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Bifurcation and Bistability in a Model of Hematopoietic Regulation∗

Caroline Colijn† and Michael C. Mackey‡

Abstract. Stem cells and their relationship with mature tissues are of increasing interest in the biomedical
sciences, but the dynamics of stem cell/tissue interactions are not well understood. We give a
generic stem cell/tissue model and examine the dynamics of a specific case of this, namely, a four-
compartment model of blood cell production and regulation. We apply the findings to cyclical
neutropenia and periodic chronic myelogenous leukemia, two diseases of the blood production sys-
tem. We track the position of the Hopf bifurcation believed to give rise to blood cell oscillations in
these diseases. Results account for the variable success of granulocyte-colony stimulating factor, a
common treatment for cyclical neutropenia, in reducing oscillations. The model displays bistability
of periodic solutions, presenting the opportunity to stabilize the system through a temporary per-
turbation that induces switching between locally stable solutions. It is found that oscillations can
be suppressed by properly timed pulses of increased amplification in the platelet line. The medi-
cal interpretation of this result is that temporary administration of thrombopoietin may suppress
the oscillations. Though it is neutrophil oscillations that characterize both diseases clinically, and
though it is probably a destabilization in the neutrophil line that initiates the oscillations, pulses in
the neutrophil amplification do not effectively suppress oscillations.
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1. Introduction. Stem cells are of great interest in the biomedical sciences due to their
ability to develop into all of the cell types in the body. It has been suggested that therapies
using pluripotent stem cells could present cures for currently incurable degenerative diseases
such as Alzheimer’s and diabetes, among others. Recently, new sources for stem cells in
amniotic fluid [7] and fibroblast culture [24] have emerged; these findings could alleviate some
of the political debate about the ethics of stem cell research. The spatial and temporal
dynamics of stem cell proliferation and differentiation are not well understood, which presents
the opportunity for mathematicians to contribute to an exciting and rapidly growing field
with many open problems.

Stem cells, by definition, are pluripotential, and many stem cells (adult stem cells) are
self-renewing. In other words, they can differentiate and then mature into diverse tissue
types, and their population is able to sustain itself through proliferation. Consider a generic
situation as follows: a small population of stem cells is capable of differentiating and then,
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through a series of cell divisions, giving rise to N distinct tissue types. The rate at which
stem cells differentiate into a given cell type is a function of the existing populations of cells.
Furthermore, it takes some time, typically a number of days, for the complete maturation
process.

A generic model along these lines is

q̇ = −kqh(q) + μqτh(tτ ) − q

N∑
i=1

hi(X1, . . . , Xn),

∂xi
∂t

+
∂xi
∂a

= fi(x1, . . . , xn),

xi(0, t) = aiqτihi(X1τi
, . . . , Xnτi

),

xi(a, 0) = x0
i (a),

(1)

where

Xi(t) =

∫ ∞

0
xi(a, t)da.

Here, q represents quiescent stem cells, namely, those that are not undergoing mitosis (pro-
liferation). They can enter a proliferative phase, at rate kh(q); they then return a time τ
later having been multiplied by some factor μ > k. We use the notation qτ ≡ q(t − τ) for
delays. They may also differentiate into tissue types i = 1, . . . , N . In (1) the regulation of
stem cell differentiation into each tissue type is a function of the total tissue numbers Xi.
The quiescent stem cells q therefore have a loss term at rate hi(X1, . . . , XN ) for each tissue.
The tissue populations themselves are given by xi(a, t), where a represents the time since
maturation and t is time.

A salient feature of stem cell/tissue interactions is given in the first boundary condition
of (1): the factors ai represent “amplification” resulting from the many stages of cell division
between the stem cell compartment and the fully mature tissues. The number of mature cells,
Xi, is typically several orders of magnitude larger than the number of stem cells; i.e., the ai
are large. The tissue numbers are coupled to each other not only through their interactions
(given by fi) but by their delayed common origin in a small pool of stem cells.

The dynamics of models such as (1) are in general difficult to determine. Furthermore,
the tissue population dynamics may depend not only on time and age, as given here, but on
spatial properties as well. However, to the extent possible, it is desirable to understand to
what extent the stem cell dynamics are independent of the mature tissues, the strength of
effective coupling between tissues, the resilience of the system to increased loss of stem or
tissue cells, and of course the steady state(s), periodic solutions, and bifurcation structure of
the system.

