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Abstract

Periodic chronic myelogenous leukemia (PCML) is an interesting dynamical disease of the hematopoietic system in which

oscillating levels of circulating leukocytes, platelets and/or reticulocytes are observed. Typically all of these three differentiated cell

types have the same oscillation period, but the relation of the oscillation mean and amplitude to the normal levels is variable. Given

the appearance of the abnormal Philadelphia chromosome in all of the nucleated progeny of the hematopoietic stem cells (HSCs),

the most parsimonious conclusion is that chronic myelogenous leukemia, and its periodic variant, arise from derangements partially

involving the dynamics of the stem cells. Here, we have synthesized several previous mathematical models of HSC dynamics, and

models for the regulation of neutrophils, platelets and erythrocytes into a comprehensive model for the regulation of the

hematopoietic system. Based on estimates of parameters for a typical normal human, we have systematically explored the changes in

some of these parameters necessary to account for the quantitative data on leukocyte, platelet and reticulocyte cycling in 11 patients

with PCML. Our results indicate that the critical model parameter changes required to simulate the PCML patient data are an

increase in the amplification in the leukocyte line, an increase in the differentiation rate from the stem cell compartment into the

leukocyte line, and the rate of apoptosis in the stem cell compartment. Our model system is particularly sensitive to changes in stem

cell apoptosis rates, suggesting that changes in the numbers of proliferating stem cells may be important in generating PCML.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

All blood cells arise from a common origin in the
bone marrow, the hematopoietic stem cells (HSCs).
These stem cells can differentiate into one of three
major cell lines: the leukocytes, the platelets, and the
erythrocytes. The exact details of how the numbers
of circulating cells of each type are regulated remain
e front matter r 2005 Elsevier Ltd. All rights reserved.
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somewhat obscure, though the broad outlines are
clear.
For the red blood cells, the cytokine erythropoietin

(EPO) mediates a negative feedback loop that helps to
regulate erythrocyte production (Adamson, 1974; Silva
et al., 1996). A decrease in numbers of circulating
erythrocytes leads to a decrease in tissue pO2 levels,
which in turns triggers a production and release of EPO
by renal macula cells. This elevation of EPO increases
the net production of primitive erythroid precur-
sors, and finally an increase in the numbers of
circulating erythrocytes takes place some days later.
In the production of white blood cells, granulocyte
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colony-stimulating factor (G-CSF) has been demon-
strated to be very important and it too mediates a
negative feedback loop (Price et al., 1996). As for the
erythrocytes and leukocytes, the production of platelets
involves a negative feedback loop, related to the
production and maturation of megakaryocytes. These
are platelet precursor cells that give rise to 1000–5000
platelets each (Beutler et al., 1995). Thrombopoietin
(TPO), which is known to be involved in platelet
production, mediates this negative feedback and TPO
has been shown to have effects on other cell lines
as well (Ratajczak et al., 1997; Tanimukai et al., 1997),
which could imply that the three lines are not fully
independent.
The regulation of the HSC population is also of

importance. Previous mathematical models of HSC
dynamics have been based on a G0 cell cycle model,
and thus considered actively proliferating stem cells and
quiescent, non-proliferating cells in the so-called G0
phase (Mackey, 1978, 1979a, 2000; Fowler and Mackey,
2002; Pujo-Menjouet et al., 2001). There is typically a
delay in mathematical models of the stem cells, reflecting
the non-zero time that it takes the cells to complete the
proliferative phase of the cell cycle which includes DNA
synthesis, mitosis, and cytokinesis. However, the para-
meters determining the rate of proliferation in the stem
cell compartment, which depends ultimately on the
current number of stem cells, are not well-known (Pujo-
Menjouet et al., 2001; Ogawa, 1993; Lemishka et al.,
1986). Since stem cell oscillations are thought to drive
oscillations in several periodic hematological diseases
(Haurie et al., 1998), developing a better knowledge of
stem cell dynamics is important.
There is significant autonomy between the three cell

