplification exponent of 6.5, larger than four, the sta-

bility of our system would be at risk if it were controlled by a

monostable pathway. In Appendix F we also demonstrate

that bistability (multistability) allows both large amplifica-

tion and strongly stable steady states. Hence, since a large

amplification of the lac operon expression level (driven by a

small change in PD) is advantageous for E. coli (when Le is

very high), we conclude that bistability ensures an efficient

consumption of lactose and glucose without jeopardizing the

system stability.

APPENDIX A: MODEL DEVELOPMENT

In this section, a mathematical model of the lac operon in E. coli is

developed. The reader may find it convenient to refer to Fig. 1 of the main

text, where the lac operon regulatory mechanisms are schematically rep-

resented. The model presented here accounts for the time evolution of

the following variables: intracellular mRNA (M), lacZ polypeptide (E),

and intracellular lactose (L) concentrations. The dynamics of these variables

are modeled by the (balance) differential equations:

_M ¼ DkMPDðGeÞPRðAÞ � gMM; (14)

_E ¼ kEM� gEE; (15)

_L ¼ kLbLðLeÞbGðGeÞQ� 2fMMðLÞB� gLL: (16)

The meaning of the functions and parameters in these equations is as

follows:

A is the intracellular allolactose concentration.

D is the concentration of lac promoter within the bacterium.

Q and B are the permease and b-galactosidase concentrations, respec-

tively.

kM, kE, and kL are, respectively, the lac promoter transcription initiation

rate, the lacZ mRNA translation initiation rate, and the maximum

lactose uptake rate per permease.

gM, gE, and gL, respectively, stand for the dilution plus degradation rates

of M, E, and L.

Ge and Le denote the external glucose and lactose concentrations.

PRðAÞ is the probability that promoter P1 is not repressed, while

PDðGeÞ takes into account the effect of external glucose on the

probability of having an mRNA polymerase bound to this promoter

(catabolite repression).

bL(Le) and bG(Ge) are functions that account for the modulation of

lactose uptake as functions of the external lactose and glucose

(inducer exclusion) concentrations, respectively.

2fMMðLÞ represents the rate of lactose metabolization per b-galacto-

sidase molecule.

Probability of having a polymerase bound to the
lac promoter, including catabolite repression

Let P and C, respectively, denote the mRNA polymerase and CAP

concentrations. A polymerase can bind by itself to the lac promoter, P1.

However, the affinity of this reaction is increased when a CAP molecule is

bound to its corresponding binding site in the DNA chain. By taking this

cooperative behavior into account, as well as the results in Appendices B and

C, the probability PD can be calculated as

PDðGeÞ ¼
P

KP
1 1 kpc

C

KC

� �

1 1
P

KP

1
C

KC

1 kpc

P

KP

C

KC

; (17)
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where KP and KC are the respective dissociation constants of the polymerase-

promoter and CAP-DNA complexes, and kpc . 1 is a constant that accounts

for the cooperative interaction between the promoter and the CAP binding

site. Equation 17 can be rewritten as

PDðGeÞ ¼
ppð1 1 pcðGeÞðkpc � 1ÞÞ
1 1 pppcðGeÞðkpc � 1Þ : (18)

In this equation, pp and pc(Ge), respectively, denote the probabilities that

a polymerase is bound to the promoter in the absence of CAP, and that a

CAP molecule is bound to its binding site in the absence of mRNA poly-

merase. The probability pp is constant and given by

pp ¼
P

KP

1 1 P

KP

:

However,

pcðGeÞ ¼
C

KC

1 1 C

KC

is a function of the external glucose concentration. Experimentally pc(Ge)

must be a decreasing function of Ge since external glucose inhibits the syn-

thesis of cAMP, which in turns implies a decrease in C and thus in pc(Ge).

Here we assume that the functional form for pc(Ge) is given by

pcðGeÞ ¼
K

nh

G

K
nh

G 1 G
nh

e

: (19)

Probability that the promoter P1 is not repressed

The lac operon has three different operator regions denoted by O1, O2, and

O3 all of which can bind active repressor and are involved in transcriptional

regulation. A repressor bound to O1 avoids transcription initiation. Con-

versely, a repressor bound to either O2 or O3 does not seem to affect

transcription. Nevertheless, DNA can fold in such a way that a single

repressor simultaneously binds two operators in all possible combinations.

These complexes are more stable than that of a repressor bound to a single

operator, and all of them inhibit transcription initiation (33). From the results

in Appendix B, the probability that the lac operon promoter is not repressed

can then be calculated as

PRðAÞ ¼
1 1 R

K2

� �
1 1 R

K3

� �

1 1 R
K1

� �
1 1 R

K2

� �
1 1 R

K3

� �
1 R 1

K12
1 1

K13
1 1

K23

� �;
(20)

where R is the concentration of active repressors, Ki (i ¼ 1, 2, 3) is

the dissociation constant of the R-Oi complex, and Kij (i, j ¼ 1, 2, 3, i , j) is

the dissociation constant of the Oi-R-Oj complex.

Define r(A) ¼ R/K1, ji ¼ K1/Ki (i ¼ 2, 3), and j123 ¼ K1=K121K1=K131

K1=K23. With these definitions, Eq. 20 can be rewritten as

PRðAÞ ¼
1

1 1 rðAÞ1 j123rðAÞ
ð1 1 j2rðAÞÞð1 1 j3rðAÞÞ

: (21)

Repressor molecules are tetramers and each of their subunits can be bound

by an allolactose molecule, inactivating the repressor. The concentration of

active repressors as a function of the allolactose concentration is given by Eq. 19,

R ¼ RT

KA

KA 1 A

� �4

;

where RT is the total repressor concentration, and KA is the allolactose-repressor

subunit complex dissociation rate. Since r(A) ¼ R/K1, it follows that

rðAÞ ¼ rmax

KA

KA 1 A

� �4

; (22)

where rmax ¼ RT/K1.

Inducer uptake rate

From the results of Ozbudak et al. (23), in the absence of external glucose

the dependence of the normalized inducer uptake rate, per b-permease

molecule, on the external inducer concentration is given by

bLðLeÞ ¼
Le

kL 1 Le

: (23)

The results of Ozbudak et al. (23) also allow us to model the decrease in the

inducer uptake rate caused by external glucose by

bGðGeÞ ¼ 1� fG

Ge

kG 1 Ge

: (24)

Lactose metabolism

After being transported into the bacterium, lactose is metabolized by

b-galactosidase. Approximately half of the lactose molecules are trans-

formed into allolactose, while the rest are directly used to produce galactose.

The lactose-to-allolactose metabolism rate, which as explained above equals

the lactose-to-galactose metabolism rate, can be modeled as a Michaelis-

Menten function, typical of catalytic reactions

fM

L

kM 1 L
B:

Therefore, the total rate of lactose metabolized per single b-galactosidase is

2fMMðLÞ; with MðLÞ ¼ L

kM 1 L
: (25)

Allolactose metabolism

Allolactose and lactose are both metabolized into galactose by the same

enzyme b-galactosidase. Under the assumption that the allolactose produc-

tion and metabolism rates are much faster than the cell growth rate, we may

assume that these two metabolic processes balance each other almost

instantaneously so

fM

L

kM 1 L
B � fA

A

kA 1 A
B:

On the other hand, allolactose is an isomer of lactose, and therefore we can

expect that the parameters related to the metabolism kinetics of both sugars

attain similar values: fM � fA and kM � kA. Then

A � L: (26)

Permease and b-galactosidase concentrations

The translation initiation and degradation rates of lacZ and lacY are slightly

different. Here, we assume they are the same for the sake of simplicity. From

this and the fact that b-galactosidase is a homotetramer, made up of four

lacZ polypeptides, while permease consists of a single lacY polypeptide,

it follows that
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B ¼ E=4; and Q ¼ E: (27)

APPENDIX B: BINDING-STATE PROBABILITY
DISTRIBUTION FOR A MOLECULE WITH
MULTIPLE, INDEPENDENT, BINDING SITES

Consider a molecule D with specific, independent, binding sites for N dif-

ferent molecules Bi, i ¼ 1. . . N. Denote the binding state of molecule D by

(n1, n2, . . . nN) ¼ (fnig), where ni ¼ 1 if a molecule Bi its bound to its

corresponding site in molecule D, and ni ¼ 0 otherwise. In what follows, we

demonstrate by induction that the probability of any given binding state is

PNðniÞ ¼
QN

i¼1

½Bi �
Ki

� �ni

+
nn1

... nnN
¼0;1

QN

j¼1

½Bj �
Kj

� �nj
;

where [Bi] is the concentration of chemical species Bi, and Ki is the

dissociation constant of the D:Bi complex.

Case N ¼ 1

The reaction leading to the formation of complex D:B1 is

B1 1 D �
K1

D :B1:

At equilibrium, the concentrations of the chemical species involved in this

reaction satisfy the relation

½B1�½D� ¼ K1½D :B1�: (28)

Assume a constant total concentration for species D, i.e.,

½D�1 ½D :B1� ¼ ½Dtot�: (29)

Then, from Eqs. 28 and 29, the fractions of free and bound B1 sites are

respectively given by

½D�
½Dtot�

¼ 1

1 1
½B1 �
K1

and
½D :B1�
½Dtot�

¼
½B1�
K1

1 1
½B1 �
K1

:

From these results, the binding-state probability distribution for the current

system can be written as

P1ðn1Þ ¼
½B1�
K1

� �n1

1 1
½B1 �
K1

; (30)

where n1 ¼ 0 if the B1 binding site is empty, and n1 ¼ 1 otherwise.

Case N ¼ 2

From the N¼ 1 case, the probability distribution for the B1 binding site in the

absence of species B2 is

P1ðn1Þ ¼
½B1�
K1

� �n1

1 1
½B1 �
K1

:

Also, the probability distribution for the B2 binding site in the absence of

species B1 is

P1ðn2Þ ¼
½B2�
K2

� �n2

1 1
½B2 �
K2

:

If both sites are independent, their joint binding-state probability distribution is

P2ðn1; n2Þ ¼ P1ðn1ÞP2ðn2Þ ¼
½B1 �
K1

� �n1 ½B2 �
K2

� �n2

1 1
½B1 �
K1

1
½B2 �
K2

1
½B1�
K1

½B2 �
K2

: (31)

General case

Take a D molecule with N independent binding sites and assume that the

binding-state probability distribution for the first N–1 sites is given, in the

absence of species BN, by

PNðn1; . . . nN�1Þ ¼
QN�1

i¼1

½Bi�
Ki

� �ni

+
nn1

... nnN�1
¼0;1

QN�1

j¼1

½Bj �
Kj

� �nj
:

In the absence of species B1, . . . BN–1, the probability of the BN binding site

is

P1ðnNÞ ¼
½BN �
KN

� �nN

1 1
½BN �
KN

:

Since all sites are independent from each other, the binding-state probability

distribution can be calculated as

PNðn1; . . . nNÞ ¼ PNðn1; . . . nN�1ÞP1ðnNÞ

¼
QN

i¼1

½Bi�
Ki

� �ni

+
nn1

... nnN
¼0;1

QN

j¼1

½Bj�
Kj

� �nj
; (32)

which proves our original assertion.

APPENDIX C: COOPERATIVITY BETWEEN
BINDING SITES

We can see from Eq. 32 that the probability of finding ni¼ 0, 1 molecules Bi

bound to its corresponding binding site is proportional to ð½Bi�=K1Þni . The

denominator in the fraction of Eq. 32 plays the role of a normalizing con-

stant.

Assume that two given sites, say l and m, have a cooperative interaction

in the sense that the probability of finding the two of them bound by their

respective molecules is larger than the product of the individual probabil-

ities. From this and the considerations of Appendix B, the binding-state

probability distribution accounting for cooperativity between sites l and m is

PNðn1; . . . nNÞ ¼
k

nlnm

c

QN

i¼1

½Bi�
Ki

� �ni

+
nn1

... nnN
¼0;1

k
nnl

nnm

c

QN

j¼1

½Bj�
Kj

� �nj
; (33)

where kc . 1 measures the strength of the cooperativity.

APPENDIX D: PARAMETER ESTIMATION

Growth rate, m

The growth rate of a bacterial culture depends strongly on the growth

medium. Typically, the mass doubling time varies from 20 to more than

40 min (34). For the purpose of this study, we take a doubling time of

30 min, which corresponds to the growth rate m � 0.02 min�1.
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Lac promoter concentration

According to Bremmer and Dennis (34), there are ;2.5 genome equivalents

per average E. coli cell at the growth rate determined by m. For the purpose

of this work, we take D ’ 2.

Production rates

Malan et al. (35) measured the transcription initiation rate at the lac promoter

and report kM � 0.18 min�1.

From Kennell and Riezman (36), translation of the lacZ mRNA starts

every 3.2 s. According to Beckwith (37), the production rate of lac permease

is smaller than that of b-galactosidase monomers even though, as Kennell

and Riezman (36) report, there are similar levels of both mRNA species.

This suggests that lacY mRNA values are translated at a lower rate than is

lacZ mRNA. Nevertheless, to our knowledge, there are no reported

measurements of the lacY mRNA translation initiation rate. Thus, we

assume it is equal to that of lacZ: kE ’ 18:8 min�1.

According to Chung and Stephanopoulos (10), the inducer uptake rate

per lac permease is kL ’ 6:03104 min�1.

Degradation rates

Kennell and Riezman (36) measured a lacZ mRNA half-life of 1.5 min. That

is, its degradation rate is 0.46 min�1, and the corresponding dilution plus

degradation rate is gM ’ 0:48 min�1.

According to Kennell and Riezman (36), the lac permease degradation rate

is 0.01 min�1. Thus, its degradation plus dilution rate is gE ’ 0:03 min�1.

Here we assume that the lactose degradation rate is negligible and so its

degradation plus dilution rate is simply gL ’ 0:02 min�1.

Catabolite repression parameters

Malan et al. (35) measured the polymerase-lac promoter affinity in the

presence and absence of cAMP. From their data, we estimate kpc ’ 30.

The parameters pp, KG, and nh were estimated by fitting Eq. 5 of the main

text (with pc as given by Eq. 6) to the experimental data reported in Ozbudak

et al. (23). See Fig. 5. The values we obtained are pp ’ 0:127;

KG ’ 2:6 mM; and nh ’ 1:3.

Repression parameters

Oehler et al. (33) studied how the three operators in the lac operon cooperate

in repression. According to their results, when only O1 and either O2 and O3

are present, the repression level is reduced to 53.85% and 33.85% that of the

wild-type operon, respectively. Moreover, when O2 and O3 are destroyed,

repression is reduced to 1.38% that of the wild-type operon. This allowed us

to estimate the parameters j2, j3, and j123 as j2 ’ 0:05, j3 ’ 0:01, and

j123 ’ 163.

For this, we took into consideration that eliminating O2 (O3) is equivalent

to making 1/K2 ¼ 1/K12 ¼ 1/K23 ¼ 0 (1/K2 ¼ K13 ¼ 1/K23 ¼ 0) in Eq. 7

of the main text. Parameters j2, j3, and j123 are modified accordingly in

Eq. 8 of the main text.

The parameters r max and KA were estimated by fitting the curves in the

model bifurcation diagram to the experimental results of Ozbudak et al. (23)

(see Fig. 2 A of the main text) obtaining the values rmax ’ 1:3 and

KA ’ 2:92 3 106.

Inducer uptake parameters

From the experimental data of Ozbudak et al. (23), the inducer uptake rate

per active permease, as a function of external inducer concentration, can be

fitted by a Michaelis-Menten function with a half-saturation concentration of

680 mM. That is, kL ’ 680 mM.

Ozbudak et al. (23) measured the inducer-uptake-rate decrease per active

permease as a function of external glucose concentration. We found (plot not

shown) that these data are well fit by Eq. 11 of the main text with

fG ’ 0:35 and kG ’ 1 mM.

Lactose metabolism parameters

Lactose metabolism rate and saturation constant, fM and kM. We estimate

these parameters from the data reported in Martı́new-Bilbao et al. (38) as

fM � 3.60 3 103 min�1, and kM � 7.0 3 105 mpb, where mpb stands

for molecules per average bacterium.

APPENDIX E: STEADY-STATE STABILITY AND
BIFURCATION DIAGRAMS

Stability analysis

The model equations (Eqs. 1–3) in the main text can be rewritten as

_M ¼ DkMPD½PRðLÞ � PRðL�Þ� � gM½M �M��; (34)

_E ¼ kE½M �M
�� � gE½E� E

��; (35)

_L ¼ kLbLbG½E�E�� �fM

2
½MðLÞE�MðL�ÞE�� � gL½L� L��:

(36)

The steady-state values M*, E*, and L* are, respectively, given by

M
� ¼ DkM

gM

PDPRðL�Þ; (37)

E
� ¼ DkMkE

gMgE

PDPRðL�Þ; (38)

L
� ¼ DkMkEkL

gMgEgL

bLbG �
fM

2kL

MðL�Þ
� 	

PDPRðL�Þ: (39)

It is easy to show numerically that given the parameter values tabulated in

Table 2 and Ge . 0, Eq. 39 may have up to three roots, and therefore that the

model has up to three steady states.

FIGURE 5 Effect of external glucose, due to catabolite repression, on

the activity of the lac promoter. The dots stand for the experimental data

of Ozbudak et al. (23), while the solid line was drawn from Eq. 5, with pc

as given by Eq. 6, with the estimated parameter values.
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Notice that, except for PRðTÞ � PRðT�Þ andMðLÞ �MðL�Þ, all terms in

the right-hand side of Eqs. 34–36 are linear with respect toM�M*, E�E*,

and L�L*. Since we are only interested in analyzing the system dynamic

behavior in a small neighborhood around the steady states, the following

linear approximation is employed:

PRðLÞ � PRðL�Þ ’ ½L� L
��P9RðL�Þ;

MðLÞE�MðL�ÞE� ’MðL�Þ½E�E
��1 ½L� L

��M9ðL�ÞE�:
With this approximation, the full model can be reduced (around the steady

state) to the following system of linear differential equations,

v̇ ¼ Av; (40)

where

v ¼
M �M

�

E� E�

L� L
�

2
4

3
5;

and

A :¼
�gM 0 DkMPDP9RðL�Þ

kE �gE 0

0 kLbLbG � fMMðL
�Þ=2 �gL � fMM9ðL�ÞE�=2

2
4

3
5:

The general solution of the linear system (Eq. 40) is v ¼ +3

k¼1
Ckuk

expðaktÞ, where Ck are undetermined constants, while ak and uk are the

respective eigenvalues and eigenvectors of matrix A. Therefore, if all eigen-

values ak have negative real parts, the corresponding steady state is stable.

Conversely, the steady state is unstable if at least one eigenvalue has a positive

real part.

The eigenvalues of A are the roots of its characteristic polynomial,

det(sI – A). It follows after some algebra that det(sI – A) ¼ P(s) – Q3, with

PðsÞ : ¼ ðs 1 gMÞðs 1 gEÞðs 1 g3Þ;
g3 : ¼ gL 1 fMM9ðL�ÞE�=2;

Q3 : ¼ DkMkEkL bLbE �
fM

2kL

MðL�Þ
� 	

PDP9RðL�Þ:

Notice that g3 . 0 because gL . 0 and M is an increasing function;

moreover gM . gE . 0. Hence, the polynomial P(s) is positive and strictly

increasing for every real s $ 0. Assume now that Q3 . P(0), then, P(s) – Q3

has one positive real root since P(0) – Q3 , 0 and P(s) is strictly increasing

for s . 0.

On the other hand, we assert that all roots of P(s) – Q3 have negative real

part whenever Q3 , P(0). It follows from the work of Strelitz (39) that all

roots have negative real part if and only if the following pair of inequalities

hold simultaneously:

0 , gMgEg3 � Q3 , ðgM 1 gE 1 g3ÞðgMgE 1 gMg3 1 gEg3Þ;

and we obviously have that

Pð0Þ ¼ gMgEg3 and

gMgEg3 , ðgM 1 gE 1 g3ÞðgMgE 1 gMg3 1 gEg3Þ:
Therefore, the linear system _v ¼ Av is stable (unstable) whenever Q3 , P(0)

(Q3 . P(0)). Furthermore, since the steady-state values of L* are the roots of

the equation SðL�Þ ¼ 0, with

SðL�Þ :¼ DkMkEkL

gMgEgL

bLbG �
fM

2kL

MðL�Þ
� 	

PDPRðL�Þ � L
�
;

(41)

we can easily calculate that a given steady state is locally stable (unstable)

whenever the derivative

dSðL�Þ
dL
� ¼

Q3

gMgEgL

� fMMðL
�ÞE�

2gL

� 1

¼ Q3 � Pð0Þ
gMgEgL

(42)

is strictly negative (positive).

Calculation of the bifurcation points and the
bifurcation diagram

Given Ge, the values of L* and Le at which a saddle node bifurcation oc-

curs can be calculated by simultaneously solving SðL�Þ ¼ 0 and

dSðL�Þ=dL� ¼ 0, with SðL�Þ as defined in Eq. 41. The bifurcation diagram

in the Le versus Ge parameter space can be calculated by repeating the

above procedure for several values of Ge.

APPENDIX F: POSITIVE FEEDBACK, STABILITY
AND HYSTERESIS

Consider the following simplified model of a biological switch with

nonlinear feedback,

_x ¼ bPðxÞ � gx; (43)

where g . 0 is a degradation parameter, b . 0 is an external control

parameter, and the smooth function PðxÞ. 0 is nonlinear with respect to x.

The steady states x* of Eq. 43 are the solutions to

b

g
3 Pðx�Þ ¼ x�: (44)

It is easy to prove that the dynamic system given by Eq. 43 is locally stable

at x* if and only if

b

g
3

dPðxÞ
dx






x¼x

�
, 1: (45)

We choose system Eq. 43 because its dynamic behavior is representative of

(and similar to) the behavior of higher dimensional systems. For example,

consider the following two-dimensional system, with positive parameters

bk . 0 and gk . 0:

_x ¼ b1PðyÞ � g1x;

_y ¼ b2x � g2y:

The steady states x* and y* are the solutions of

b1b2

g1g2

3 Pðy�Þ ¼ y
�

and b2x
� ¼ g2y

�
:

These equations are equivalent to Eq. 44 with b ¼ b1b2 and g ¼ g1g2.

Furthermore, the two dimensional system is locally stable at x* and y* if and

only if both eigenvalues of the matrix

A2 ¼ �g1 b1
dPðyÞ

dy
jy¼y

�

b2 �g2

� 	

have strictly negative real parts. Simple algebraic calculations allows us to

prove that both eigenvalues of A2 have strictly negative real part if and only if

b1b2

g1g2

3
dPðyÞ

dy






y¼y

�
, 1:
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Notice that this last result is equivalent to Eq. 45, after setting the

degradation parameter g ¼ g1g2 and the external control parameter b ¼
b1b2. Similar results holds for higher dimensions.

Consider the model equations (Eqs. 1–3) with the external glucose Ge
values in the interval [25, 210] mM, the external lactose Le ¼ 103 mM and

fM ¼ 4 3 104 min�1. It is easy to show, under the previous conditions, that

the steady state L* achieves the minimum and maximum values of 4.5 3 105

and 2.53 3 107 molecules per average bacterium, respectively. Therefore,

bLð10
3
mMÞbGð25mMÞ�bLð10

3
mMÞbGð210mMÞ�7310

�3
;

fM

2kL

Mð2:53310
7
mpbÞ�fM

2kl

Mð4:5310
5

mpbÞ�1:94310
�1
:

The above results indicate that the term bL(Le)bG(Ge) inside the square

brackets of Eq. 41 is approximately constant and equal to 0.39. From this,

and taking into consideration that the steady states L* are given by the roots

SðL�Þ ¼ 0, with S defined in Eq. 41, it follows that

b

g
3 0:39� fM

2kL

MðL�Þ
� 	

PRðL�Þ ¼ L
�

(46)

with the control and degradation parameters defined as

b :¼ PDðGeÞ; and g :¼ gMgEgL

DkMkEkL

: (47)

On the other hand, we have from Eq. 42 that the steady-state L* is locally

stable if and only if

b

g
3

d

dL
0:39� fM

2kL

MðLÞ
� 	

PRðLÞjL¼L
� , 1: (48)

To finish, notice that Eqs. 46–48 are completely equivalent to Eqs. 44 and

45.

Why hysteresis?

In this section we argue that hysteresis (multistability) is the only dynamic

behavior compatible with positive feedback, robust stability, and high

amplification factors.

Positive feedback is obtained by demanding that PðxÞ. 0 is strictly in-

creasing with respect to x, and robust stability is introduced through a new

safety parameter 0 , p , 1 in Eq. 45,

b

g
3

dPðxÞ
dx
jx¼x

�# p , 1: (49)

The parameters in Eq. 43 vary largely due to changes in the experimental

variables like temperature, pH, salinity, etc. Hence, robust stability is

obtained by setting the safety bound 0 , p , 1 in Eq. 49; a simple

estimation yields p # 3/4. If the derivative dPðxÞ=dxjx¼x� is very close to

g/b, any fluctuation could make dPðxÞ=dxjx¼x�.g=b, and Eq. 43 will

become unstable.

Assume that Eq. 43 is monostable, and thus that Eq. 44 has one single

solution (steady state) x*(b) for every external control b . 0. Assume also

that this steady state is locally stable and satisfies the robust stability

inequality (Eq. 49). Finally, suppose that the external control variable b . 0

lies in the closed interval a # b # b. Notice that x*(b) . x*(a), sincePðxÞ is

strictly increasing with respect to x. We shall investigate now what the

relation between b/a and x*(b)/x*(a) is.

Rewrite Eq. 44 under the assumption that the steady-state x*(b) is a function

b . 0

b

g
3 Pðx�ðbÞÞ ¼ x

�ðbÞ:

Differentiate this equation with respect to b to give

Pðx�ðbÞÞ
g

1
b

g
3

dPðxÞ
dx
jx¼x

�ðbÞ 3
dx
�ðbÞ
db

¼ dx
�ðbÞ
db

:

Rearranging terms and using the bound in Eq. 49 yields

x
�ðbÞ
b
¼ Pðx

�ðbÞÞ
g

$ ð1� pÞdx
�ðbÞ
db

;

then

dx
�ðbÞ

x
�ðbÞ #

1

1� p
3

db

b
:

Finally, integrating in the interval a # b # b, yields

1 #
x
�ðbÞ

x
�ðaÞ#

b

a

� � 1
1�p

: (50)

It follows from the previous results that the hypotheses of monostability,

positive feedback, and robust stability, with a safety parameter of p # 3/4,

yield an amplification exponent in Eq. 50 of at most 1/(1 – p) # 4. This

amplification exponent is quite small if we expect large amplification, so we

have to make sacrifices. Presumably, robust stability is not a condition to be

sacrificed.

A solution for obtaining large amplification exponents in Eq. 50 is to

have a sigmoid function PðxÞ. This allows the derivative dPðxÞ=dxjx¼x� to

be almost zero for two steady states, x*, located outside some interval [x1,

x2], with x2 . x1 . 0. Conversely dPðxÞ=dxjx¼x� can be �1 for a third

steady state x* 2 [x1, x2]. The large value of the derivative inside the interval

[x1, x2] permits very large amplification exponents. On the other hand, even

when the steady state x* 2 [x1, x2] is unstable, the system is still stable

because the large steady state, x* . x2, and the small one, x* , x1, are both

stable.

In conclusion, only if the function PðxÞ is sigmoid, and the system

equation (Eq. 43) shows bistability, can we simultaneously have very large

amplifications and robust stability.

We thank P. Swain for invaluable comments and suggestions.

This research was supported by the Natural Sciences and Engineering

Research Council (grant No. OGP-0036920, Canada), Mathematics of

Information Technology and Complex Systems (Canada), Consejo Nacional

de Ciencia y Tecnologı́a (CONACyT, Mexico), Comisión de Operación y
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