Perhaps the simplest version of a model that includes stem cells as well as several fully
differentiated tissues is the hematopoietic (blood-producing) system. Here, the tissue types
are the circulating blood cells and the stem cells are the hematopoietic stem cells in the bone
marrow. Since blood circulates through the body on a time scale of minutes, on time scales
relevant to stem cell differentiation (which takes days) there are no spatial effects to speak of.
Furthermore, the feedback loops by which blood cell numbers are regulated are comparatively
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well known and simple, and we can model differentiation as hi(X1, . . . , Xn) = hi(Xi) so that
the rate of entry into each cell lineage is a function of mature numbers in that lineage only.

Though in this context it is relatively simple, the hematological system demonstrates in-
teresting observed dynamics. In several hematopoietic diseases, blood cell numbers oscillate
significantly, with the same period of oscillation occurring in the neutrophils (white blood
cells), platelets, and sometimes reticulocytes (red blood cell precursors). In cyclical neu-
tropenia (CN), neutrophil numbers reach dangerously low levels, oscillating with a period of
19–21 days in humans and 11–16 days in dogs. Longer periods of up to 50 days have been
observed [15]. Platelet levels oscillate around their mean value with the same period. In
periodic chronic myelogenous leukemia (PCML), leukocyte levels oscillate far above normal
values with very long periods, ranging from 40–80 days [11].

Previous modeling efforts and traditional biological research have made progress in under-
standing the dynamics of these diseases, but the precise nature and origins of the oscillations
remain disputed. This is in part because the dynamics of the hematopoietic stem cells have not
been well characterized. These are located inside the bone marrow, and so are comparatively
inaccessible. So, unlike the circulating blood cells, good time series data for the hematopoietic
stem cells (HSCs) are unavailable.

Bernard, Bélair, and Mackey [1] presented a mathematical model that coupled the HSCs
and circulating neutrophil population dynamics. Oscillations arose from a Hopf bifurcation
in the HSC compartment, and were consistent with some, but not all, observed features of
neutrophil oscillations in CN. Colijn and Mackey [5] presented a model of blood cell production
that included the HSCs, neutrophils, platelets, and erythrocytes, and found parameters that
were most important in fitting model simulations to data.

In section 2 we analyze a version of (1) analogous to that given in [5]. We perform
bifurcation analysis (section 3) with respect to the parameters that are most critical in CN, and
compare the hematopoietic stem cell compartment alone with the full model. In section 3.3, for
a point in parameter space characteristic of treated CN, we find three locally stable solutions:
two periodic branches and the steady state. This allows the exploration in section 4 of several
methods to perturb the system from an oscillating branch to the steady-state branch.

2. The model. A nondimensional model of the hematopoietic production system is given
by

dq

dt
= −qb1hq(q) + b1μ1q1hq(q1) − q {b2hn(n) + b3hp(p) + b4hr(r)} ,

dn

dt
= −γnn + anb2qτnmhn(nτnm),

dp

dt
= −γpp + apb3

{
qτpmhp(pτpm) − μ3qτpsumhp(pτpsum)

}
,

dr

dt
= −γrr + arb4 {qτrmhr(rτrm) − μ4qτrsumhr(rτrsum)} ,

(2)

where q, n, r, and p are nondimensional stem cells, neutrophils, erythrocytes, and platelets,
respectively. Subscripts indicate delays: q1 = q(t− 1) and so on.

The functions hq, hn, hr, and hp are Hill functions given by
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hq =
1

1 + q4
, hn =

θ1

θ1 + n
, hr =

1

1 + r6.96
, hp =

1

1 + p1.29
,

where the values of the exponents were determined by previous modeling efforts in the respec-
tive cell lines [22, 18, 1]. This model is a nondimensional version of that given in [6].

As in (1), quiescent pluripotential HSCs q can leave the quiescent compartment and enter
the proliferating compartment (at a rate b1hq(q)). After a proliferation time τs, which in these
units is 1, they re-enter the quiescent compartment having been multiplied by 2 and lost at a
rate γs during the time for which they were proliferating (μ1 = 2e−τsγs). Alternatively, they
can differentiate into each of the three peripheral cell lines, at rates hn(n), hp(p), and hr(r).
All of these rates are negative feedback functions. In each circulating compartment there is a
random loss rate (γn, γr, γp). The platelets and erythrocytes have an additional loss due to
senescence, resulting after integration over the maturation structure of these compartments,
in losses with delays τpsum and τrsum.