lines, as evidenced by their distinct responses to varying
circulating cell numbers in each line; i.e. to distinct
demands for production. Several hematological diseases
provide motivation for the mathematical study of
hematopoietic regulation, as well as providing the
opportunity to study early hematopoietic regulation
and its effects on the relationships between the cell lines
(Haurie et al., 1998). These disorders include (but are
not limited to) cyclical neutropenia (CN), periodic
chronic myelogenous leukemia (PCML), cyclical throm-
bocytopenia, and periodic hemolytic anemia. The first
two involve oscillations in all circulating hematological
cells with the same period. The regulatory mechanisms
in early hematopoiesis are not as well understood as the
peripheral hematopoietic regulatory elements. Thus,
periodic hematological disorders in which oscillations
occur in more than one cell line are of considerable
interest since the most parsimonious explanation of
oscillatory pathologies involving more than one cell type
is that they arise in the HSC. Of particular interest here
will be periodic CML, in which oscillations occur
primarily in the leukocytes, but may also occur in the
platelets and in some cases the reticulocytes (Fortin and
Mackey, 1999).
Leukemia is a disease of the blood and bone marrow,

characterized by large and apparently uncontrolled
accumulation of blood cells. Myelogenous leukemia
involves the myelocytes, which are granular leukocyte
precursors. In acute leukemia, the disease progresses
rapidly, and produces large numbers of immature non-
functioning white blood cells. In chronic forms of
leukemia, the cells produced are initially more func-
tional.
CML is associated with a chromosomal abnormality,

known as the Philadelphia chromosome, that occurs in
all cell lineages in about 90% of cases. This abnormality
consists of a transposition of parts of chromosomes 9
and 22, and results in the formation of the Bcr–Abl
fusion protein (ODwyer et al., 2000). This protein is
thought to be responsible for the dysfunctional regula-
tion of myelocyte growth and other features of CML
(Melo, 1996). (See Grignani (1985) for more detail about
CML.)
In periodic chronic myelogenous leukemia (PCML)

the leukocyte count varies periodically, typically between
values of 30 and 200� 109 cells L�1. This is far above the
normal value of 6� 109 cells L�1. The variation occurs
with a period in the range of 40–80 days, which is very
long in comparison with the maturation and lifespan of
the stem cells and the leukocytes. In addition, oscillations
may occur in the platelets and occasionally also in the
reticulocytes, and in these cases the platelet and
reticulocyte periods are the same as the leukocyte periods
(Henderson et al., 1996; Fortin and Mackey, 1999). It
has been argued that this, in addition to the occurrence
of the Philadelphia chromosome in all differentiated
lineages, is indicative of the stem cell origins of PCML
(Fortin and Mackey, 1999).
In both PCML and CN, the hypothesis that oscilla-

tions originate in the stem cells is related to the fact that
oscillations occur in different lines. However, in many
earlier mathematical models, only one cell line, or one
line coupled to the stem cells, is represented. In this
context, it is not possible to examine the effects of a
destabilization in one line or in the stem cell compart-
ment on whole system. For example, while Pujo-
Menjouet et al. (2001) explored how long-period
oscillations (as seen in PCML) could arise within the
context of a G0 stem cell model, the stem cell model
alone could not predict whether the leukocytes and
platelets would oscillate at the levels observed in PCML.
Similarly, Bernard et al. (2003) were able to duplicate
various features of CN with an integrated mathematical
model of the HSC and peripheral neutrophil control.
However, since their model did not include platelet and
erythrocyte regulation it is unknown if their simulated
neutropenic conditions would be consistent with ob-
served platelet and erythrocyte data in CN.
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This paper presents a model framework within which
these questions can be addressed. We utilize a G0 type
model for the stem cell compartment, based on the work
of Pujo-Menjouet et al. (2001), and couple it to a
leukocyte model based on that of Bernard et al. (2003),
as well as to two simplified models representing
peripheral platelet and erythrocyte regulation. In Sec-
tion 2.1, the model is described, including the various
feedback and control functions that capture the essence
of the control exercised by G-CSF, EPO and TPO.
Section 2.2 deals with the parameter estimation for the
model in the normal (non-pathophysiological) case. In
Section 3, the published PCML data with which the
model is compared are briefly described. This is followed
in Section 4 with a description of the techniques used to
fit the parameters in the model to the PCML data, and
the results of the fitting approaches along with their
interpretation.
N(T)

γP

γR

P(T)

R(T)γN

τPS
τRS

Fig. 1. A cartoon representation of the full model including the HSC

and the three differentiated cell lines. See the text for full details as well

as the notation.
2. A model of the hematopoietic system

2.1. Model formulation

In previous work leukocyte (Hearn et al., 1998;
Haurie and Mackey, 2000; Bernard et al., 2003),
erythrocyte (Mackey, 1979b; Bélair et al., 1995; Mahaffy
et al., 1998a) and platelet (Bélair and Mackey, 1987;
Santillan et al., 2000) dynamics have been modelled
separately, with the goal of building quantitative
understanding of cellular production within the context
of periodic hematological disorders. The goal of the
present work is to link these models together, connecting
models for the three distinct cell lines to a mathematical
model of the stem cell population (Mackey, 1978). The
present model thus has four distinct compartments
representing the HSC and the circulating leukocytes,
platelets and erythrocytes. The stem cells are pluripo-
tential and self-renewing, and can differentiate into the
leukocyte, erythrocyte or platelet lines. Alternatively,
the stem cells may re-enter the proliferative phase of the
stem cell compartment. The stem cell and leukocyte
compartments are modelled using the stem cell model
connected to a neutrophil population as in Bernard et al.
(2003). The platelet and erythrocyte compartments are
simplified approximations of earlier modelling efforts.
The full model is illustrated in Fig. 1.
The pluripotential, non-proliferating stem cells are

denoted by Q (in units of 106 cells kg�1, see Fig. 1). The
circulating leukocytes, erythrocytes and platelets are
denoted N (units 109 cells kg�1), R (units 1011 cells kg�1)
and P (units 1010 cells kg�1), respectively. The rates of
differentiation into these three lines are given by kNðNÞ,
kRðRÞ and kPðPÞ, respectively. These differentiation
rates have units of days�1. The fact that these rates
each depend on the numbers of circulating cells of the
relevant type encapsulates the feedback between the
circulating cell numbers and the production; the feed-
back is always negative so when the number of
circulating mature cells of a given line falls, the relevant
differentiation rate k has a corresponding compensatory
increase. More discussion of the forms of kNðNÞ, kRðRÞ

and kPðPÞ will follow.
With reference to Fig. 1, first consider the stem cell

portion of the model. There are two ways that the stem
cells can exit the non-proliferating compartment: they
can either re-enter the proliferating phase at a rate bðQÞ

(units of days�1), or they can differentiate into any of
the three cell lines, at rates kN ðNÞ, kRðRÞ and kPðPÞ for
the leukocytes, erythrocytes and platelets respectively.
After re-entering the proliferating phase, the cells divide,
taking a time tS (units of days) to do so.
The production of Q, where Q represents the density

of non-proliferating stem cells, is given by the flux of
stem cells entering the proliferative phase, multiplied
by two to account for cell division, and delayed by the
time tS that it takes them to multiply. However, the
number of cells leaving the proliferating compartment
is not simply twice the number that entered it a time tS

ago, because during proliferation, there may be loss
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through cell death. We represent this loss as occurring
at a rate gS (units of days

�1) over the time period
tS. Thus, the number of non-proliferating stem
cells entering per unit time (and augmenting Q) is
2e�gStSbðQðt � tSÞÞQðt � tSÞ. (In this paper, we always
use the notation QtS

� Qðt � tSÞ.) The loss from the
non-proliferating compartment is given by the sum of
the terms representing differentiation into the three cell
lines, plus the loss due to the cells re-entering the
proliferative phase. Thus, the differential delay equation
governing Q is

dQ

dt
¼ � bðQÞQ � ðkN þ kR þ kPÞQ

þ 2e�gStSbðQðt � tSÞÞQðt � tSÞ. ð1Þ

There are three more differential delay equations in
the model, each representing one cell line. These three
models for peripheral control share some common
features and display some differences. In each cell line
there is an amplification stage representing many stages
of cell division (typically 12–18, depending on the cell
line). The dimensionless amplification parameters are
AN , AR and AP. Following completion of amplification
through cell division, the cells traverse a maturation
compartment (duration in days denoted by tiM ), where
i ¼ N ;R;P) and then enter the circulation. While the
leukocytes die at a constant rate gN (units of days

�1), the
platelets and erythrocytes enter an ‘age-structured’
compartment where they persist over times tRS and
tPS, respectively, and are primarily lost to senescence.
However, there are also well documented random losses
of platelets and erythrocytes represented by gR and gP

(again units of days�1).
Specifically considering the leukocytes, after amplifi-

cation and maturation they enter the circulating
leukocyte compartment (denoted by N). They are
randomly lost at a rate gN . The time for maturation is
denoted by tN , and the equation governing the
leukocytes is then, as in Bernard et al. (2003)

dN

dt
¼ �gNN þ ANkNðNtN

ÞQtN
. (2)

The platelet and erythrocyte dynamics are somewhat
more complex. Indeed, in previous work (Mahaffy et al.,
1998b; Santillan et al., 2000), age-structured models
were used to represent their dynamics in the bone
marrow and the loss via senescence of circulating
erythrocytes and platelets. In the present model we
will replace the age distribution simply with discrete
delays in the erythrocyte and platelet lines (Mackey,
1996). The equations for the erythrocyte and platelet
dynamics are

dR

dt
¼ � gRR þ ARfkRðRtRM

ÞQtRM

� e�gRtRSkRðRtRMþtRS
ÞQtRMþtRS

g ð3Þ
and

dP

dt
¼ � gPP þ APfkPðPtPM

ÞQtPM

� e�gPtPSkPðPtPMþtPS
ÞQtPMþtPS

g. ð4Þ

In Eq. (3), the term �gRR reflects a random loss of
erythrocytes at rate gR. The positive term in Eq. (3)
represents the amplification of the cells entering the
erythrocyte line from the stem cell compartment, minus
the loss that accrues in the age-structured compartment
(represented by the lower box in the erythrocyte line; see
Fig. 1) over the time tRS. Eq. (4) for the platelet
compartment has exactly the same structure as Eq. (3),
and all the terms in Eq. (4) are analogous to those in
Eq. (3).
The lifetime tRS ¼ 120 days is very long, and

consequently oscillations in the HSC or the leukocyte
and platelet lines may not be transmitted visibly to the
erythrocyte line due to the damping of the long time-
scale. However, oscillations may be visible in the
erythrocyte precursors (the reticulocytes), and for this
reason, we have divided the erythrocyte compartment
into two sub-compartments for the purposes of compar-
ing model simulations with existing reticulocyte data.
Eq. (3) is thus replaced by two equations

dL

dt
¼ � gRL þ ARfkRðRtRM

ÞQtRM

� e�gRtretkRðRtRMþtret
ÞQtRMþtret

g ð5Þ

and

dR

dt
¼ � gRR þ ARfe

�gRtretkRðRtRMþtret
ÞQtRMþtret

� e�gRtsumkRðRtsum
ÞQtsum

g, ð6Þ

L now represents the reticulocytes, and R still represents
the erythrocytes, which are simply the ‘later’ component
of the simplified age-structured box of Fig. 1. The delay
time tsum is the total time spent after maturation, tsum ¼

120 days.
It remains to discuss the forms of the feedback

functions kN , kP and kR, as well as the rate bðQÞ at
which the stem cells return to the proliferative phase. In
Bernard et al. (2003), the re-entry rate to the prolif-
erative phase was given as

bðQÞ ¼ k0
ys
2

ys
2 þ Qs . (7)

The form of this equation is very common in enzyme
kinetic relations (see the discussion in Bernard et al.
(2003)), and offers a good match to existing data as well
as providing convenient analytical properties. We will
use the parameters given in Bernard et al. (2003) for this
function (see Table 2).
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Table 1

Delays in the model

Delay Description

tS Stem cell proliferation time

tN Leukocyte maturation time

tRM Erythrocyte maturation time

tret Reticulocyte maturation time

tRS Erythrocyte aging time to senescence

tsum tRM þ tret þ tRS

tPM Platelet maturation time

tPS Platelet aging time to senescence
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For the leukocyte feedback function kN , we use the
same function as was used in Bernard et al. (2003)

kN ðNÞ ¼ f 0
yn
1

yn
1 þ Nn . (8)

This function is derived from the assumption that the
differentiation rate is proportional to the number of
bound G-CSF receptors on the cells. While the
concentration of G-CSF changes with time, for a given
leukocyte concentration, the G-CSF concentration
reaches equilibrium on a time-scale of hours, whereas
the time-scale of interest in our study of periodic
hematological disorders is on the order of weeks. We
therefore make the additional assumption that the
G-CSF concentration changes rapidly enough that it
reaches equilibrium with respect to the number of
circulating white blood cells. This is what allows us to
write the rate of differentiation of the stem cells into the
leukocyte line as a function of N rather than as a
function of the G-CSF concentration; see Bernard et al.
(2003) for a derivation of Eq. (8).
Megakaryocytes are platelet precursors, each of which

produces, on average, 1000–5000 platelets (Beutler et al.,
1995). In Santillan et al. (2000) the authors assumed that
the number of megakaryocytes of age 0, entering from
the stem cell compartment, was simply proportional to
the concentration of TPO. In our model, we preserve the
approximation that the differentiation is proportional to
the thrombopoiesis concentration, but assume, as in the
case of G-CSF, that the TPO is in dynamic equilibrium
with the platelet numbers, and hence that dT=dt ¼ 0,
where T is the concentration of TPO. From Santillan
et al. (2000),

dT

dt
¼

a

1þ KPr � kT , (9)

so we have

kPðPÞ / T /
1

1þ KpPr (10)

and can write

kPðPÞ ¼
k̄p

1þ KpPr . (11)

The rate kR of differentiation into the erythrocyte line is
modelled similarly. Indeed, in Mahaffy et al. (1998a), it
was assumed that the number of new precursor cells
entering the erythrocyte line was linearly proportional to
the concentration of EPO. There, the authors develop
the equation

dE

dt
¼

a

1þ KRm � kE,
which is exactly analogous to Eq. (9). By the same
reasoning, we use

kRðRÞ / E /
1

1þ KrR
m (12)

and write

kRðRÞ ¼
k̄r

1þ KrR
m . (13)

In summary, the equations comprising the model are

dQ

dt
¼ �bðQÞQ � ðkN þ kR þ kPÞQ þ 2e�gStSbðQtS

ÞQtS
,

dN

dt
¼ �gNN þ ANkN ðNtN

ÞQtN
,

dL

dt
¼ � gRL þ ARfkRðRtRM

ÞQtRM

� e�gRtretkRðRtRMþtret
ÞQtRMþtret

g,

dR

dt
¼ � gRR þ ARfe

�gRtretkRðRtRMþtret
ÞQtRMþtret

� e�gRtsumkRðRtsum
ÞQtsum

g,

dP

dt
¼ � gPP þ APfkPðPtPM

ÞQtPM

� e�gPtPSkPðPtPMþtPS
ÞQtPMþtPS

g, ð14Þ

where

bðQÞ ¼ k0
ys
2

ys
2 þ Qs ,

kN ðNÞ ¼ f 0
yn
1

yn
1 þ Nn ,

kPðPÞ ¼
k̄p

1þ KpPr ,

kRðRÞ ¼
k̄r

1þ KrR
m . (15)

For reference, the delays in the system, and the time
values composing them, are listed in Table 1.
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2.2. Parameter estimation

Throughout this discussion, the subscript � indicates a
steady-state value. The steady-state values are obtained
(and related to other parameters) by setting the rates of
change in Eq. (14) to zero: _Q ¼ _N ¼ _L ¼ _R ¼ _P � 0.

2.2.1. The stem cell compartment

The HSC parameters are the death rate gS in the
proliferating phase, the time tS that cells spend in the
proliferative phase, the parameters k0, ys and s

occurring in the Hill function bðQÞ, and the size of
the non-proliferative HSC compartment Q at steady
state, Q�.
The value of Q� is derived from various data.

Abkowitz et al. (1988) give a value of 8 stem cells per
105 nucleated bone marrow cells in cats, while in mice it
is estimated that there are 1–50 stem cells per 105

nucleated bone marrow cells (Boggs et al., 1982;
Micklem et al., 1987). Since there are approximately
1:4� 1010 nucleated bone marrow cells per kg of body
mass in mice, this would imply that there are between
1:4� 105 and 7� 106 HSC per kg body mass in mice, or
1:1� 106 stem cells per kg body mass in cats. We have
adopted the latter value so Q� ¼ 1:1� 10

6 stem cells per
kg body mass.
Mackey (2000) has estimated in the mouse that

gS 2 ð0:069; 0:228Þday�1, that the steady-state rate of
re-entry from the non-proliferative phase to the
proliferative phase is bðQ�Þ 2 ð0:020; 0:053Þday�1, tS 2

ð1:41; 4:25Þ days, and that the steady-state rate of
differentiation into all cell lines from Q is between
0.010 and 0:024 day�1. The duration of the proliferative
phase of the HSC cell cycle has been estimated as tS ¼

2:8 days by Abkowitz et al. (1988) in the cat, and
between 1.4 and 4.3 days by Mackey (2000) in the
mouse.
Bernard et al. (2003) give the rate of apoptosis in the

stem cell compartment gS ¼ 0:01–0:2 days�1. In their
discussion of long-period oscillation in a G0 stem cell
model, Pujo-Menjouet et al. (2001) give 0:18 days�1, and
in Mackey (2000) the range for gS is given as
0.07–0:23 days�1. We began our simulations with
gS ