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STOCHASTIC DIFFERENTIAL DELAY EQUATION, MOMENT
STABILITY, AND APPLICATION TO HEMATOPOIETIC STEM

CELL REGULATION SYSTEM∗

JINZHI LEI† AND MICHAEL C. MACKEY‡

Abstract. We study the moment stability of the trivial solution of a linear differential delay
equation in the presence of additive and multiplicative white noise. The results established here are
applied to examining the local stability of the hematopoietic stem cell (HSC) regulation system in
the presence of noise. The stability of the first moment for the solutions of a linear differential delay
equation under stochastic perturbation is identical to that of the unperturbed system. However, the
stability of the second moment is altered by the perturbation. We obtain, using Laplace transform
techniques, necessary and sufficient conditions for the second moment to be bounded. In applying
the results to the HSC system, we find that the system stability is sensitive to perturbations in the
stem cell differentiation and death rates, but insensitive to perturbations in the proliferation rate.
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1. Introduction. Delays in feedback regulation are ubiquitous in biological con-
trol systems, where the retardation usually originates from maturing processes or finite
signaling velocities [4, 15, 16, 17, 21, 30, 34, 36, 37, 39, 45, 46]. Differential delay equa-
tion model systems with retarded arguments have been extensively developed in the
past several decades (see [3, 10, 11, 18, 19, 20] and the references therein). However,
in applied areas, deterministic systems fail to capture the essence of the fluctuations
in the real situation, and one must instead consider models with stochastic processes
that take into account the perturbations present in the real world. In situations where
delays are important, models with stochastic perturbations are framed by stochastic
differential delay equations.

The current study is motivated by an investigation of the stability of the hema-
topoietic regulatory system and its connection with several hematological diseases
[5, 7, 8, 9, 21, 30, 39]. All blood cells originate from the hematopoietic stem cells
(HSC) in the bone marrow. These stem cells differentiate and proliferate, giving rise
to the three major cell lines: the leukocytes (white blood cells), the platelets, and
the erythrocytes (red blood cells). The three peripheral regulatory loops are all of a
negative feedback nature, and are mediated by a variety of cytokines including ery-
thropoietin (EPO), thrombopoietin (TPO), and granulocyte colony-stimulating factor
(G-CSF) [1, 50, 53, 55, 58]. These cytokines are synthesized and released by cells of
the hematopoietic system. They control the hematopoietic system by regulating the
growth, differentiation, and survival of cells.
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A mathematical model of the hematopoietic regulation system that combines the
delay for cell maturation and negative feedback of the differentiated cells has been
studied in [7, 8]. The numbers of circulating cells in a healthy person usually fluctuate
with small amplitude around their normal levels. However, there are several hema-
tological diseases that display a highly dynamic nature characterized by statistically
significant oscillations in one or more of the circulating progeny of the HSC [21]. These
diseases include, but are not limited to, cyclical neutropenia [8, 21, 22, 23], periodic
chronic myelogenous leukemia [7, 12, 52], cyclical thrombocytopenia [49, 54, 59], and
periodic hemolytic anemia [33, 45]. For example, cyclical neutropenia is a rare ge-
netic blood disease in which the patient’s neutrophil level drops to an extremely low
level for six to eight days every three weeks. Neutrophils are a type of white blood
cell important in the defense of the body against infection. Since stem cell oscilla-
tions are thought to drive oscillations in several periodic hematological diseases [21],
understanding the HSC dynamics is important.

The differential delay equations that model the HSC dynamics have been devel-
oped for a G0 cell cycle model in [13, 31, 32, 33, 39, 51]. The delays in these models
reflect the nonzero time that it takes the cells to complete the proliferative phase of
the cell cycle. For example, the HSC takes about 2.8 days to complete one cell cycle.
Previous studies suggested that the HSC population becomes unstable and develops
oscillations when the steady state corresponding to the healthy state is destabilized,
for example by increasing the apoptosis (death) rate or the differentiation rate in the
stem cells. However, in these studies, the stochastic perturbations that occur in the
real world, and which might lead to instability and oscillation, were not taken into
account. In this paper, we will investigate the effects of random perturbation and
answer the following two questions:

1. If the steady state of the system without noise is unstable, is it possible to
stabilize the steady state by noise perturbation?

2. If the steady state of the system without noise is stable, is it possible to
destabilize the steady state by noise perturbation? If the answer is “YES,” such per-
turbation usually originates from the perturbation in the system parameters. There-
fore, there are thresholds for each of the parameters such that the steady state is
stable when the perturbation is smaller than this threshold and unstable otherwise.
The quantitative estimation of these thresholds will also be considered in this paper.

The answers to these two questions offer insight into the stability of the hemato-
poietic system in the face of stochastic perturbations.

The HSC dynamics with stochastic perturbation is modeled by a nonlinear stochas-
tic differential delay equation. To answer the questions posed above, we linearize the
equation around the steady state and study the stability of the resulting equation.

Consider the process described by the differential delay equation

dz

dt
= f(z, zτ ),(1.1)

where zτ = z(t− τ). It may be the case that the function f(z, zτ ) is subject to some
random effect (noise), so that we have

dz

dt
= f(z, zτ ) + σ(t, z, zτ ) · ξt(ω),(1.2)

where ξt(ω) is a stochastic process that represents the noise term. In our study of
the hematopoietic system, this noise is internal to the system because of random
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fluctuations in the system parameters, e.g., fluctuations in the differentiation rate,
death rate, or proliferation rate of stem cells. However, the precise properties of the
noise are not known. To gain insight into the effect of noise on the system, we assume
the noise to be Gaussian distributed white noise with zero mean and a delta function
autocorrelation 〈ξtξs〉 = δ(t − s). We assume further that the function σ does not
depend on t explicitly. Using the definition of Gaussian white noise ξt as the derivative
of the Wiener process W (t), equation (1.2) can be written as

dz = f(z, zτ )dt + σ(z, zτ )dW (t).(1.3)

From a formal point of view, we can solve (1.3) and write the stochastic process
z(t) = z(t;ω) as

z(t) = z(0) +

∫ t

0

f(z(s), zτ (s))ds + “

∫ t

0

σ(z(s), zτ (s))dW (s).”(1.4)

There are two interpretations for the stochastic integral

“

∫ t

0

σ(z(s), zτ (s))dW (s),”

the Itô interpretation and the Stratonovich interpretation. The Itô interpretation is
usually used when the noise is white, but when the noise is colored (i.e., does not
have a delta function autocorrelation), the Stratonovich interpretation is preferable.
This issue has been discussed by many people (see, for example, [26, pp. 232–237],
[28, pp. 346–351], [29, pp. 152–155], and [48, pp. 35–37]), and it is safe to say that
the debate over the issue is far from settled. In this study we adopt the Itô inter-
pretation for two reasons. First, the Itô approach is mathematically preferable [29],
and second it is relatively straightforward to pass from results obtained using the Itô
interpretation to one appropriate for the Stratonovich interpretation.

Indeed, assuming that the stochastic integral is to be interpreted as an Itô integral,
(1.4) can be written as

z(t) = z(0) +

∫ t

0

f(z(s), zτ (s))ds +

∫ t

0

σ(z(s), zτ (s))dW (s).(1.5)

There is a simple relation between the Itô interpretation and the Stratonovich inter-
pretation [14, 48, 57]. Thus, the solution of (1.3) using the Stratonovich interpretation
of the stochastic integral

z(t) = z(0) +

∫ t

0

f(z(s), zτ (s))ds +

∫ t

0

σ(z(s), zτ (s)) ◦ dW (s)

is equivalent to the solution of the modified Itô equation

z(t) = z(0) +

∫ t

0

f(z(s), zτ (s))ds +
1

2

∫ t

0

σ′
z(z(s), zτ (s))σ(z(s), zτ (s))ds

+

∫ t

0

σ(z(s), zτ (s))dW (s).

Thus, the results in this paper obtained from the Itô approach are also applicable to
a Stratonovich interpretation after replacing f(z, zτ ) in (1.3) by

f(z, zτ ) +
1

2
σ′
z(z, zτ )σ(z, zτ ).(1.6)
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We will see below that these two different interpretations can lead to significant
changes in the predicted stability of the system.

Assume that z = z∗ is a steady state of (1.1); i.e., f(z∗, z∗) = 0. What we
are interested to know is the effect of the noise perturbation on the steady state.
In general, we do not have σ(z∗, z∗) = 0. Hence, z(t) ≡ z∗ is not a solution of
the perturbed equation (1.3). We will address the question of under what condition
the stochastic process z(t) satisfying the perturbed equation (1.3) remains close to
the steady state z = z∗, i.e., when the solution z = z∗ is “stable” under stochastic
perturbation.

Linearizing (1.3) around the steady state yields the linear stochastic differential
delay equation

dx = (ax + bxτ )dt + (σ0x + σ1xτ + σ2)dW (t),(1.7)

where x(t) = z(t) − z∗ and a, b, σi are constants given by

a = f ′
z(z∗, z∗), b = f ′

zτ (z∗, z∗),

σ0 = σ′
z(z∗, z∗), σ0 = σ′

zτ (z∗, z∗), σ2 = σ(z∗, z∗).

At this point, we will study the moment stability of (1.7) to answer the following
questions:

1. Under what conditions does the ensemble mean of the solutions of (1.7)
approach 0 when t → ∞?

2. Under what condition is the variance of the solutions bounded (or unbounded)
for all t > 0?

3. When the variance is bounded, then the upper limit of the variance, when
t → ∞, provides the estimation of its upper bound when t is large. Therefore, the
estimation of the variance when t → ∞ is interesting and will be studied in this paper.

Despite the apparently simple form of (1.7), the stability problem is not trivial,
because of the combination of delay and stochastic terms.

Stochastic differential delay equations were introduced by Itô and Nisio in the
1960s [24]. Those authors also discussed the existence and uniqueness of the solu-
tion. However, progress in this area has been slow, and most of the results including
stochastic stability, numerical approximation, etc., have been developed in the last
decade [2, 27, 40, 41, 42, 43, 44, 47]; see [25] for a recent survey of these results.
Despite the efforts of many researchers, this field is still in its infancy. For example,
conditions for the stability of (1.7), a linear stochastic differential delay equation with
constant coefficients, are not known. In the case of a stochastic ordinary differen-
tial equation (b = σ1 = 0) and a delay differential equation (σi = 0), the stability
conditions of the equation have been well established [20, 41]. However, when trying
to extend these results to stochastic differential delay equations, one encounters seri-
ous difficulties because of the combination of delay and stochastic processes, and the
explicit solution of (1.7) is not known.

The Lyapunov function method is useful for studying the stability of differential
equations and has been developed for both differential delay equations and stochastic
differential equations. In the 1990s, Mao extended this method to stochastic functional
differential equations [41, Chapter 5]. Because of the results of Mao, we have some
results for the stability of stochastic differential delay equations (see [41, section 5.6]
for details). However, when applying these results to (1.7), we find that they are
applicable only when a < 0. In our study of the hematopoietic system, the case a > 0



SDDE, STABILITY, AND APPLICATION TO HSC SYSTEM 391

is the most interesting, and we therefore need to develop new results for the moment
stability of (1.7).

In this paper, we will first develop the mathematical theory for the moment stabil-
ity of the linear stochastic differential delay equation (1.7), and then apply the result
to studying the stability of the hematopoietic system under stochastic perturbation.
The paper is organized as follows. In section 2 we briefly present the mathematical
preliminaries for linear differential delay equations needed for the rest of the paper.
Section 3 examines the effect of stochastic perturbation on the behavior of the first and
second moments of (1.7). This section contains the main mathematical results for the
moment stability. The first moment is discussed in section 3.1. Section 3.2 considers
the second moment and is divided into two parts according to the type of stochastic
perturbation, namely, additive white noise and general cases. Section 4 studies the
stability of the hematopoietic regulation system under stochastic perturbations. The
paper concludes with a brief discussion in section 5.

In what follows, we will take τ = 1 by normalizing the time through

(x, t, a, b, σi, τ) → (x, t/τ, a/τ, b/τ, σi/τ, 1).

Thus, we will study the equation

dx = (ax + bx1)dt + (σ0x + σ1x1 + σ2)dW (t).(1.8)

2. Mathematical preliminaries: The system without noise. When the σi

in (1.8) are zero, we have the linear differential delay equation

dx

dt
= ax + bx1.(2.1)

The differential delay equation (2.1) has been studied extensively, and [20] can be
consulted for a detailed exposition.

The characteristic function of (2.1) is

h(λ) = λ− a− be−λ.(2.2)

The fundamental solution of (2.1), denoted by X(t), has a Laplace transform given
by h−1(λ) [20, Chapter 1]. This fundamental solution of (2.1) will be essential in
following study.

Let C([−1, 0],R) be the family of continuous functions φ from [−1, 0] to R with
the norm ‖φ‖ = sup−1≤θ≤0 |φ(θ)|. Using the fundamental solution, the solution of
(2.1) with initial condition x(θ) = φ(θ) ∈ C([−1, 0],R) is given by

xφ(t) = X(t)φ(0) +

∫ 0

−1

X(t− 1 − s)φ(s)ds.(2.3)

From (2.3), the asymptotic behavior of xφ(t) is determined by the fundamental solu-
tion X(t). We have following result.

Theorem 2.1 (see [20, Chapter 1, Theorem 5.2]). If α0 = max{
(λ) : h(λ) = 0},
then, for any α > α0, there is a constant K = K(α) such that the fundamental solution
X satisfies the inequality

|X(t)| ≤ Keαt (t ≥ 0).(2.4)
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From Theorem 2.1, the solutions (2.3) with any φ(θ) ∈ C([−1, 0],R) approach 0
as t → ∞ if and only if α0 < 0. The region in the (a, b)-plane such that α0 < 0 is
given by [20]

S = {(a, b) ∈ R
2 | −a sec ξ < b < a, where ξ = a tan ξ, a < 1, ξ ∈ (0, π)}.(2.5)

Here, the values of α0 and K(α) are significant for understanding the stability of the
system. The estimation of α0 and K(α) are given below.

The number α0 is given by the maximum real solution of the equation

(α0 − a)2 − b2e−2α0 +

[
arccos

α0 − a

be−α0

]2

= 0.(2.6)

When b = 0, for any α > α0 define

K(α) = 1 + ξ(α) +
(|a− α0|eα + |b|) log 2

|b|π ,(2.7)

where

ξ(α) =
1

2π

∣∣∣∣∣
∫ 2|b|e−α

−2|b|e−α

a + be−(α+iz) − α0

(α− α0 + iz)h(α + iz)
dz

∣∣∣∣∣ .

Then (2.4) is satisfied. When b = 0, it is obvious that (2.4) holds with K(α) = 1
whenever α ≥ a.

When |b| < −a, it is not difficult to prove that

|X(t)| ≤ e(a+μ)t (∀t > 0),(2.8)

where |b| < μ < −a is such that μea+μ−|b| = 0. Thus, we can specify K(α) = 1 with
α = a + μ when |b| < −a.

These considerations provide a framework for computing α0 and K(α) with α >
α0 that satisfies (2.4).

3. Moment stability: The system with noise perturbation. We now turn
to a study of the system with noise; i.e., the parameters σi in (1.8) are not all zero.

From the fundamental solution X(t) in the previous section, the solution of (1.8)
with the initial function x(θ) = φ(θ) ∈ C([−1, 0],R) is a stochastic process given by

x(t;φ) = xφ(t) +

∫ t

0

X(t− s)(σ0x(s;φ) + σ1x1(s;φ) + σ2)dW (s),(3.1)

where x1(s;φ) = x(s − 1;φ) and xφ(t), the solution of the deterministic equation
(2.1), is defined by (2.3). The existence and uniqueness theorem for the stochastic
differential delay equation has been established in [24] (see also [41, Chapter 5]). The
solution x(t;φ) is a stochastic process with distribution at any time t determined by
the initial function φ(θ). From the Chebyshev inequality, the possible range of x at
time t is “almost” determined by its mean and variance at time t. Thus, the first and
second moments of the solution are important for investigating the solution behavior
and will be studied in this section. We first define pth moment exponential stability
and pth moment boundedness.
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Definition 3.1. The solution of (1.8) is said to be first moment exponentially
stable if there is a pair of positive constants λ and C such that

|Ex(t;φ)| ≤ C‖φ‖e−λt (∀t > 0)

for all φ ∈ C([−1, 0],R). When p ≥ 2, the solution of (1.8) is said to be pth moment
exponentially stable if there is a pair of positive constants λ and C such that

E (|x(t;φ) − E(x(t;φ))|p) ≤ C‖φ‖pe−λt (∀t ≥ 0)

for all φ ∈ C([−1, 0],R).
Definition 3.2. For p ≥ 2, the solution of (1.8) is said to be pth moment

bounded if there is a constant A such that

E (|x(t;φ) − E(x(t;φ))|p) ≤ A (∀t ≥ 0)

for all φ ∈ C([−1, 0],R). Otherwise, the pth moment is said to be unbounded.
We have used E to denote the mathematical expectation. In this paper, we will

study the exponential stability of the first moment and the boundedness of the second
moment. Hereinafter, we denote x(t;φ) simply by x(t).

3.1. The first moment. Taking the mathematical expectation of both sides of
(1.8), we have, with the Itô interpretation,

dEx(t)

dt
= aEx(t) + bEx(t− 1).(3.2)

Thus, we obtain a differential delay equation for the first moment Ex(t). From the
discussion in the previous section, the first moment Ex(t) approaches 0 as t → ∞ if
and only if the parameter α0 defined in Theorem 2.1 is less than 0. In fact, by (3.1)
and the properties of Itô integral, we have

Ex(t) = X(t)φ(0) +

∫ 0

−1

X(t− 1 − s)φ(s)ds.(3.3)

Theorem 3.3. If α0 = max{
(λ) : h(λ) = 0}, then for any α > α0 there is a
constant K1 = K1(α) such that

|Ex(t)| ≤ K1‖φ‖eαt (t ≥ 0).(3.4)

Therefore, if α0 < 0, then (1.8) is first moment exponentially stable.

3.2. The second moment. We now turn to the behavior of the second moment
of the solution x(t). From Theorem 3.3, the stability condition of the first moment is
identical to that of the unperturbed system and is determined exclusively by a and b.
Thus the stability of the first moment is independent of the parameters σi. However,
the situation of second moment is more complicated and depends on σi. When σ2 = 0,
we cannot expect the second moment to be exponentially stable. Let M(t) be the
second moment of the solution at a time t. Then the Chebyshev inequality yields

P
[
|x(t) − Ex(t)| ≥ k

√
M(t)

]
≤ 1

k2
(3.5)

for any k > 0. Thus, when the second moment is bounded, the solutions of (1.8) are
also bounded in some sense. We will answer in this section when the second moment
is bounded for all t > 0.
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The following notation will be used. Let x(t) be a solution of (1.8), and define

x̃(t) = x(t) − Ex(t),(3.6)

M(t) = E(x̃(t)2), M1(t) = M(t− 1), N(t) = E(x̃(t)x̃(t− 1)),(3.7)

F (t) =

∫ t

0

X2(t− s)(σ0Ex(s) + σ1Ex1(s) + σ2)
2ds.(3.8)

M(t) is the second moment studied below. Applying the Itô isometry to M(t), a
simple computation yields that

M(t) = F (t) +

∫ t

0

X2(t− s)(σ2
0M(s) + σ2

1M1(s) + 2σ0σ1N(s))ds.(3.9)

3.2.1. Additive noise. When σ0 = σ1 = 0, we have the additive noise case,
and the second moment is given explicitly by

M(t) = σ2
2

∫ t

0

X2(t− s)ds.(3.10)

By Theorem 2.1, we have the following result in the case of additive noise.
Theorem 3.4. Let α0 = {
(λ) : h(λ) = 0}. If σ0 = σ1 = 0, the second moment

of (1.8) is bounded if and only if α0 < 0. Furthermore, for any α0 < α < 0, there
exists K = K(α) such that

∣∣∣∣M(t) − σ2
2

∫ ∞

0

X2(s)ds

∣∣∣∣ ≤ −σ2
2K

2

2α
e2αt.(3.11)

From Theorem 3.4, the boundedness of the second moment is characterized by
α0, which is in turn determined by a and b of the unperturbed equation. This result
was presented in [38], but the proof in [38] is in error. We reprove this result here and
the estimation of the second moment M(t) when t → ∞ is given by

lim
t→∞

M(t) = σ2
2

∫ ∞

0

X2(s)ds ≤ −σ2
2K

2

2α
.(3.12)

3.2.2. General cases (σ0 �= 0 or σ1 �= 0). When σ0 = 0 or σ1 = 0, the noise
at time t depends on x at time t or time (t − 1). In this general case, there is no
simple form for the second moment. First, we have by (3.9) that

M(t) ≥ F (t).

When α0 ≥ 0, we have X(t) = O(eα0t) as t → ∞. Thus, we can always take an initial
function φ(θ) such that F (t) tends to infinity when t → ∞, for example, the initial
functions φ(θ) such that

Ex(t) =
∑
i

cie
λit,

where h(λi) = 0 and ci are nonzero constants.
Therefore, we have the following necessary condition for the boundedness of the

second moment.
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Lemma 3.5. If the second moment of (1.8) is bounded, then α0 < 0; i.e., the
unperturbed equation is exponentially stable.

From now on, we will always assume that α0 < 0. In this situation, we have

lim
t→∞

F (t) = σ2
2

∫ ∞

0

X2(s)ds.(3.13)

We next study the second moment using the Laplace transform. We denote by
L(p)(s) the Laplace transform of p(t) when

p(t) < Peat (t > 0)

for constants P and a.
Let X1(t) = X(t − 1). It is easy to check that the functions X2(t), X(t)X1(t),

M(t), and N(t) have Laplace transforms.
The following theorem establishes the condition for the second moment of the

solution of (1.8) to be bounded.
Theorem 3.6. Let

f(s) =
L(XX1)(s)

L(X2)(s)
, g(s) =

L(N)(s)

L(M)(s)
,(3.14)

and

H(s) = s− (2a + σ2
0) − (2bf(s) + 2σ0σ1g(s)) − σ2

1e
−s.(3.15)

The second moment of the solution of (1.8) is bounded if and only if all solutions of
the characteristic equation H(s) = 0 have negative real part. Furthermore, when the
second moment is bounded, it approaches a constant exponentially when t → ∞.

Proof. We will divide the proof into several steps.
(1) By (3.9), we have

M(t) = F (t) + X2 ∗ (σ2
0M + σ2

1M1 + 2σ0σ1N),

where ∗ denotes convolution. Taking the Laplace transform of both sides and solving
the resulting equation for L(M)(s), we have

L(M)(s) =
L(F )(s)

1 − L(X2)(s)(σ2
0 + σ2

1e
−s + 2σ0σ1g(s))

,(3.16)

where L(X2)(s) is given by

L(X2)(s) =
1

s− 2a− 2bf(s)
.

Thus, by (3.16), we have

L(M)(s) =
L(F )(s)

L(X2)(s)
H−1(s).

Let

G(t) = L−1

[
L(F )

L(X2)

]
(t) = (σ0Ex(t) + σ1Ex1(t) + σ2)

2
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and Y (t) = L−1(H−1)(t). Then we have

M(t) = G ∗ Y =

∫ t

0

G(t− s)Y (s)ds.(3.17)

(2) Let β0 = max{
(s) : H(s) = 0}. We will prove that for any β > β0 there is a
constant K2 = K2(β) such that

|Y (t)| ≤ K2e
βt.(3.18)

To start, we will show that β0 < ∞ is well defined. To do this, noting that there
exist A1 and A2 such that if 
(s) is large enough,

|f(s)| ≤ A1e
−�(s)/2 and |g(s)| ≤ A2e

−�(s)/2.(3.19)

We omit the proof of (3.19) due to space constraints. Thus, when 
(s) is large enough,
H(s) > 0, and therefore the value β0 < ∞ is well defined.

Now, (3.18) follows from the inverse Laplace transform

Y (t) = lim
T→∞

1

2π

∫ β+iT

β−iT

H−1(s)estds ≤ K2e
βt

for any β ≥ β0 and a constant K2 = K2(β). The details of the proof are exactly the
same as for the proof given in [20, pp. 20–21], and we omit the details here.

(3) Now we have

M(t) =

∫ t

0

G(t− s)Y (s)ds,

with |Y (t)| ≤ K2e
βt for any β > β0. Furthermore, for any α0 < α < 0 there exists

K3 = K3(α, φ) such that

|G(t)| ≤ σ2
2 + K3e

αt.

If β0 < 0, we choose β0 < β < 0 and K2 as above. Then

|M(t)| ≤
∫ t

0

(σ2
2 + K3e

α(t−s))K2e
βsds,

and thus the second moment M(t) is bounded for any initial function φ(θ). In this
situation, let

M∞ = σ2
2

∫ ∞

0

Y (s)ds,

so that

|M(t) −M∞| ≤ K2σ
2
2e

βt +
K2K3

β − α
(eβt − eαt).

Thus, there exists a positive constant K4 = K4(α, β, φ) such that

|M(t) −M∞| ≤ K4e
tmax{α,β};
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i.e., M(t) approaches to M∞ exponentially when t → ∞.
If β0 ≥ 0, by the inverse Laplace transform, we have Y (t) = O(eβ0t) when t is

large enough. We can choose an initial function φ(θ) such that

Ex(t) =
∑
i

cie
λit,

where h(λi) = 0 and ci are nonzero constants. For this particular initial function, we
have either G(t) = O(1) as t → ∞ when σ2 = 0, or G(t) = O(e2αt) as t → ∞ for
some α ≤ α0 < 0 when σ2 = 0. In either case,

M(t) =

∫ t

0

G(t− s)Y (s)ds = O(eβ0t)

when t → ∞, and hence the second moment is unbounded.
Theorem 3.6 establishes a criterion for the second moment of the linear stochastic

delay differential equation to be bounded. However, this criterion is not particularly
useful. The function g(s) in (3.15) involves the Laplace transforms of M(t) and N(t)
that are unknown. In many applications, perturbations for system parameters affect
only the right-hand side of the equation that involves either the current state or the
retarded state, and thus either σ1 = 0 or σ0 = 0. In this situation, the function H(s)
reads

H(s) = s− (2a + σ2
0) − 2bf(s) − σ2

1e
−s

and is determined by the system coefficients and by f(s), which depends on the
Laplace transforms of X2(t) and X(t)X1(t). Nevertheless, it is not trivial to obtain
the explicit form of f(s) for a given system. In the rest of this section, we will develop
some estimates for f(s) and g(s) and present direct criteria for the second moment
stability.

Theorem 3.7. If b < 0, σ0σ1 ≤ 0, and either

(σ0 + σ1)
2 ≥ −2(a + b)(3.20)

or

u =

⎧⎪⎨
⎪⎩

−(b + σ0σ1) −
√

(b + σ0σ1)2 − 4σ2
1

2σ2
1

, σ1 = 0,

−1

b
, σ1 = 0,

such that 0 < u < 1 and

−2 log u− (2a + σ2
0) − (2b + 2σ0σ1)u− σ2

1u
2 ≤ 0,(3.21)

then the second moment is unbounded.
Proof. Let

H0(s) = s− (2a + σ2
0) − (2b + 2σ0σ1)e

−s/2 − σ2
1e

−s.

Then when b < 0 and σ0σ1 ≤ 0, we have H(s) ≤ H0(s) for all s ∈ R. Therefore,
either (3.20) or (3.21) implies that there exists s∗ > 0 such that H(s) ≤ H0(s∗) ≤ 0.
However, H(s) > 0 when s is large enough. Therefore the equation H(s) = 0 has a
nonnegative solution. Thus, the theorem follows from Theorem 3.6.
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Theorem 3.7 tells us when the second moment is unbounded. The following result
will tell us when the second moment is bounded.

Theorem 3.8. If there exists α < 0 and K = K(α) > 0 such that

|X(t)| ≤ Keαt (t ≥ 0)(3.22)

and

(|σ0| + |σ1|)2 < − 2α

K2
,(3.23)

then the second moment M(t) is bounded when t > 0.
Theorem 3.8 will be proved using the following delay-type Gronwall inequality,

the proof of which (which we omit) is similar to that of the Gronwall inequality.
Lemma 3.9. If y(t) is a nonnegative continuous function on [−1,∞) and there

are positive constants p and q such that

y(t) ≤ p

∫ t

0

y(s)ds + q

∫ t

0

y(s− 1)ds + r(t),(3.24)

then for any β > 0 such that

β − p− qe−β > 0

and

sup
t≥0

|r(t)e−βt| < ∞

there exists A = A(β) such that

y(t) ≤ Aeβt (t ≥ 0).(3.25)

We can now turn to the proof of Theorem 3.8.
Proof of Theorem 3.8. Note that

M(t) ≤ (|σ0| + |σ1|)
∫ t

0

X2(t− s)(|σ0|M(s) + |σ1|M1(s))ds + F (t).(3.26)

For α such that (3.22) is satisfied, we have K5 = K5(α, φ) such that

0 ≤ F (t) ≤ K5(1 − e2αt).

Thus from (3.26) it follows that

M(t) ≤ K2 (|σ0| + |σ1|)e2αt

∫ t

0

(|σ0|e−2αsM(s) + |σ1|e−2αsM1(s))ds + K5(1 − e2αt).

Let

y(t) = e−2αtM(t), r(t) = K5(e
−2αt − 1),

and

p = K2|σ0|(|σ0| + |σ1|), q = K2|σ1|(|σ0| + |σ1|)e−2α.
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Then

y(t) ≤ p

∫ t

0

y(s)ds + q

∫ t

0

y1(s)ds + r(t).

The inequality (3.23) implies

−2α− p− qe2α > 0.

Thus, by Lemma 3.9 there is a constant A such that

M(t)e−2αt = y(t) ≤ Ae−2αt,

i.e., M(t) ≤ A for all t > 0.
From Theorem 3.6, if the second moment M(t) is bounded, it exponentially ap-

proaches a constant M∞. Let t → ∞ in (3.26) and apply (3.13) so that we have

M∞ ≤
σ2

2

∫∞
0

X2(s)ds

1 − (|σ0| + |σ1|)2
∫∞
0

X2(s)ds
≤ − σ2

2K
2(α)

2α + (|σ0| + |σ1|)2K2(α)
(3.27)

for any α and K(α) given in Theorem 3.8. It follows from (3.27) that when σ2 = 0,
boundedness of the second moment implies exponential stability.

From Theorems 3.3 and 3.8, for any parameter pair (a, b) in the region S defined
in (2.5), the first moment of the solution of the stochastic differential delay equation
(1.8) approaches 0 as t → ∞. Furthermore, there exists P (a, b) > 0 such that if

(|σ0| + |σ1|)2 < P (a, b),(3.28)

the second moment of the solution is bounded with an upper bound, as t → ∞, given
by (3.27).

From the estimates of α0 and K(α) given in section 2, the function P (a, b) can
be computed, and its graph is shown in Figure 3.1.
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Fig. 3.1. The function P (a, b).
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4. Stability of the hematopoietic regulation system under stochastic
perturbation. In this section, we will study the stability of the HSC in the face of
stochastic perturbation, using the results of the previous sections. The HSC regulation
system is modeled by a classical G0 model [6, 35, 56]. Blood cells differentiate from
HSC in the resting (G0) phase. The HSC has high self-renewal capacity with the
re-entry rate dependent on the number of HSC through a negative feedback loop.
The proliferating phase cells include those cells in S phase (DNA synthesis), M phase
(mitosis), and two segments known as the G1 and G2 phases (the G stands for “gap”).
In addition, there is a loss of proliferating phase cells due to apoptosis (see Figure 4.1).

��
��

� S(t, a) �����
�����

Q(t)

β(QτS )QτS

�
�
��	 �





�

a = 0 a = τS

γS

κ

Fig. 4.1. A cartoon representation of the HSC model.

The HSC dynamics is modeled by a differential delay equation [7, 8, 9, 13, 51]

dQ

dt
= −β(Q)Q− κ(N,R, P )Q + 2e−γSτSβ(QτS )QτS ,(4.1)

where Q, N , R, P are the quiescent stem cells, leukocytes, erythrocytes, and platelets,
respectively, and QτS = Q(t− τS). The model parameters are the apoptosis (death)
rate γS , the maturation delay τS , the HSC self-renewal (proliferation) rate β, and
the differentiation rate κ at which the HSC forms the three peripheral cell lines. The
proliferation rate β and differentiation rate κ involve negative feedback loops that
take the form of a Hill function [5, 7, 8],

β(Q) = k0
θs2

θs2 + Qs
,

κ(N,P,R) = f0
θn1

θn1 + Nn
+

κ̄p

1 + KpP p
+

κ̄r

1 + KrRr
.

Note that the rate κ depends on the state of three cell lines (leukocytes, erythrocytes,
platelets), and thus (4.1) does not constitute a closed system. In this study, since we
are interested only in the situation close to the steady state, we take the total differ-
entiation out of the stem cell compartment to be a single constant. This decouples
the model for the stem cell compartment from the full system.

Let us introduce nondimensional variables as follows:

q =
Q

θ2
, t̂ =

t

τS
,

b1 = τSk0, μ1 = 2e−γSτS , δ = τSκ.
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We have the nondimensional form of (4.1) (see [9]),

dq

dt
= − b1

1 + qs
q + μ1

b1
1 + qs1

q1 − δq,(4.2)

where q1 = q(t − 1) and t̂ has been simply replaced by t. Typical values of the
dimensionless parameters are b1 = 22.4 and μ1 = 1.64. The parameter s, which
denotes the number of cytokine molecules needed to trigger HSC proliferation in
vitro, is chosen as s = 4 (see [9]).

When δ < b1(μ1 − 1), equation (4.2) has a unique positive steady state

q∗ =

(
b1(μ1 − 1)

δ
− 1

)1/4

,

corresponding to the normal level of the stem cells. Linearizing (4.2) around this
steady state, we obtain the variational equation

dx

dt
= ax + bx1,

where x = q − q∗,

a = − δ

b1(μ1 − 1)2
(−3b1(μ1 − 1) + b1(μ1 − 1)2 + 4δ),

and

b =
δμ1

b1(μ1 − 1)2
(−3b1(μ1 − 1) + 4δ).

From the discussion in section 2, there exists a critical value δc (≈ 0.16) such that the
steady state is stable when 0 < δ < δc.

We will now study the stability of the steady state when there are stochastic
perturbations in the system parameters δ, b1, or μ1. We have the following equations
for the perturbed system:

1. perturbation in δ:

dq =

[
− b1q

1 + q4
− δq +

b1μ1q1
1 + q4

1

]
dt− σqdW (t),(4.3)

2. perturbation in b1:

dq =

[
− b1q

1 + q4
− δq +

b1μ1q1
1 + q4

1

]
dt + σ

[
− q

1 + q4
+

μ1q1
1 + q4

1

]
dW (t),(4.4)

3. and perturbation in μ1:

dq =

[
− b1q

1 + q4
− δq +

b1μ1q1
1 + q4

1

]
dt + σ

b1q1
1 + q4

1

dW (t),(4.5)

where W (t) is the standard Wiener process and σ is the noise amplitude. The lin-
earized versions of (4.3)–(4.5) around the steady state q = q∗ are

dx = (ax + bx1)dt− σ(x + q∗)dW (t),(4.6)

dx = (ax + bx1)dt +

(
σ

b1

)
((a + δ)x + bx1 + δq∗)dW (t),(4.7)
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and

dx = (ax + bx1)dt +

(
σ

μ1

)(
bx1 + δq∗ +

b1q
∗

1 + q∗4

)
dW (t),(4.8)

respectively.
Applying the results from the previous section, when 0 < δ < δc, the first moment

of solutions of the perturbed system is locally stable. Furthermore, from Theorem 3.8,
for any 0 < δ < δc (and b1, μ1 held at their typical values), there exists σb(δ) such
that when σ < σb(δ) the second moment is bounded. Further, from Theorem 3.7, for
any 0 < δ < δc, there exists σu(δ) such that when σ > σu(δ) the second moment is
unbounded. When σb < σ < σu, however, the previous results fail to delineate the
stability of the second moment. A more accurate estimation for the characteristic
function H(s) in Theorem 3.6 is required to fill this gap. Graphs of the curves σ =
σb(δ) and σ = σu(δ) are given in Figure 4.2.
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Fig. 4.2. Parameter dependence for the second moment of the solution of the stochastic HSC
system to be bounded.

In Figure 4.2, the thresholds of the three parameter perturbations to ensure the
stability of a steady state under noise perturbation are sorted from low to high as the
threshold for δ, for μ1, and for b1. Thus, the HSC system is more easily destabilized
by noise in the differentiation rate (δ) than in the death rate (μ1), and least likely to
be destabilized by perturbations in the proliferation rate (b1).

Note that the solutions of (4.3)–(4.5) are always bounded because of the negative
feedback. Thus, destabilization of the steady state may lead to fluctuating solutions
characteristic of dynamic hematological disease (see Figure 4.3(b)). When the second
moment is bounded, the range of the solution at time t can be estimated by the
Chebyshev inequality (3.5). However, this cannot exclude the possibility of obtaining
an oscillating solution (see Figure 4.3(c),(d)). In this situation, the amplitude of
the oscillating solution is determined by the second moment, which is estimated by
(3.27) when t is large. The graphs of M∞ as a function of δ and σ are shown in
Figure 4.4 for each of the cases. From Figure 4.4, for given values of b1, μ1, δ, and
the perturbation amplitude σ, the second moment of the solutions of the HSC model
with random perturbation in δ is larger than when there are perturbations in μ1 and
in b1. Thus, small fluctuations in δ are able to produce large amplitude fluctuations
in HSC numbers. Larger perturbations in μ1 are required to produce a fluctuating
HSC solution with the same amplitude (Figure 4.3(c),(d)). The second moment of
solutions of the HSC system with perturbations in b1 is small and not likely to produce
a large amplitude fluctuation in HSC numbers.

These numerical results suggest that the dynamic hematological diseases [16] char-
acterized by oscillations in blood cell numbers could originate from the stochastic
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Fig. 4.3. Sample solutions of the HSC system. In all these solutions, we choose b1 = 22.4,
μ1 = 1.64, δ = 0.15. The perturbation is added to δ with σ = 0.4 and σ = 0.05 (cf. Figure 4.2,
left-hand panel, marked by the “ *” and “+,” respectively), and to μ1 with σ = 0.2 (cf. Figure 4.2,
middle panel, marked with a “+”). The solution of the system without perturbation is also shown.
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Fig. 4.4. The function M∞ as a function of δ and σ.

perturbation of the differentiation rate and/or the death rate of HSCs. On the other
hand, the system is relatively insensitive to perturbations in the proliferation rate.

5. Discussion. We have investigated the effects of white noise on the stability
of the trivial solution of a linear differential delay equation by deriving the solutions
for the first and second order moments and examining the exponential estimation by
the Laplace transform method.

We have shown that the stability domain of the first moment is identical to that of
the unperturbed system (Theorem 3.3). This result is also true for the second moment
when the perturbation is simple additive noise (Theorem 3.4). However, when there
is multiplicative white noise, there are no simple results on the stability (bounded
nature) of the second moment. From our study, when the trivial solution of the
unperturbed equation is unstable, the second moment of solutions of the perturbed
equation is unbounded. The condition for the second moment to be bounded has been
shown to be related to the solutions of a characteristic equation given in Theorem 3.6.
Nevertheless, the explicit expression of the characteristic equation is not available in
terms of the system parameters. We have presented several direct criteria for the
second moment to be bounded (Theorems 3.7 and 3.8).

Significant oscillations in one or more of the circulating progeny of the HSC
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are often characteristic of dynamic hematological diseases like cyclical neutropenia,
cyclical thrombocytopenia, and periodic chronic myelogenous leukemia. The steady
state of the HSC system can be destabilized by increasing the differentiation rate,
and this has been implicated in the genesis of the hematological disorder cyclical
neutropenia [21].

We have applied these results to examining the stability of HSC dynamics in the
presence of stochastic perturbation. Our results indicate that stochastic perturbation
cannot stabilize a large amplitude oscillation solution. When random perturbations
are introduced in parameters characterizing the HSCs when the steady state is locally
stable, we found that as the amplitude of the noise perturbation is increased, the
system can be destabilized in the sense that the second moment becomes unbounded.
In this situation, the system can display a large amplitude fluctuating solution.

When the second moment is large and bounded, however, we cannot exclude the
possibility of an oscillatory solution, since the HSC system may have a large amplitude
oscillatory solution in this circumstance.

We have obtained estimates of the second moment for three different types of
perturbation (see Figure 4.4). These results suggest that small perturbations in the
HSC differentiation or apoptosis (death) rate are able to generate large amplitude
fluctuations in HSC numbers, but a much larger perturbation of the proliferation
rate is needed to generate comparable fluctuations in HSC numbers. These results
suggest that the HSC model system is more sensitive to random perturbations in the
differentiation or death rate than in the proliferation rate.

The results in this paper were obtained under the Itô interpretation of stochastic
integrals. Analogous results can be obtained for the Stratonovich interpretation.
When Stratonovich interpretation is used, the solution of (1.8) can be expressed as

x(t) = x(0) +

∫ t

0

(ãx(s) + b̃x1(s) + c̃)ds +

∫ t

0

(σ0x(s) + σ1x1(s) + σ2)dW (s),(5.1)

in terms of the Itô integral, where

ã = a +
1

2
σ2

0 , b̃ = b +
1

2
σ0σ1, c̃ =

1

2
σ0σ2.(5.2)

Unlike the situation when the Itô interpretation is used, namely that the first moment
stability is determined merely by the unperturbed system, the first moment stability
is changed when we use a Stratonovich interpretation. Let

h̃(λ) = λ− ã− b̃e−λ, x∗ = − c̃

ã + b̃
,

so that we have the following theorem.
Theorem 5.1. If α̃0 = max{
(λ) : h̃(λ) = 0}, then, for any α > α0, there is a

constant K̃ = K̃(α) such that

|Ex(t;φ) − x∗| ≤ K̃‖φ‖eαt(5.3)

for any φ ∈ C([−1, 0],R).
When α̃0 < 0, Theorem 5.1 implies that Ex(t;φ) approaches x∗ exponentially

when t → +∞. Thus, the expectation of the solutions drifts from zero to x∗ due to
the stochastic perturbation. Note that ã ≥ a; it is easy to show that the stochastic
perturbation is able to destabilize the first moment of (1.8). On the other hand, the
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first moment cannot be stabilized by stochastic perturbation when the zero solution
of the system without noise is unstable.

To study the second moment, let y = x− x∗, so that y(t) satisfies

y(t) = y(0) +

∫ t

0

(ãy(s) + b̃y1(s))ds +

∫ t

0

(σ0y(s) + σ1y1(s) + σ̃2)dW (s),(5.4)

where

σ̃2 = σ2 + (σ0 + σ1)x∗.

Applying the results in section 3 to the Itô equation (5.4), we can obtain the cor-
responding results for second moment stability of (1.8) in terms of the Stratonovich
interpretation. The statement of these results is straightforward by replacing a, b,
and σ2 with ã, b̃, and σ̃2, respectively, and we omit them here.
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[27] U. Küchler and B. Mensch, Langevin’s stochastic differential equation extended by a time-
delayed term, Stochastics Stochastics Rep., 40 (1992), pp. 23–42.

[28] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics,
2nd ed., Springer-Verlag, New York, 1994.

[29] A. Longtin, Effects of noise on nonlinear dynamics, in Nonlinear Dynamics in Physiology and
Medicine, A. Beuter, L. Glass, M. C. Mackey, and M. S. Titcombe, eds., Springer-Verlag,
New York, 2003, pp. 149–189.

[30] M. C. Mackey, Mathematical models of hematopoietic cell replication and control, in The
Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids, H. G.
Othmer, F. R. Adler, M. A. Lewis, and J. C. Dallon, eds., Prentice–Hall, New York, 1997,
pp. 149–178.

[31] M. C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic haematopoi-
esis, Blood, 51 (1978), pp. 941–956.

[32] M. C. Mackey, Dynamic haematological disorders of stem cell origin, in Biophysical and
Biochemical Information Transfer in Recognition, J. G. Vassileva-Popova and E. V. Jensen,
eds., Plenum Publishing, New York, 1979, pp. 373–409.

[33] M. C. Mackey, Periodic auto-immune hemolytic anemia: An induced dynamical disease, Bull.
Math. Biol., 41 (1979), pp. 829–834.

[34] M. C. Mackey and U. van der Heiden, Dynamic diseases and bifurcations in physiological
control systems, Funk. Biol. Med., 1 (1982), pp. 156–164.

[35] M. C. Mackey and P. Dörmer, Continuous maturation of proliferating erythroid precursors,
Cell Tissue Kinet., 15 (1982), pp. 381–392.

[36] M. C. Mackey and J. G. Milton, Dynamical diseases, Ann. New York Acad. Sci., 504 (1987),
pp. 16–32.

[37] M. C. Mackey and J. G. Milton, Feedback, delays, and the origins of blood cell dynamics,
Comm. Theoret. Biol., 1 (1990), pp. 299–237.

[38] M. C. Mackey and I. G. Nechaeva, Solution moment stability in stochastic differential delay
equations, Phys. Rev. E (3), 52 (1995), pp. 3366–3376.

[39] M. C. Mackey, Cell kinetic status of haematopoietic stem cells, Cell Prolif., 43 (2001), pp.
71–83.

[40] X. Mao, Exponential Stability of Stochastic Differential Equations, Marcel Dekker, New York,
1994.

[41] X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing, Chich-
ester, UK, 1997.

[42] X. Mao, Almost sure exponential stability of delay equations with damped stochastic perturba-
tion, Stoch. Anal. Appl., 19 (2001), pp. 67–84.

[43] X. Mao and S. Sabanis, Numerical solutions of stochastic differential delay equations under
local Lipschitz condition, J. Comput. Appl. Math., 151 (2003), pp. 215–227.

[44] X. Mao and M. J. Rassias, Khasminskii-type theorems for stochastic differential delay equa-
tions, Stoch. Anal. Appl., 23 (2005), pp. 1045–1069.

[45] J. G. Milton and M. C. Mackey, Periodic haematological diseases: Mystical entities or
dynamical disorders?, J. Roy. Coll. Phys. (Lond.), 23 (1989), pp. 236–241.

[46] J. G. Milton, U. van der Heiden, A. Longtin, and M. C. Mackey, Complex dynamics and
noise in simple neural networks with delayed mixed feedback, Biomed. Biochim. Acta, 49
(1990), pp. 697–707.

[47] S. E. A. Mohammed, Stochastic Functional Differential Equations, Res. Notes in Math. 99,
Pitman, Boston, 1984.



SDDE, STABILITY, AND APPLICATION TO HSC SYSTEM 407

[48] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, 6th ed.,
Springer-Verlag, New York, 2003.

[49] S. Pavord, M. Sivakumaran, P. Furber, and V. Mitchell, Cyclical thrombocytopenia as
a rare manifestation of myelodysplastic syndrome, Clin. Lab. Haematol., 18 (1996), pp.
221–223.

[50] T. H. Price, G. S. Chatta, and D. C. Dale, Effect of recombinant granulocyte colony-
stimulating factor on neutrophil kinetics in normal young and elderly humans, Blood, 88
(1996), pp. 335–340.

[51] L. Pujo-Menjouet, S. Bernard, and M. C. Mackey, Long period oscillations in a G0 model
of hematopoietic stem cells, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 312–332.

[52] L. Pujo-Menjouet and M. C. Mackey, Contribution to the study of periodic chronic myel-
ogenous leukemia, C. R. Biol., 327 (2004), pp. 235–244.

[53] M. Z. Ratajczak, J. Ratajczak, W. Marlicz, C. H. Pletcher, Jr., B. Machalinshi,

J. Moore, H. Hung, and A. M. Gewirtz, Recombinant human thrombopoietin (TPO)
stimulates erythropoiesis by inhibiting erythroid progenitor cell apoptosis, Br. J. Haematol.,
98 (1997), pp. 8–17.

[54] M. Santillan, J. M. Mahaffy, J. Belair, and M. C. Mackey, Regulation of platelet produc-
tion: The normal response to perturbation and cyclical platelet disease, J. Theoret. Biol.,
206 (2000), pp. 585–603.

[55] M. Silva, D. Grillot, A. Benito, C. Richard, G. Nunez, and J. Fernandez-Luna, Ery-
thropoietin can promote erythroid progenitor survival by repressing apoptosis through bcl-1
and bcl-2, Blood, 88 (1996), pp. 1576–1582.

[56] J. A. Smith and L. Martin, Do cells cycle?, Proc. Natl. Acad. Sci. USA, 70 (1973), pp.
1263–1267.

[57] R. L. Stratonovich, A new representation for stochastic integrals and equations, SIAM J.
Control, 4 (1966), pp. 362–371.

[58] S. Tanimukai, T. Kimura, H. Sakabe, Y. Ohmizono, T. Kato, H. Miyazaki, H. Yamagishi,

and Y. Sonoda, Recombinant human c-Mpl ligand (thrombopoietin) not only acts on
megakaryocyte progenitors, but also on erythroid and multipotential progenitors in vitro,
Exp. Hematol., 25 (1997), pp. 1025–1033.

[59] P. Wahlberg, D. Nyman, P. Ekelund, S. A. Carlsson, and H. Granlund, Cyclical throm-
bocytopenia with remission during lynestrenol treatment in a woman, Ann. Clin. Res., 9
(1977), pp. 356–358.


