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We study the temporal approach to equilibrium of the Gibbs’ and conditional entropies
for stochastic systems in the presence of white noise. The conditional entropy will
either remain constant or monotonically increase to its maximum of zero. However, the
Gibbs’ entropy may have a variety of patterns of approach to its final value ranging
from a monotone increase or decrease to an oscillatory approach. We have illustrated all
of these behaviors using examples in which both entropy dynamics can be determined
analytically.
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Uhlenbeck process, noisy harmonic oscillator

1. INTRODUCTION

A variety of measures of dynamic behavior carry the name of entropy. Two have
proved to be especially intriguing in the examination of the temporal evolution
of dynamical systems when considered from an ensemble point of view. One of
these is known as the conditional entropy. Convergence properties of the con-
ditional entropy have been extensively studied because ‘entropy methods’ have
been known for some time to be useful for problems involving questions related
to convergence of solutions in partial differential equations.(1–6) Their utility can
be traced, in some instances, to the fact that the conditional entropy may serve as
a Liapunov functional.(7) Another type of entropy is the Gibbs’ entropy, which is
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strongly related to an extension of the equilibrium entropy that was introduced by
Gibbs.(8) This has been considered by a number of authors recently, specifically
in Ruelle,(9,10) Nicolis and Daems,(11) Daems and Nicolis(12) and Bag et al.,(13,14)

Bag.(15–17)

Here we compare and contrast the temporal evolution of the conditional and
Gibbs’ entropies in a variety of dynamical settings. Our primary considerations are
stochastic systems with additive white noise. The organization of the paper is as
follows. Section 2 gives some basic background, definition of steady state Gibbs’
entropy, and extension of this to time dependent situations. In Sec. 3 we examine
the temporal behavior of the conditional entropy in asymptotically stable systems,
and contrast these with the behavior of the Gibbs’ entropy. These considerations
are illustrated in Sec. 4 with two detailed examples drawn from dynamical systems
perturbed by noise. The paper concludes with a summary in Sec. 5.

2. GIBBS’ AND CONDITIONAL ENTROPIES

Let X be a phase space and µ a reference measure on X . Denote the cor-
responding set of densities by D(X ), or D when there will be no ambiguity, so
f ∈ D means f ≥ 0 and

∫
X f (x) dx = 1 (for integrals with respect to the refer-

ence measure we use the notation
∫

f (x) dx rather than
∫

f (x) dµ(x)).
In his seminal work Gibbs,(8)assuming the existence of a system steady state

density f∗ on the phase space X , introduced the concept of the index of probability
given by log f∗(x) where “log” denotes the natural logarithm. He then identified
the entropy in a steady state situation with the average of the index of probability

HG( f∗) = −
∫

X
f∗(x) log f∗(x) dx, (2.1)

and we call this the equilibrium or steady state Gibbs’ entropy. If the equilibrium
entropy is to be an extensive quantity (in accord with experimental evidence) then
Definition 2.1 is unique up to a multiplicative constant.(18,19)

We extend the definition of the steady state Gibbs’ entropy to time dependent
(non-equilibrium) situations and say that the time dependent Gibbs’ entropy of a
density f (t, x) is defined by

HG( f ) = −
∫

X
f (t, x) log f (t, x) dx . (2.2)

We define the conditional entropy as(20)

Hc( f | f∗) = −
∫

X
f (t, x) log

f (t, x)

f∗(x)
dx . (2.3)

It is variously known as the Kullback-Leibler or relative entropy,(1) the relative
Boltzmann entropy,(21,22) or the specific relative entropy,(23) and has been related
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to the free energy.(5,6,24) If there is a convergence limt→∞ f (t, x) = f∗(x) in some
sense (which we will make totally precise in Sec. 3) then limt→∞ Hc( f | f∗) = 0.

3. ASYMPTOTIC STABILITY AND CONDITIONAL ENTROPY

Let {Pt } be a family of Markov operators on L1(X ), i.e. Pt f0 ≥ 0 for an
initial density f0 ≥ 0,

∫
Pt f0(x) dx = ∫ f0(x) dx , and Pt+s f0 = Pt (Ps f0). If the

latter property holds for t, s ∈ R, then {Pt }t∈R is a group of Markov operators. If
it holds only for t, s ∈ R+, then {Pt }t≥0 is a semigroup of Markov operators. If
there is a density f∗ such that Pt f∗ = f∗ for all t > 0, f∗ is called a stationary
density of Pt .

Our first result shows that the conditional entropy is nondecreasing.

Theorem 1. ([26]). Let Pt be a family of Markov operators on L1(X ) and
f∗ be the stationary density. Then for every density f0 the conditional entropy
Hc(Pt f0| f∗) is a nondecreasing function of t .

Our next result from Ref. 25 shows that when Pt satisfies the group property
the conditional entropy is uniquely determined by the system preparation and does
not change with time. This is formalized in

Theorem 2. ([25], Theorem 3.2). If Pt is a group of Markov operators and has
a stationary density f∗, then the conditional entropy is constant and equal to the
value determined by f∗ and the choice of the initial density f0 for all time t. That
is,

Hc(Pt f0| f∗) ≡ Hc( f0| f∗)

for all t .

For a given density f0 the conditional entropy Hc(Pt f0| f∗) is bounded above
by zero. Thus we know that it has a limit as t → ∞. Our next result connects the
temporal convergence properties of Hc with those of Pt . A semigroup of Markov
operators Pt on L1(X ) is said to be asymptotically stable(20) if there is a stationary
density f∗ of Pt such that for all initial densities f0

lim
t→∞ Pt f0 = f∗

(here the limit denotes convergence in L1(X )).
The next result holds for situations when Pt satisfies the semigroup property.
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Theorem 3. ([27], Theorem 1). Let Pt be a semigroup of Markov operators on
L1(X ) and f∗ be the stationary density. Then

lim
t→∞ Hc(Pt f0| f∗) = 0

for all f0 with Hc( f0| f∗) > −∞ if and only if Pt is asymptotically stable.