This model is a simplified version of (1) in several ways: the regulatory functions hi
are functions of only one tissue type, the coupling terms fi between the tissue types are
simply random loss terms with no intertissue interaction, and we have not explicitly included
maturation structure. The resulting system, (2), is a set of four coupled delay-differential
equations with six delays. In the appendix, a list of the parameter values and their dimensional
counterparts is given in Table 1, along with a list and description of the delays in the system.

3. Bifurcation analysis. The dynamics of the stem cell compartment have been found
to be critical in modeling CN and PCML [17, 14, 1, 6]. The stem cell parameters are not
well constrained by current observation, and indeed, even the structure of the first equations
of (1) and (2) are simplifications of a much more complex (and not fully understood) set
of dynamics. However, given the parameters that must change in order for the system to
mimic observed disease data [6], we have the opportunity to use bifurcation analysis to bet-
ter understand the relevant dynamics of the stem cells. The parameters of interest are the
stem cell death rate, which is inversely related to μ1, the rate of re-entry to the prolifera-
tive compartment b1, and the amount of differentiation out of the hematopoietic stem cell
compartment.

The neutrophil compartment (second equation of (2)) is also important in CN and PCML.
Changes in the amplification an in the neutrophil line are necessary to mimic CN, along
with changes in the stem cells. We wish to characterize the effects of changing an in the
comprehensive model for two reasons: we believe that reduced an is the central cause of
CN, and G-CSF, the most common treatment for CN, raises an, often to above its normal
steady-state value.

3.1. The stem cell compartment. One mechanism that has been suggested for the onset
of oscillations in neutropenia [15, 1, 6] is that there is an increase in apoptosis in the neutrophil
line which destabilizes the stem cell compartment. Apoptosis is preprogrammed cell death;
in this hypothesis, increased apoptosis affects cells during the maturation phase and fewer
cells reach maturity. The negative feedback hn(n) responds, creating a greater demand for
stem cells to differentiate into the neutrophil lineage. The stem cell compartment begins
to oscillate and the oscillations are subsequently observed in the neutrophils, platelets, and
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reticulocytes. An alternative mechanism suggested by [20] is that there is a failure in the
peripheral neutrophil regulation, i.e., in the n compartment.

To investigate this further, we study the effects of parameter changes on the stem cell
compartment when it is decoupled from the peripheral cell lines. This decoupled model for
the stem cells alone is given by

(3)
dq

dt
= − b1

1 + q4
q + μ1

b1
1 + q4

1

q1 − δq,

where δ is a constant summarizing the total differentiation out of the stem cell compartment
and into the peripheral lines. If apoptosis were to increase in any of the circulating cell lines,
the negative feedback would respond by increasing the differentiation out of the stem cell
compartment, corresponding to an increase in δ.

Equation (3) has a unique nontrivial positive steady-state solution q∗ given by

q∗(1 + q∗4) =
b1(μ1 − 1)

δ
.

In the range of interest here, q∗ ∼ 2 or more, so that q∗4 >> q∗ and we can write q∗ ∼ (λ1
δ )1/5,

where λ1 = b1(1−μ1). Equation (3) may be linearized about its steady state, with z = q−q∗,
to give

ż = αz − Λz1

with

α = b1h
′(q∗) − δ ∼ δ

5 − μ1

μ1 − 1

and

Λ = b1h
′(q∗) ∼ 4δ

μ1 − 1
.

Both α and Λ are positive. The characteristic equation for the eigenvalues σ is

σ = α− Λe−σ.

Letting σ = iω, the boundary at which instability occurs is defined by

ω = α tanω, Λ1 =
ω

sinω
,

and instability arises when Λ > Λ1. As δ increases, α increases. For small α, the solution
to ω = α tanω lies in the interval [0, π/2), where Λ1 = ω

sinω is positive. For α > 1, however,
ω ∈ [π, 3π/2) and Λ1 is negative. This ensures that Λ > Λ1. We therefore expect a Hopf
bifurcation when α = 1, or δ = 1/6 (when μ1 = 1.6, the normal value).

This confirms that an increase in apoptosis in one of the circulating cell lines can initiate
oscillations in the stem cells. We compute the stability of the periodic solution using DDE-
BIFTOOL [9, 10], and it is stable, though some of the Floquet multipliers are very close to 1
in magnitude, so that we may expect long transient approaches to the orbit. Note that α, Λ,
and therefore the position of the Hopf bifurcation do not depend on b1, the rate of re-entry
to the proliferative compartment (see Figure 2). However, below a critical value of b1 the
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Figure 1. Steady-state and periodic oscillations in the decoupled stem cell compartment. Where the steady-
state branch is shown as a thick line (left side), it is stable, and where it is thin (right side), it is unstable. The
maximum and minimum values of the oscillations in the quiescent (q) cells are shown for the resulting periodic
branch (a), and the period is shown in (b).

stem cells cannot maintain a positive steady state and the trivial solution is the only solution
to (3).

Figure 1 shows the steady-state branch of solutions (thick line: stable; thin line: unstable)
and the loss of stability at the bifurcation δ ∼ 1/6. Compared to the steady-state value of
δ = 1/8, the change required to initiate oscillations is not large, and certainly not unrealistic
biologically. To cause such a change in the differentiation function, the value of n need only
decrease by a factor of 1/3 from the healthy value. The period along the branch is shown in
Figure 1 in the right-hand plot and corresponds to the observed period of 13–50 days (4–16
units). Periods longer than those normally observed (> 10 units) occur only in a small part
of the parameter space, in correspondence with observation.

We now turn to the parameters μ1 and b1, tracking the position of the Hopf bifurcation as
b1, δ, and μ1 change. Figure 2 shows the results. In Figure 2(a), the “healthy” steady-state
solution is in the upper stable region shown on the plot. As μ1 decreases (the death rate in the
stem cell compartment rises), oscillations begin, and then cease for values of approximately
μ1 < 1. The steady-state solution in this lower region is the trivial solution, q ≡ 0, because
if the death rate γS rises too much, the stem cells can no longer maintain their population.
The colors shown in the oscillating regions of the plots in Figure 2 represent the period of
oscillations.

Figure 2(b) shows the stability curve and periods of oscillation resulting from the Hopf
bifurcation as δ increases. As the death rate in the stem cell compartment falls, μ1 rises and
the stem cells are better able to maintain a stable steady-state equilibrium in response to a
need for more circulating cells (an increase in δ). In Figure 2(c), there is a threshold value of
δ below which the system is always stable no matter what the value of b1, but at higher values
of δ, an increase in b1 can destabilize the system and result in the initiation of oscillations.
However, since the healthy value of b1 (22.4) is much above this range, we conclude that
oscillations are caused by an increase in δ rather than an increase in b1.
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Figure 2. Hopf bifurcation, position dependent on b1, μ1, and δ in the decoupled stem cell model of (3).
The colored regions are the regions of Hopf instability, and their boundaries give the location of the bifurcation.
The color indicates the period of oscillation.

Figure 3. Hopf bifurcation dependent on b1, μ1, and b2 in the full model of (2). Thick solid lines are the
location of the Hopf instability, colored regions are oscillatory, and the color indicates the period of oscillation.

3.2. The full model: Hopf bifurcations. We now wish to find the corresponding Hopf
bifurcation in the full model, if it exists, and compare its location to that in the stem cell
compartment alone, under corresponding parameter changes. Due to the complexity of the
model, this is done numerically. Also, δ is not constant in the full model; here, we can
explicitly raise b2 (increase output from the hematopoietic stem cells q) and/or decrease an.
The bifurcation occurs as an decreases below an = 21.5, and is again supercritical. Figure 3
shows its position under the analogous parameter changes to Figure 2.

The qualitative behavior of the full model is similar to that of the stem cell compartment
alone, and there are biological interpretations for the differences between the two. For example,
in Figure 3(a) oscillations begin as μ1 is decreased, and then give way to the trivial solution
below μ1 = 1. In the full model there is a region in the upper-left portion of the plot where
an increase in b1 can stabilize oscillations: an increased rate of re-entry to the proliferative
phase can compensate for increased stem cell apoptosis, unlike in Figure 2(a). In Figure 3(b),
the concavity of the Hopf curve is reversed, but otherwise the Hopf position as μ1 and b2 are
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Figure 4. Hopf position as an changes. Colored regions are oscillatory, and the color indicates the period
of oscillation.

changed is qualitatively the same. Figure 3(c) shows that unlike in the stem cell model alone,
an increase in b1 can again compensate for an increase in b2 and stabilize oscillations. The full
model is better able to recover from destabilizing changes than the stem cell model without
the coupling to the peripheral cell lines.

Decreasing b2 and increasing μ1, based on these results, are probably the two best methods
of stabilizing existing oscillations. However, the most common treatment for CN is the ad-
ministration of granulocyte-colony stimulating factor (G-CSF) [25, 13, 2, 19], which is known
to increase neutrophil levels by reducing apoptosis in the neutrophil precursors [13], and is
therefore modeled by an increase in the parameter an. We track the Hopf bifurcation with
respect to an; the results are shown in Figure 4. In each plot of the figure it is clear that
increasing an has the desired effect of stabilizing the oscillations, though significant increases
may be necessary if μ1 or b1 is small. If they are too small, oscillations may not be stabilized
at all.

In clinical data, G-CSF sometimes abolishes oscillations but may actually increase their
amplitude [16]. The bifurcation analysis accounts for this. We would hypothesize that when
G-CSF does not abolish oscillations, it is because there is not enough capacity for self-
maintenance in the stem cells: their apoptosis rate is too high, and/or their proliferation
rate is too low. Furthermore, the results shown in Figure 4(b) show that increasing b1 may
stabilize oscillations if a2 is high enough; clinically, stem cell factor would raise b1 and is, in
fact, sometimes used to treat CN.

In this section, we have found that oscillations begin if the death rate in the stem cell
compartment rises (μ1 decreases), if there is increased differentiation out of the stem cells (b2
increases), if there is a reduction in the proliferation rate in the stem cell compartment (b1
decreases), or if there is increased apoptosis in the neutrophil line (an decreases). In some
regions, an increase in b1 may recover stability, but this recovery is not possible in the reduced
model containing only the stem cells. The otherwise similar natures of the plots shown in this
and the previous section lend credibility to the claim that destabilizations in the stem cell
compartment are at the heart of oscillatory behavior in the hematological system.
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Figure 5. Two locally stable periodic branches when an = 58 and all other parameters are set to their
default values.

3.3. Multistability. Not only does G-CSF not always suppress oscillations, it may even
initiate them [16]. Furthermore, in a model containing only the stem cells and the neutrophils,
Bernard, Bélair, and Mackey [1] found that there was a small range of an where there is
bistability of two periodic solutions. Motivated by these results, we explore the existence of
multistability when an is increased from its normal value (35.6) to 58. This is a simple way to
mimic a patient undergoing G-CSF treatment. All the other parameters are left at the values
given in Table 1; this point in parameter space will be referred to as point P .

At point P , the steady-state solution is locally stable. However, we also find two locally
stable periodic orbits at P (see Figure 5). The low-amplitude orbit (Figure 5(a)) has a period
of 28 units, and the orbit shown in Figure 5(b) has a period of 14 units with a higher-frequency
oscillation at a period of 7 units, corresponding to the secondary bump in the stem cell profile.
A wide range of simulations using different initial conditions failed to uncover any other locally
stable periodic solutions.

The low-amplitude orbit is more reminiscent of treated neutropenia than the high-
amplitude orbit, where neutrophil levels at maximum are more than 30 times their steady-
state value (1 in these units). Also, the platelet levels in the high-amplitude branch are much
higher than are observed clinically, and for more of the oscillation, than in the low-amplitude
orbit.

4. Branch switching. The fact that multistability exists for this biologically reasonable
choice of parameter values naturally leads to the question of how the oscillations might be
stabilized; stabilization would correspond clinically to an end of disease symptoms. In this
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Figure 6. Basins of attraction for varying initial q and n values. Blue corresponds to the steady-state
branch, red to the low-amplitude branch, and green to the high-amplitude branch.

section we investigate the possibility of changing the initial function to guide which behavior
the system approaches, and then we examine the effects of temporary parameter changes on
the system when it is oscillating on the low-amplitude branch in Figure 5. In the computations,
we use a Runge–Kutta integration scheme with step sizes ranging from 0.005 to 0.05 (most
commonly 0.01) dimensionless time units, in Bard Ermentrout’s software xppaut.1

4.1. Effect of initial functions. Because the system in (2) has delays, it is necessary
to specify initial functions for each of the four variables, during the period [−τmax, 0]. We
first set all variables constant on [−τmax, 0] and examine the effect of the choice of these
constants. Figure 6 shows the results when only the initial values of q and n on [−τmax, 0]
(the initial numbers of stem cells and neutrophils, respectively) are changed; each branch is
assigned a color: blue for the stable steady-state solution, red for the low-amplitude orbit,
and green for the high-amplitude orbit. The same color scheme applies to figures showing
basins of attraction in this and subsequent sections. The lack of other colors (and hence of
other periods) is evidence that these three solutions are the only locally stable solutions at
this point in parameter space.

The most prominent feature of Figure 6 is that the initial value of n has almost no effect
on the eventual behavior of the system, even when n is increased up to three times the normal
value of 1. However, the initial population of stem cells has a significant effect between 0 and 4,
though the value at the steady state is 3.2. This is further indication that oscillations in CN
and PCML, and in the hematological system in general, are most strongly connected to the
dynamics of the stem cell compartment.

This result leads to the question of what the effects of nonconstant initial functions for
q, particularly periodic initial functions, would be. We next allow the initial function for q
to change, leaving the initial functions for n, r, and p constant at their healthy, steady-state
values. On [−τmax, 0], q is given by

(4) q(t) = Aq sin(2π
Tq
t) + Mq,

1http://www.math.pitt.edu/∼bard/xpp/xpp.html

http://www.math.pitt.edu/~bard/xpp/xpp.html
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Figure 7. Basins of attraction for various periodic initial functions. Only q is varying; the other variables
are constant on [−τmax, 0]. Blue is steady-state, red is the low-amplitude branch, and green is the high-amplitude
branch.

so that the three parameters defining this function are the amplitude of the oscillations,
Aq, the period, Tq, and the mean, Mq. Figure 7 shows the resulting basins of attraction.
In Figure 7(a), note that for most of the plotted range of periods and means the solution
stabilizes to the low-amplitude branch, where in Figure 7(b) most of the solutions stabilize
to the steady-state branch. Figure 7(c) shows the basins of attraction when the mean Mq

and the fraction Aq/Mq are varied; note that a value of Aq/Mq greater than 1 is not possible
because it would result in negative q values in the initial function for q on [−τmax, 0].

Figures 6 and 7 show the manner in which the initial function determines whether the
system ultimately oscillates (mimicking CN) or stabilizes (mimicking a healthy individual).
However, the stem cells, located in the bone marrow, are difficult to identify and manipulate,
and any such manipulation would presumably also change several parameters in the system
(and not only the values of q). It is therefore difficult to translate these results into realistic
medical interventions. In the following section we investigate temporary interventions and
their effect on the stability of the system.

4.2. Branch jumping by short-term parameter changes. We explore the possibility of
branch jumping, i.e., perturbing the system so that it moves from one solution to another,
using temporary pulses in the system parameters an, ar, and ap. These represent amplifi-
cation in the neutrophil, erythrocyte, and platelet lines, respectively, and they are chosen
because it is known that the administration of regulatory cytokines increases these amplifi-
cation factors via the inhibition of apoptosis: G-CSF increases the neutrophil amplification,
while erythropoietin and thrombopoietin have similar effects on the erythrocyte and platelet
lines, respectively [3, 21, 23]. Thrombopoietin and erythropoietin are not used to treat neu-
tropenia, because they are primilary associated with platelet and erythrocyte dynamics and
neutropenia is characterized by decreased neutrophil levels. Furthermore, the administration
of thrombopoietin causes an immune response [8], rendering it of limited value. However,
there may be other clinical interventions which would raise the platelet amplification ap in
the manner we investigate here.
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Figure 8. Stabilization of the low-amplitude branch with a pulse in ap of amplitude 40 and duration 4.75,
mimicking thrombopoietin administration, delivered at t = 50.

To simulate the effects of a brief administration of the relevant cytokines, we have com-
puted the basins of attraction for parameter functions of the form

(5) ai = abase
i + aamp

i H(t− t1)H(t2 − t),

where H(t) is the Heaviside function and i ∈ {n, r, p}. This function represents a change in
the parameter ai from abase

i , a base value, to abase
i + aamp

i during the time interval [t1, t2]. For
each basin computation, we choose an initial function well within the basin of attraction of the
periodic low-amplitude solution (Figure 5(a)). We define the phase to be 0 at time t1 = 200
to consistently examine the effect of the phase time at which the pulse is delivered. Because
each computation is performed from the same initial condition at the same parameter set,
this is unambiguous. Figure 8 shows an example of a successful stabilization using a pulse
of the parameter ap, according to (5). Note that the erythrocytes are considerably slower in
reaching equilibrium than the other variables, due to the long delay τRS in the erythrocyte
compartment.

Because G-CSF is the most common treatment for CN, one would suspect that pulses of
increased amplification an would have a significant effect on the qualitative behavior of the
solutions. However, oscillations are rarely suppressed using pulses in an. Figure 9 shows the
results of exploring various durations and amplitudes of the pulses. Note that the regions in
which the stabilization attempt was successful (blue areas in the figure) are small, and that
the amplitude of the pulse needs to be high. The normal value of an is 35.6, and so the values
required for stabilization represent an increase by a factor of 6 or more. This would translate
into a high dose of G-CSF, which would have to be precisely timed to stabilize the system.

Figure 10 shows similar basin of attraction plots for pulses in ar while varying the am-
plitude, duration, and phase of the pulse. Again, while stabilization is possible using a pulse
in ar, regions where the solution stabilizes are small and the amplitude of the pulse is large
compared to the healthy value of ar (∼ 1). However, the regions of stabilization are larger
and the pulses do not need to be as precisely timed as those in an. This gives the somewhat
counterintuitive result that stabilization of oscillations in CN and PCML may be more easily
accomplished with erythropoietin administration than with G-CSF, though the dosage would
have to be high to obtain the necessary large increases in ar.

The most promising stabilization results we have obtained have been with pulses using
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Figure 9. Basins of attraction for an an pulse, simulating G-CSF administration.

Figure 10. Basins of attraction for pulses in ar, simulating erythropoietin administration.

the parameter ap; Figure 11 shows the results. The blue regions, where the oscillations have
been stabilized by the pulse, are comparatively large. This indicates that the stabilization is
a robust phenomenon at this point (P ) in parameter space.

The normal value of ap is approximately 58 and the minimum additional pulse required
is only about 20, so that a comparatively small and achievable pulse size is sufficient. Fig-
ure 11(a) shows clearly that some points in the oscillation are more advantageous times at
which to deliver the pulse, namely, at phases 0, π/2, π, and 3π/2. Figure 11(b) shows that
changing the pulse duration shifts these bands. In Figure 11(c), it is interesting to note that
increasing the duration of the pulse does not necessarily increase the likelihood that stabi-
lization will occur. While it does appear that increasing the amplitude of the pulse makes
stabilization more likely, it is not usually the best way to stabilize the system. Changing the
duration or timing of the pulse is more effective.

With reference to (2), we can partially account for the somewhat surprising fact that
perturbations to the platelets are best able to suppress oscillations. Any increase in an, ap,
or ar will cause a decrease in δ, which we know from section 3.1 can stabilize the stem cell
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Figure 11. Basins of attraction for pulses in ap, simulating thrombopoietin administration.

compartment (at least, when considered on its own). Suppose that when an amplification ai
increases, the corresponding compartment n, r, or p responds by trying to “track” the change
and reach a new pseudosteady state. Then we can write

∂δ

∂an
=

∂δ

∂n

∂n

∂an
≈ −b22θ

2
1q

(θ + n)2(γnθ + 1)
= O(10−2),

∂δ

∂ap
=

∂δ

∂p

∂p

∂ap
≈ −b3spp

spq(1 − μ3)

(1 + psp)2(1+sp)psp
= O(10−3),

∂δ

∂ap
=

∂δ

∂p

∂p

∂ap
≈ −b3spp

spq(1 − μ3)

(1 + psp)2(1+sp)psp
= O(10−5).

(6)

A change in ap is far more effective than a change in ar at changing δ. In addition,
the time scales for the n and p equations (1/γn and 1/γp) are much faster than for the r
equation, as 1/γr ∼ O(103). The value of r thus does not respond quickly, and even if it
did, (6) indicates that the response would not be as strong as the platelet response. While
the neutrophil response time is adequate, the neutrophils are not in a pseudosteady state
on the low-amplitude branch; rather, when q is high they undergo high-frequency transient
oscillations (see Figure 5(a) and the discussion in [4]). They therefore do not have a consistent
effect on δ when an is raised.

In addition, it has been found that q undergoes relaxation oscillations and therefore has
slow and fast phases [12, 4]. This, together with the details of the response of p to an increase
in ap, probably accounts for the sensitivity of the results on the phase of oscillation; when q
is in the lower half of the slow portion of the oscillation, decreasing δ may have more effect
than when q is high.

5. Conclusions. Despite the potential complexity of stem cell/tissue models, the model
analyzed here for hematopoietic production and regulation shows some interpretable dynam-
ics. The location and behavior of the Hopf bifurcation believed to give rise to CN in the full
model occurs in the stem cell model when it is decoupled from the mature tissues, suggesting
a possible avenue for analysis of more complicated versions of the model given in (1). Inter-
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estingly, the inclusion of the tissue types is a stabilizing influence: the full model of (2) is
better able to recover from destabilizing changes than the decoupled model of (3).

The results presented here support the hypothesis that oscillations in dynamical hema-
tological diseases are driven by oscillations in the stem cell compartment. We find that
oscillations consistent with those observed for CN are initiated when an increase in demand
for circulating blood cells causes the stem cell compartment to undergo a Hopf bifurcation.
Our analysis accounts for the variable success of G-CSF in suppressing oscillations in CN.
When G-CSF fails to suppress oscillations, this may be due to a lack of regenerative capacity
in the hematopoeitic stem cells—a death rate that is too high, or too little re-entry into the
proliferative compartment, or a combination. Our results also account for why stem cell factor
may be a promising treatment for CN.

For G-CSF-treated CN, we find two locally stable periodic orbits and a locally stable
steady state. The choice of solution depends most strongly on the initial values of the stem
cells. We find that, using short-term pulses of increased amplification in any of the peripheral
lines, it is possible to suppress oscillations with temporary measures that have clear medical
interpretations. This is most easily accomplished with pulses of increased ap, the amplification
in the platelet line, mimicking temporary administration of thrombopoietin. While throm-
bopoietin may not be promising due to the initiation of an immune response that targets it,
other interventions that temporarily raise platelet numbers could be considered. The timing
of the pulse is important, but because the regions in parameter space where the stabilization
is successful are quite large, finding an appropriate time is not difficult. These results suggest
that combining G-CSF with short-term platelet-enhancing drugs may be a promising approach
to abolishing oscillations. These somewhat surprising effects of tissue level perturbations on
the full model may be understood in terms of their effects on the decoupled stem cell model:
perturbations that would stabilize the decoupled stem cell model are more able to switch the
full model from oscillatory to stable dynamics than those that would not.



BIFURCATION ANALYSIS OF A MODEL OF HEMATOPOIESIS 393

Appendix.

Table 1
Definitions and typical values of the dimensionless parameters of the model. Dimensional parameters

correspond to those given in [6].

Symbol Description Dimensional equivalent Typical value

b1 stem cell proliferation τsk0 22.4
b2 neutrophil differentiation factor τsf0 1.1
b3 platelet differentiation factor τS κ̄P 3.3
b4 erythrocyte differentiation factor τS κ̄R 3.3
θ1 Hill function parameter θ/N∗ 0.055
sp Hill exponent m 1.29
sr Hill exponent r 6.96
μ1 proliferation with loss factor 2e−γSτS 1.6
μ3 loss factor e−γP τPS 0.24
μ4 loss factor e−γRτRS 0.9
γn neutrophil death rate τSγN 6.7
γr erythrocyte death rate τSγR 0.003
γp platelet death rate τSγP 0.42
an neutrophil amplification ANθ2/N

∗
1 35.63

ap platelet amplification AP θ2K
1/sp
P 58

ar erythrocyte amplification ARθ2K
1/sr
R 1.1

τs stem cell proliferation time τs/τS 1
τnm neutrophil maturation time τNM/τS 1.25
τpm platelet maturation time τPM/τS 2.5
τps platelet aging time to senescence τPS/τS 5.9

τpsum τpm + τps 8.4
τrm erythrocyte maturation time τRM/τS 2.1
τrs erythrocyte aging time to senescence τRS/τS 42.9

τrsum τrm + τrs 45

q∗ stem cell steady-state value Q∗/θ2 3.6
n∗ neutrophil steady-state value N∗/N∗ 1

p∗ platelet steady-state value P ∗K
1/sp
p 21

r∗ erythrocyte steady-state value R∗K
1/sr
r 2.2
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