Theorem 3 shows that asymptotic stability is necessary and sufficient for the
convergence of Hc to zero. A consequence of the convergence of the conditional
entropy to zero is that

lim
t→∞

∫
h(x)Pt f0(x) dx =

∫
h(x) f∗(x) dx

for any measurable function h for which the integral∫
erh(x) f∗(x) dx

is finite for all r in some neighborhood of zero [28, Lemma 3.1]. Since the
conditional and Gibbs’ entropies are related by

HG(Pt f0) = Hc(Pt f0| f∗) −
∫

Pt f0(x) log f∗(x) dx, (3.1)

Theorem 3 implies

Theorem 4. Let Pt be an asymptotically stable semigroup of Markov operators
on L1(X ) with a stationary density f∗ such that

∫
f 1+r
∗ (x) dx < ∞ for all r in

some neighborhood of zero. Then

lim
t→∞ HG(Pt f0) = HG( f∗)

for all f0 with Hc( f0| f∗) > −∞.

These theorems are very general in their statements about the behavior of
the conditional and Gibbs’ entropies. Namely, Theorem 2 tells us that when the
dynamics is such that Pt is a group (we have a dynamical system) the conditional
entropy will be constant and fixed by the initial value of f0. However, when Pt is
an asymptotically stable semigroup then Theorems 3 and 4 respectively guarantee
the convergence of the conditional entropy to its maximal value of zero and the
Gibbs’ entropy to its equilibrium value.
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4. ENTROPY BEHAVIOR AND THE EFFECTS OF NOISE IN

CONTINUOUS TIME SYSTEMS

In this section, we consider the behavior of the entropies HG(Pt f0) and
Hc(Pt f0| f∗) when the dynamics are described by the stochastically perturbed
system

dxi

dt
= Fi (x) +

d∑
j=1

σi j (x)ξ j , i = 1, . . . , d (4.1)

with the initial conditions xi (0) = xi,0. σi j (x) is the amplitude of the stochastic
perturbation and ξ j = dw j

dt is a white noise term that is the derivative of a Wiener
process. We interpret Eq. (4.1) using Itô calculus rather than Stratonovich calculus.
(For the differences see Refs. 20, 29, 30. If the σi j are independent of x then the
Itô and the Stratonovich approaches yield identical results.)

The Fokker-Planck equation governing the evolution of the density function
f (t, x) is given by

∂ f

∂t
= −

d∑
i=1

∂[Fi (x) f ]

∂xi
+ 1

2

d∑
i, j=1

∂2[ai j (x) f ]

∂xi∂x j
(4.2)

where

ai j (x) =
d∑

k=1

σik(x)σ jk(x).

If k(t, x, x0) is the fundamental solution of the Fokker-Planck equation, i.e. for
every x0 the function (t, x) �→ k(t, x, x0) is a solution of the Fokker-Planck equa-
tion with the initial condition δ(x − x0), then the general solution f (t, x) of the
Fokker-Planck Eq. (4.2) with the initial condition f (x, 0) = f0(x) is given by

f (t, x) =
∫

k(t, x, x0) f0(x0) dx0, (4.3)

and defines a Markov semigroup by Pt f0(x) = f (t, x). If a stationary (steady
state) density f∗(x) exists, it is the stationary solution of Eq. (4.2):

−
d∑

i=1

∂[Fi (x) f ]

∂xi
+ 1

2

d∑
i, j=1

∂2[ai j (x) f ]

∂xi∂x j
= 0. (4.4)

There are a number of results giving conditions such that the general solution
f (t, x) of the Fokker Planck equation is asymptotically stable and thus the condi-
tional entropy evolves monotonically to zero, e.g. Theorem 11.9.1 in Ref. 20. In
particular, assume that the stationary density is of the form

f∗(x) = e−B(x).
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From Theorem 3 it follows that

lim
t→∞ Hc( f | f∗) = 0

and from Theorem 4 that

lim
t→∞ HG( f ) = HG( f∗)

for all f0 with Hc( f0| f∗) > −∞ provided that
∫

e−(1+r )B(x)dx < ∞ for r in some
neighborhood of zero.

We now turn to a comparision of the rate of change of HG and Hc with
expressions that have recently been derived by Daems and Nicolis(12) and Bag.(15)

Differentiating Eq. (2.2) for the Gibbs’ entropy yields

d HG

dt
=
∫

f


∑

i

∂ Fi (x)

∂xi
− 1

2

∑
i, j

∂2ai j (x)

∂xi∂x j


 dx

+1

2

∫
1

f

d∑
i, j=1

ai j (x)
∂ f

∂xi

∂ f

∂x j
dx . (4.5)

If the ai j are independent of x then we obtain

d HG

dt
=
∫

f
∑

i

∂ Fi (x)

∂xi
dx + 1

2

d∑
i, j=1

ai j

∫
1

f

∂ f

∂xi

∂ f

∂x j
dx . (4.6)

As pointed out in Daems and Nicolis [12, Eq. 14], the first term is of indeter-
minant sign, while the second is positive definite so the temporal behavior of the
Gibbs’ entropy in this system is unclear. It has become customary, c.f. Daems and
Nicolis,(12) Bag et al.,(13,14) Bag,(15–17) Majee and Bag(31) to refer to the first term
in Eq. (4.5) as the ‘entropy flux’ and the second term as the ‘entropy production.’

Differentiating Eq. (2.3) with respect to time, and using Eq. (4.2) with inte-
gration by parts along with the fact that since f∗ is a stationary density it satisfies
(4.4), we obtain

d Hc

dt
= 1

2

∫ (
f 2
∗
f

) d∑
i, j=1

ai j (x)
∂

∂xi

(
f

f∗

)
∂

∂x j

(
f

f∗

)
dx . (4.7)
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Since the matrix (ai j (x)) is nonnegative definite, one concludes that d Hc

dt ≥ 0.
Using the identity

∂

∂xi

(
log

f

f∗

)
= f∗

f

∂

∂xi

(
f

f∗

)
,

we can rewrite Eq. (4.7) in the equivalent form

d Hc

dt
= 1

2

∫
f

d∑
i, j=1

ai j (x)
∂

∂xi

(
log

f

f∗

)
∂

∂x j

(
log

f

f∗

)
dx . (4.8)

Daems and Nicolis [12, Eq. 21] and Bag [15, Eq. 43] have derived the right hand
side of Eq. (4.8) by rewriting the second term on the right hand side of Eq. (4.6)
and integrating by parts. Both refer to the result as entropy production.

4.1. The One Dimensional Case

In a one dimensional system (d = 1) the stochastic differential Eq. (4.1)
becomes

dx

dt
= F(x) + σ (x)ξ, (4.9)

where ξ is a (Gaussian distributed) perturbation with zero mean and unit variance,
and σ (x) is the amplitude of the perturbation. The corresponding Fokker-Planck
Eq. (4.2) is

∂ f

∂t
= −∂[F(x) f ]

∂x
+ 1

2

∂2[σ 2(x) f ]

∂x2
. (4.10)

If stationary solutions f∗(x) of (4.10) exist, they are defined by Pt f∗ = f∗
for all t and given as the generally unique (up to a multiplicative constant) solution
of

−∂[F(x) f∗]

∂x
+ 1

2

∂2[σ 2(x) f∗]

∂x2
= 0. (4.11)

The integrable solution is given by

f∗(x) = K

σ 2(x)
exp

[∫ x 2F(z)

σ 2(z)
dz

]
, (4.12)

where K > 0 is a normalizing constant and the semigroup Pt is asymptotically
stable.

It is known [27, Sec. 4] that under relatively mild conditions there exists a
constant λ > 0 such that

Hc(Pt f0| f∗) ≥ e−2λt Hc( f0| f∗).
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Specific examples of σ (x) and F(x) for which one can determine the solution
f (t, x) of Eq. (4.10) are few. One is an Ornstein-Uhlenbeck process which we
consider in our next example.

Example 1. In considering the Ornstein-Uhlenbeck process, developed in think-
ing about perturbations to the velocity of a Brownian particle, we denote the
dependent variable by v so σ (v) ≡ σ a constant, and F(v) = −γ v with γ ≥ 0.
Now Eq. (4.9) becomes

dv

dt
= −γ v + σξ

with the Fokker-Planck equation

∂ f

∂t
= ∂[γ v f ]

∂v
+ σ 2

2

∂2 f

∂v2
.

The unique stationary solution is

f∗(v) = e−γ v2/σ 2∫ +∞
−∞ e−γ v2/σ 2 dv

=
√

γ

πσ 2
e−γ v2/σ 2

.

If the initial density f0 is a Gaussian of the form

f0(v) = 1

σ̄
√

2π
exp

{
− (v − v̄)2

2σ̄ 2

}

where σ̄ > 0 and v̄ ∈ R, then

Pt f0(v) = 1

σt

√
2π

exp

{
− (v − v̄(t))2

2σ 2
t

}

wherein

σ 2
t = σ 2

∗ + (σ̄ 2 − σ 2
∗ ) e−2γ t

with σ 2
∗ = σ 2/2γ and

v̄(t) = v̄ e−γ t .

The Gibbs’ entropy is

HG(Pt f0) = log σt

√
2π + 1

2
.

Also ∫ +∞

−∞
Pt f0(x) log f∗(x)dx = − log σ∗

√
2π − 1

2

σ 2
t

σ 2∗
,
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so

Hc(Pt f0| f∗) = 1

2
log

[
σ 2

t

σ 2∗

]
+ 1

2

[
1 − σ 2

t

σ 2∗

]

= 1

2
log

{
1 + e−2γ t

[
σ̄ 2

σ 2∗
− 1

]}

−1

2
e−2γ t

[
σ̄ 2

σ 2∗
− 1

]
.

We may examine how the two different types of entropy behave. Although
the conditional entropy Hc(Pt f0| f∗) is an increasing function of time, this is not
the case with the Gibbs’ entropy, for

d HG(Pt f0)

dt




> 0 for σ̄ 2 < σ 2
∗

= 0 for σ̄ 2 = σ 2
∗

< 0 for σ̄ 2 > σ 2
∗ ,

implying that the evolution of the Gibbs’ entropy in time is a function of the statis-
tical properties (σ̄ 2) of the initial ensemble. All of these conclusions concerning
the dynamics of HG(Pt f0) are implicit in the work of Bag(15) but not explicitly
stated.

Similar effects can be observed for the Rayleigh process considered in [27,
Sec. 4].

4.2. Multidimensional Ornstein-Uhlenbeck Process

Consider the multidimensional Ornstein-Uhlenbeck process

dx

dt
= Fx + �ξ, (4.13)

where F is a d × d matrix, � is a d × d matrix and ξ is d dimensional vector.
The formal solution to Eq. (4.13) is given by

x(t) = et F x(0) +
∫ t

0
e(t−s)F� dw(t), (4.14)

where et F =∑∞
n=0

tn

n! Fn is the fundamental solution to Ẋ (t) = F X (t) with
X (0) = I , and w(t) is the standard d-dimensional Wiener process. From the
properties of stochastic integrals it follows that

η(t) =
∫ t

0
e(t−s)F� dw(t)
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has mean 0 and covariance

R(t) = Eη(t)η(t)T =
∫ t

0
es F��T es F T

ds, (4.15)

where F T is the transpose of the matrix F . The matrix R(t) is nonnegative definite
but not necessarily positive definite. We follow the presentation of Refs. 32 and
33. For each t > 0 the matrix R(t) has constant rank equal to the dimension of the
space

[F, �] := {Fl−1�ε j : l, j = 1, . . . , d, ε j = (δ j1, . . . , δ j p)T }.
If l = rank R(t) then d − l coordinates of the process η(t) are equal to 0 and
the remaining l coordinates constitute an l-dimensional Gaussian process. Thus if
l < d there is no stationary density. If rank R(t) = d then the transition probability
function of x(t) is given by the Gaussian density

k(t, x, x0) = exp
{− 1

2 (x − et F x0)T R(t)−1(x − et F x0)
}

√
(2π )d det R(t)

, (4.16)

where R(t)−1 is the inverse matrix of R(t). An invariant density f∗ exists if and
only if all eigenvalues of F have negative real parts, and in this case the unique
stationary density f∗ has the form

f∗(x) = 1√
(2π )d det R∗

exp

{
−1

2
xT R−1

∗ x

}
, (4.17)

where R∗ is a positive definite matrix given by

R∗ =
∫ ∞

0
es F��T es F T

ds,

and is a unique symmetric matrix satisfying

F R∗ + R∗F T = −��T . (4.18)

We conclude that if [F, �] contains d linearly independent vectors and all eigen-
values of F have negative real parts, then the corresponding semigroup of Markov
operators is asymptotically stable. From Theorem 3 it follows that

lim
t→∞ Hc(Pt f0| f∗) = 0

and from Theorem 4 that

lim
t→∞ HG(Pt f0) = HG( f∗)

for all f0 with Hc( f0| f∗) > −∞.
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Now let f0 be a Gaussian density of the form

f0(x) = 1√
(2π )d det Q0

exp

{
−1

2
xT Q−1

0 x

}
, (4.19)

where Q0 is a positive definite symmetric matrix. From Eq. (4.14) it follows that
x(t) is Gaussian with zeroth mean vector and the following covariance matrix

Q(t) = et F Q0 et F T + R(t). (4.20)

Hence the density of x(t) is given by

Pt f0(x) = 1√
(2π )d det Q(t)

exp

{
−1

2
xT Q(t)−1x

}
. (4.21)

Since
∫

Pt f0(x)xT Q(t)−1x dx = d, the Gibbs’ entropy of Pt f0 is

HG(Pt f0) = 1

2
log(2π )d det Q(t) + d

2
. (4.22)

By Eq. (3.1) and the formula∫
Pt f0(x)xT R−1

∗ x dx = Tr (R−1
∗ Q(t))

we obtain the conditional entropy

Hc(Pt f0| f∗) = HG(Pt f0) − 1

2
log(2π )d det R∗

−1

2
Tr (R−1

∗ Q(t))
(4.23)

for all t ≥ 0 and every f0 of the form given by Eq. (4.19). Formula 4.22 remains
valid when we start with a Gaussian density f0 with non zero mean but then in the
formula for the conditional entropy one additional term appears, see [27, Sec. 4].

Example 2. Noisy harmonic oscillator.
Consider the second order system

m
d2 y

dt2
+ γ

dy

dt
+ ω2 y = σξ (4.24)

with constant positive coefficients m, γ and σ . Introduce the velocity v = dy
dt as a

new variable. Then Eq. (4.24) is equivalent to the system

dy

dt
= v (4.25a)

m
dv

dt
= −γ v − ω2 y + σξ, (4.25b)
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and the corresponding Fokker-Planck equation is

∂ f

∂t
= −∂[v f ]

∂y
+ 1

m

∂[(γ v + ω2 y) f ]

∂v
+ σ 2

2m2

∂2 f

∂v2
.

We can assume in what follows that m = 1, as introducing the constants γ̃ = γ /m,
ω̃2 = ω2/m and σ̃ 2 = σ 2/m2 leads to

∂ f

∂t
= −∂[v f ]

∂y
+ ∂[(γ̃ v + ω̃2 y) f ]

∂v
+ σ̃ 2

2

∂2 f

∂v2
.

The results of Sec. 4.2 in the two dimensional setting apply with x = (y, v)T ,

F =
(

0 1

−ω2 −γ

)
, and � =

(
0 0

0 σ

)
.

Since

[F, �] =
{(

0

0

)
,

(
0

σ

)
, σ

(
1

−γ

)}
,

the transition density function is given by Eq. (4.16). The eigenvalues of F are
equal to

λ1 = −γ +
√

γ 2 − 4ω2

2
, (4.26a)

λ2 = −γ −
√

γ 2 − 4ω2

2
, (4.26b)

and are either negative real numbers when γ 2 ≥ 4ω2 or complex numbers with neg-
ative real parts when γ 2 < 4ω2. Thus the stationary density is given by Eq. (4.17).
As is easily seen R∗, being a solution to Eq. (4.18), is given by

R∗ = σ 2

2γω2

(
1 0

0 ω2

)
.

The inverse of the matrix R∗ is

R−1
∗ = 2γ

σ 2

(
ω2 0

0 1

)

and the unique stationary density becomes

f∗(y, v) = γω

πσ 2
e
−

γ

σ 2
[ω2 y2 + v2]

.
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If the initial density f0 is the Gaussian

f0(y, v) = 1

2πσ̄1σ̄2
exp

{
− y2

2σ̄ 2
1

− v2

2σ̄ 2
2

}
,

where σ̄1 > 0, σ̄2 > 0, then Pt f0 is as in Eq. (4.21) with

Q(t) = et F Q0 et F T + R(t),

where

Q0 =
(

σ̄ 2
1 0

0 σ̄ 2
2

)
(4.27)

and

R(t) =
∫ t

0
es F

(
0 0

0 σ 2

)
es F T

ds. (4.28)

The formula for the covariance matrix R(t) is given by Chandrasekhar [34, pp. 27–
30]. The Gibbs’ entropy is

HG(Pt f0) = 1 + log(2π ) + 1

2
log det Q(t) (4.29)

and the conditional entropy is

Hc(Pt f0| f∗) = 1 + 1

2
log det Q(t) − 1

2
log det R∗

−1

2
Tr (R−1

∗ Q(t)). (4.30)

We are going to show that the Gibbs’ entropy need not be a monotonic function
of time, so we need to calculate det Q(t) to have the analytic formula for the
Gibbs’ entropy. The calculations depend on the nature of eigenvalues λ1 and
λ2 in Eq. (4.26), so we must distinguish between three cases: (i) Overdamped:
λ1, λ2 ∈ R with λ1 
= λ2, (ii) Critically damped: λ1, λ2 ∈ R with λ1 = λ2, and
(iii) Underdamped: λ1, λ2 are complex.

The calculations are complex. Here we only summarize the results of the
complete analysis presented in the Appendix. In the summary that follows we use
the notation

σ∗ = σ 2

2γω2
, (4.31a)

α1 = σ̄ 2
1 − σ∗, (4.31b)

α2 = σ̄ 2
2 − ω2σ∗. (4.31c)

Observe that α1α2 = det(Q0 − R∗) and σ 2
∗ ω2 = det R∗.
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Fig. 1. Entropy behavior for the overdamped noisy harmonic oscillator when α1α2 ≥ 0. The left hand
panels show plots of HG (Pt f0) as a function of time as given by Eq. (4.29) and the right hand panels
show HN E (Pt f0) ≡ Hc(Pt f0| f∗) + HG ( f∗) as a function of time. The parameters used were m = 1,
γ = 3, ω2 = 2, and σ∗ = 1. Upper panels correspond to the range of parameters as in Eq. (A.5) with
specific values σ̄1 = 2, σ̄2 = 2, while the lower panels correspond to parameters as in Eq. (A.10) with
σ̄1 = 0.5, σ̄2 = 1.

The analytic results in the Appendix in the overdamped and critically damped
cases indicate that there are three possible types of behaviors of the Gibbs’ entropy
and these are illustrated in Fig. 1 through 3. Namely, for α1α2 ≥ 0 there can
either be a monotonic decrease or increase of HG(Pt f0) to HG( f∗) as shown
in Fig. 1. For α1α2 < 0, HG(Pt f0) will approach HG( f∗) through an overshoot
(Fig. 2 when α1 > 0, α2 < 0) or undershoot (Fig. 3 when α1 < 0, α2 > 0). In
every case the nature of the approach of HG(Pt f0) to HG( f∗) is dependent on the
variance of the initial ensemble. Also, in every case it can be shown analytically
that HN E (Pt f0) ≡ Hc(Pt f0| f∗) + HG( f∗) (c.f Sec. 5) is a smooth, monotonically
increasing function that approaches HG( f∗).

In the underdamped case, the approach of HG(Pt f0) to HG( f∗) can also be
oscillatory as shown in Figs. 4 and 5 while, as expected, HN E (Pt f0) monotonically
increases to HG( f∗).

5. SUMMARY AND DISCUSSION

In dynamical systems (as are all fundamental descriptions in physics), the
conditional entropy is constant in time and determined by the system initial



Temporal Behavior of the Conditional and Gibbs’ Entropies 1457

0 1 2 3 4

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

0 1 2 3 4

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

0 1 2 3 4
2.8

2.9

3

3.1

3.2

0 1 2 3 4
2.8

2.9

3

3.1

3.2

Fig. 2. Entropy behavior in the overdamped noisy harmonic oscillator with α1 > 0, α2 < 0. Plots and
parameters as in Fig. 1, but now the upper panels are for the range of parameters as in Eq. (A.11) with
σ̄1 = 2, σ̄2 = 1, and the lower panels as in Eq. (A.13) with σ̄1 = 1.1, σ̄2 = 0.1.
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Fig. 3. Temporal behavior of the entropy in an overdamped noisy harmonic oscillator with α1 < 0,
α2 > 0. Plots and paramenters as in Fig. 1, but the upper panels are for the range of parameters as in
Eq. (A.15) with σ̄1 = 0.5, σ̄2 = 2, and the lower panels as in Eq. (A.17) σ̄1 = 0.5, σ̄2 = 3.
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Fig. 4. The entropy behavior of an underdamped noisy harmonic oscillator as a function of time. Plots
as in Fig. 1 but for parameters γ = 1, ω2 = 20, σ∗ = 1. Upper panels are for the range of parameters
as in Eq. (A.23) with σ̄1 = 1.1 and σ̄2 = 5, lower panels for Eq. (A.27) with σ̄1 = 0.9, σ̄2 = 5.

0 1 2 3 4
4.1

4.15

4.2

4.25

4.3

4.35

0 1 2 3 4
4.1

4.15

4.2

4.25

4.3

4.35

0 1 2 3 4
4.31

4.32

4.33

4.34

4.35

0 1 2 3 4
4.31

4.32

4.33

4.34

4.35
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for Eq. (A.30) with σ̄1 = 1.1, σ̄2 = 4.
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condition (Theorem 2). Furthermore, the Gibbs’ entropy of Lebesgue measure
preserving dynamical systems (e.g. Hamiltonian systems) is constant.(8,10,35,36)

For non-Lebesgue measure preserving dynamics, the Gibbs’ entropy will increase
when the dynamics are expanding and decrease if they are contracting.

To try to understand the basis for complicated and irreversible experimental
observations, a number of physicists have supplemented the dynamical systems
formulation of physical laws with various hypotheses about the irregularity of
the physical world. One of the first of these attempts was the “molecular chaos”
hypothesis of Boltzmann.(37) This hypothesis postulated a lack of correlation be-
tween the pre- and post-collision movement of molecules in a small collision
volume, and allowed the derivation of the Boltzmann equation from the Liouville
equation (which also led to the H theorem). In an effort to understand the nature of
turbulence, Ruelle(38–40) postulated that a type of mixing dynamics was necessary.
More recently, several authors have made “chaotic hypotheses” about the nature of
dynamics at the microscopic level. The most prominent of these is Gallavotti,(41)

and virtually the entire book of Dorfman(42) is predicated on the implicit assump-
tion that microscopic dynamics have a chaotic (loosely defined, but usually taken
to be mixing) nature.

Others have taken this chaotic hypothesis seriously and attempted an exper-
imental confirmation. Recently Gaspard et al.(43) experimentally examined the
trajectories of Brownian particles, and showed a positive lower bound on the sum
of Lyapunov exponents of the system composed of the macroscopic Brownian
particle and the surrounding fluid. They argued that the Brownian motion was
due to (or the signature of) deterministic microscopic chaos. Recently, in a review
Mackey and Tyran-Kamińska(46) have summarized how all of the properties of a
Wiener process can be duplicated by deterministic chaotic dynamics. This sug-
gests it is of more than passing interest to know what the effects of “noise” are on
the behavior of entropy measures.

The temporal behavior of the Gibbs’ entropy in systems subjected to noise
can be varied. A number of authors have considered aspects of this recently, no-
tably Ruelle,(9,10) Nicolis and Daems,(11) Daems and Nicolis,(12) Bag et al.,(13,14)

Bag,(15–17) and Garbaczewski.(47) As we have shown in Example 1, in contrast
to the conditional entropy that increases monotonically to approach zero in the
presence of noise, the Gibbs’ entropy can monotonically approach the equilibrium
value of HG( f∗) by either increasing or decreasing and the direction of movement
is totally determined by the variance σ̄ 2 of the initial ensemble. The temporal be-
havior of the Gibbs’ entropy can, however, have even more complicated patterns as
illustrated by Example 2.. There we have shown that when the harmonic oscillator
is either over damped or critically damped, the approach of HG(Pt f0) to HG( f∗)
may be either monotonic increasing or decreasing (Fig. 1), or display either an
undershoot or overshoot (Figs. 2 and 3). When the harmonic oscillator is under
damped then the approach of the Gibbs’ entropy to HG( f∗) may even be oscillatory
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as shown in Figs. 4 and 5. All of these patterns are, as we have shown, dependent
on the relation of the variance of the initial ensemble to the variance of the equilib-
rium state. In all of these cases (over, critically, and under damped) the conditional
entropy smoothly approaches zero so HN E (Pt f0) ≡ Hc(Pt f0| f∗) + HG( f∗), as
shown in the right hand panels of Fig. 1 through 5, monotonically increases to
approach HG( f∗).

The Gibbs’ equilibrium entropy definition Eq. (2.1) has repeatedly proven to
yield correct results when applied to a variety of equilibrium situations. This is
why it is the gold standard for equilibrium computations in statistical mechanics
and thermodynamics. Thus it makes total sense to identify the equilibrium Gibbs’
entropy HG( f∗) with the equilibrium thermodynamic entropy.

The question of how a time dependent non-equilibrium entropy should be
defined has interested investigators for some time, and specifically the question
of whether the Gibbs’ entropy HG( f ) can be extended to a time dependent situ-
ation has occupied many researchers. Various aspects of this question have been
considered.(9,10,12–17,31,49,50) As we have demonstrated in this paper, concrete an-
alytic examples can be constructed in which the direction of the temporal change
in HG( f ) depends on the initial preparation of the system and others can be
constructed in which HG( f ) oscillates in time.

A number of other authors, including de Groot and Mazur [51, pp. 122–129,
Eq. 247], van Kampen [52, pp. 111–114 and 185], and Penrose [53, p. 213] have
suggested that a time dependent entropy should be associated dynamically with

HN E ( f ) ≡ Hc

(
f | f∗ eHG ( f∗)

)
= Hc( f | f∗) + HG( f∗) (5.1)

as an extension of Gibbs [8, pp. 44–45 and 168] discussion of entropy. This also
goes under the name of the “Gibbs’ entropy postulate.”(54–59)

Here, we have shown that HN E ( f ) = Hc( f | f∗) + HG( f∗) has quite different
temporal behavior compared to the Gibbs’ entropy. This is a consequence of the
behavior of Hc( f | f∗) with respect to time. Namely HN E ( f ) is either constant for
dynamical systems, or monotone increasing to the equilibrium value of HG( f∗)
for asymptotically stable semidynamical systems induced by noise.

APPENDIX A: THE NOISY HARMONIC OSCILLATOR

In working through the details of the noisy harmonic oscillator of Example 2,
we consider three separate cases.

(i) Let us first consider the overdamped case

γ 2 > 4ω2,
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so the eigenvalues in Eq. (4.26) are real and λ1 
= λ2. Define, for t ≥ 0,

c1(t) = λ2 eλ1t − λ1 eλ2t

λ2 − λ1
, (A.1a)

c2(t) = eλ2t − eλ1t

λ2 − λ1
. (A.1b)

Then

et F =
(

c1(t) c2(t)

c′
1(t) c′

2(t)

)

and the covariance matrix R(t) is given by

R(t) = R∗ − σ 2

2γω2

(
c2

1 + ω2c2
2 −γω2c2

2

−γω2c2
2 (c′

1)2 + ω2(c′
2)2

)
,

where we suppressed the dependence of c1 and c2 on t . Accordingly, for Q0 as in
Eq. (4.27) we have

et F Q0 et F T =
(

c2
1σ̄

2
1 + c2

2σ̄
2
2 c1c′

1σ̄
2
1 + c2c′

2σ̄
2
2

c1c′
1σ̄

2
1 + c2c′

2σ̄
2
2 (c′

1)2σ̄ 2
1 + (c′

2)2σ̄ 2
2

)
.

From Eq. (A.1) it follows that

c1c′
1 + ω2c2c′

2 = −γω2c2
2.

Combining the three preceding equations and introducing the values of σ∗, α1, and
α2 from Eq. (4.31), we obtain for the matrix Q(t) the formula

Q(t) =
(

c2
1α1 + c2

2α2 + σ∗ c1c′
1α1 + c2c′

2α2

c1c′
1α1 + c2c′

2α2 (c′
1)2α1 + (c′

2)2α2 + ω2σ∗

)
.

Hence

det Q(t) = ω2σ 2
∗ + α1α2(c1c′

2 − c′
1c2)2

+ σ∗
((

ω2c2
1 + (c′

1)2
)
α1 + (ω2c2

2 + (c′
2)2
)
α2
)
.

Making use of Eq. (A.1) together with the relations λ1λ2 = ω2 and λ1 + λ2 = −γ ,
we arrive at

det Q(t) = ω2σ 2
∗ + α1α2 e−2γ t

− σ∗
(λ1 − λ2)2

(
γ λ1

(
λ2

2α1 + α2
)

e2λ1t

+ 4ω2(ω2α1 + α2) e−γ t + γ λ2
(
λ2

1α1 + α2
)

e2λ2t
)
.
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Consequently, after some algebra we obtain

d H (Pt f0)

dt
= −γ

(
α1α2 e−2γ t + σ∗

(
c2

2ω
4α1 + (c′

2)2α2
))

det Q(t)
(A.2)

and (
d HG(Pt f0)

dt

)
t=0

= −γα2

σ̄ 2
2

{
< 0 for α2 > 0,

> 0 for α2 < 0.
(A.3)

Since γ > 0 and det Q(t) > 0, the sign of the derivative of HG(Pt f0) is completely
determined by the remaining parts and depends on the sign of α1 and α2 and their
mutual relations. In the case of α1α2 = 0 we conclude from Eqs. (A.2) and (4.31)
that

d HG(Pt f0)

dt




= 0 for σ̄ 2
1 = σ∗, σ̄ 2

2 = ω2σ∗,

> 0 for
σ̄ 2

1 = σ∗, σ̄ 2
2 < ω2σ∗,

σ̄ 2
1 < σ∗, σ̄ 2

2 = ω2σ∗,

< 0 for
σ̄ 2

1 = σ∗, σ̄ 2
2 > ω2σ∗,

σ̄ 2
1 > σ∗, σ̄ 2

2 = ω2σ∗

(A.4)

for all t ≥ 0. Now assume that α1α2 
= 0. It also follows directly from Eq. (A.2)
that

d HG(Pt f0)

dt
< 0 for σ̄ 2

1 > σ∗, σ̄ 2
2 > ω2σ∗. (A.5)

This behavior is illustrated in Fig. 1.
To study the remaining cases we rewrite Eq. (A.2) in the form

d HG(Pt f0)

dt
= γ

det Q(t)
e−2γ t h1(t), (A.6)

where

h1(t) = −α1α2 − σ∗(λ1β1 e−2λ2t + λ2β2 e−2λ1t )

−2σ∗
ω2

γ
(β1 + β2) e−γ t (A.7)

and

β1 = λ1(λ2
2α1 + α2)

(λ1 − λ2)2
, (A.8a)

β2 = λ2(λ2
1α1 + α2)

(λ1 − λ2)2
. (A.8b)

Since λ1λ2 = ω2, we obtain

h′
1(t) = 2ω2σ∗(β1 e−2λ2t − (β1 + β2) e−γ t + β2 e−2λ1t ),
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which leads to

h′
1(t) = 2ω2σ∗ e−2λ1t

(
e(λ1−λ2)t − 1

) (
β1 e(λ1−λ2)t − β2

)
.

For t∗ > 0 such that β1 e(λ1−λ2)t∗ = β2 we have

h1(t∗) = −α1

(
α2 + ω2σ∗

(
β2

β1

)γ /(λ1−λ2)
)

. (A.9)

Returning to formulae (A.8), we note that

β2

β1
= 1 + (λ1 − λ2)(ω2α1 − α2)

λ1(λ2
2α1 + α2)

.

We can now continue to study the of behavior of HG(Pt f0). First, we consider
the case of α1 < 0 and α2 < 0. If ω2α1 ≥ α2 then h1(t) ≥ h1(0) and h1(0) > 0 by
Eq. (A.3). Now if ω2α1 < α2 then h1(t) ≥ h1(t∗) and from Eq. (A.9) it follows
that h1(t∗) > 0. Consequently, we obtain

d HG(Pt f0)

dt
> 0 for σ̄ 2

1 < σ∗, σ̄ 2
2 < ω2σ∗. (A.10)

Consider now the case of α1 > 0 and α2 < 0. Then we know that h1(0) >

0. Now if λ2
2α1 + α2 ≥ 0 then β1 ≤ 0 and β1 ≤ β2. Thus h1 is decreasing and

diverges to −∞ as t → ∞. Consequently, if λ2
2α1 ≥ −α2 > 0, or equivalently

λ2
2σ̄

2
1 + σ̄ 2

2 + γ λ2σ∗ ≥ 0 and σ̄ 2
2 < ω2σ∗, (A.11)

then there is t0 > 0 such that

d HG(Pt f0)

dt

{
> 0 for t < t0,
< 0 for t > t0.

(A.12)

If λ2
2α1 + α2 < 0 then β1 > 0 and β2/β1 > 1. From Eq. (A.9) it follows that

h1(t∗) < 0. Thus h1 starting from a positive value at 0 decreases to a negative
value at t∗ and then increases and diverges to ∞. Hence we conclude that, if
0 < λ2

2α1 < −α2, or equivalently

λ2
2σ̄

2
1 + σ̄ 2

2 + γ λ2σ∗ < 0 and σ̄ 2
1 > σ∗, (A.13)

then there are t1, t2 > 0 such that

d HG(Pt f0)

dt




> 0 for 0 < t < t1,

< 0 for t1 < t < t2,

> 0 for t > t2.

(A.14)

These behaviors are illustrated in Fig. 2.
A symmetric behavior is observed when α1 < 0 and α2 > 0, and graphically

shown in Fig. 3. We then have h1(0) < 0 and a similar analysis leads to the
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following conclusions. If λ2
2α1 ≤ −α2 < 0, or equivalently

λ2
2σ̄

2
1 + σ̄ 2

2 + γ λ2σ∗ ≤ 0 and σ̄ 2
2 > ω2σ∗, (A.15)

then there is t0 > 0 such that

d HG(Pt f0)

dt

{
< 0 for t < t0,

> 0 for t > t0
(A.16)

and if 0 > λ2
2α1 > −α2, or equivalently

λ2
2σ̄

2
1 + σ̄ 2

2 + γ λ2σ∗ > 0 and σ̄ 2
1 < σ∗, (A.17)

then there are t1, t2 > 0 such that

d HG(Pt f0)

dt




< 0 for 0 < t < t1,

> 0 for t1 < t < t2,

< 0 for t > t2.

(A.18)

(ii) Let us now consider the critical damping situation when

γ 2 = 4ω2,

so that λ1 = λ2, and set

λ = −γ

2
.

In this case we have

F =
(

0 1
−λ2 2λ

)
and et F = eλt

(
1 − λt t
−λ2t 1 + λt

)
,

so that the corresponding covariance matrix R(t) is given by

R(t) = R∗ + σ 2 e2λt

4λ3

(
(1 − λt)2 + λ2t2 2λ3t2

2λ3t2 (λ + λ2t)2 + λ4t2

)
.

We also have

et F Q0 et F T

= e2λt

(
σ̄ 2

1 (1 − λt)2 + σ̄ 2
2 t2 −σ̄ 2

1 λ2t(1 − λt) + σ 2
2 t(1 + λt)

−σ̄ 2
1 λ2t(1 − λt) + σ 2

2 t(1 + λt) σ̄ 2
1 λ4t2 + σ̄ 2

2 (1 + λt)2

)
.

Note that now σ∗ = − σ 2

4λ3 and ω2 = λ2. Thus

Q(t) =

 e2λt (α1(1 − λt)2 + α2t2) + σ∗ e2λt (−λ2t2(1 − λt)α1 + t(1 + λt)α2)

e2λt (−λ2t2(1 − λt)α1 + t(1 + λt)α2) e2λt (α1λ
4t2 + α2(1 + λt)2) + λ2σ∗


,
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where α1 and α2 are given by Eq. (4.31). Hence

det Q(t) = λ2σ 2
∗ + α1α2 e4λt + σ∗ e2λt (α1λ

2((1 − λt)2

+λ2t2) + α2((1 + λt)2 + λ2t2)),

and after some algebra we obtain

d HG(Pt f0)

dt
= 2λ

det Q(t)
e4λt (α1α2 + σ∗α1λ

4t2 e−2λt

+ σ∗α2(1 + λt)2 e−2λt ). (A.19)

Since λ = −γ /2, Eq. (A.3) remains valid. Now the analysis and conclusions are
similar to the overdamped case. First, observe that from Eq. (A.19) follow Eq. (A.4)
in the case of α1α2 = 0 and Eq. (A.5) in the case of positive α1 and α2, so assume
that α1α2 
= 0. Let us rewrite Eq. (A.19) in the form

d HG(Pt f0)

dt
= γ

det Q(t)
e−2γ t h2(t),

where now

h2(t) = −α1α2 − σ∗ e−2λt (α1λ
4t2 + α2(1 + λt)2).

Then

h′
2(t) = 2λ2σ∗ e−2λt t(λ(λ2α1 + α2)t − (λ2α1 − α2)).

Note that for

t∗ = λ2α1 − α2

λ(λ2α1 + α2)

we have

h2(t∗) = −α1(α2 + λ2σ∗ e−2λt∗ ).

A similar analysis as in the overdamped case leads to the same conclusions so that
Eq. (A.10) remains valid in the case of negative α1 and α2 and also Eqs. (A.12)–
(A.18) hold in the same ranges of parameters in the case of α1α2 < 0.

(iii) Finally, let us consider the underdamped case

γ 2 < 4ω2,

so that λ1, λ2 are complex, and set

λ = −γ

2
and β =

√
ω2 − λ2.



1466 Mackey and Tyran-Kamińska

Then λ1 = λ + iβ and λ2 = λ − iβ. The fundamental matrix in this case is equal
to

et F = eλt

β

(
β cos(βt) − λ sin(βt) sin(βt)

−ω2 sin(βt) β cos(βt) + λ sin(βt),

)
.

Let us rewrite the matrix et F as

et F = eλt

β

(
c3(t) sin(βt)

−ω2 sin(βt) c4(t)

)
,

where

c3(t) = β cos(βt) − λ sin(βt), (A.20a)

c4(t) = β cos(βt) + λ sin(βt). (A.20b)

Observe that σ∗ as defined in Eq. (4.31a) is equal to −σ 2/4λω2. The covariance
matrix R(t) is equal to

R∗ − σ∗ e2λt

β2

(
c2

3(t) + ω2 sin2(βt) 2λω2 sin2(βt)

2λω2 sin2(βt) ω4 sin2(βt) + ω2c2
4(t)

)
.

Further

et F

(
σ̄ 2

1 0

0 σ̄ 2
2

)
et FT

= e2λt

β2

(
σ̄ 2

1 c2
3(t) + σ̄ 2

2 sin2(βt)
(−ω2σ̄ 2

1 c3(t) + σ̄ 2
2 c4(t)

)
sin(βt)(−ω2σ̄ 2

1 c3(t) + σ̄ 2
2 c4(t)

)
sin(βt) ω4σ̄ 2

1 sin2(βt) + σ̄ 2
2 c2

4(t)

)
.

Making use of expressions (4.31) and (A.20), the sum of the matrices in the two
preceding equations gives

Q(t) =




σ∗ + e2λt

β2

(
α1c2

3(t) + α2 sin2(βt)
) e2λt

β2
sin(βt)(α2c4(t) − ω2α1c3(t))

e2λt

β2
sin(βt)(α2c4(t) − ω2α1c3(t)) σ∗ω2 + e2λt

β2

(
ω4α1 sin2(βt) + α2c2

4(t)
)

 ,

which after some algebra leads to

det Q(t) = ω2σ 2
∗ + e4λtα1α2 + σ∗ e2λt

β2
(ω2(ω2α1 + α2)

−λ2(ω2α1 + α2) cos(2βt)

−λβ(ω2α1 − α2) sin(2βt)). (A.21)
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We have

d HG(Pt f0)

dt
= 2λ

det Q(t)
e2λt

(
α1α2 e2λt

+ σ∗
β2

(
ω4α1 sin2(βt) + α2c2

4(t)
) )

. (A.22)

Since λ = −γ /2, Eq. (A.3) holds. Again, Eq. (A.22) implies Eq. (A.4) in the case
of α1α2 = 0. In the case of positive α1 and α2 the Gibbs’ entropy is decreasing.
This corresponds to

σ̄ 2
1 > σ∗ and σ̄ 2

2 > ω2σ∗, (A.23)

and is illustrated in Fig. 4.
Let us rewrite Eq. (A.22) in the form

d HG(Pt f0)

dt
= γ

det Q(t)
e4λt h3(t),

where now

h3(t) = −α1α2 − σ∗
β2

e−2λt
(
ω4α1 sin2(βt) + α2c2

4(t)
)
.

We have

h′
3(t) = 2ω2σ∗

β2
e−2λt sin(βt)(λ(ω2α1 + α2) sin(βt)

+β(α2 − ω2α1) cos(βt)).

The function h3 has extreme values at all t for which either sin(βt) = 0 or

β cos(βt) = λ sin(βt)
(ω2α1 + α2)

(ω2α1 − α2)
. (A.24)

Making use of the relations ω2 = λ2 + β2 and λ = −γ /2 it is seen that for every
nonnegative integer k we have

h3(kπ/β) = −α2(α1 + σ∗ eγ kπ/β) (A.25)

and

h3(t∗ + kπ/β) = −α1
(
α2 + σ∗ω2 eγ (t∗+kπ/β)

)
, (A.26)

where t∗ is the smallest positive solution of Eq. (A.24). Thus, if α1 < 0 and α2 > 0
then h3(kπ/β) < 0 and h3(t∗ + kπ/β) > 0 for all k. Consequently, if

σ̄ 2
1 < σ∗ and σ̄ 2

2 > ω2σ∗, (A.27)
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then there are two infinite sequences of points tk and t̄k such that

d HG(Pt f0)

dt

{
< 0 for tk < t < t̄k,

> 0 for t̄k < t < tk+1.
(A.28)

Consider now the case of α2 < 0. From Eq. (A.25) it follows that h3(kπ/β) >

0. When α1 < 0 the values of h3 at t∗ + kπ/β are positive. Therefore h3(t) > 0
for all t > 0. Consequently, if

σ̄ 2
1 < σ∗ and σ̄ 2

2 < ω2σ∗, (A.29)

then the Gibbs’ entropy increases. Finally, when α1 > 0 then α2 < ω2α1, the
function h3 decreases from a positive value at kπ/β to a negative value at t∗
+ kπ/β and then increases back to a positive value. Thus, if

σ̄ 2
1 > σ∗ and σ̄ 2

2 < ω2σ∗, (A.30)

then there are two infinite sequences of points tk and t̄k such that

d HG(Pt f0)

dt

{
> 0 for tk < t < t̄k,

< 0 for t̄k < t < tk+1.
(A.31)

These behaviors are illustrated in Fig. 5.
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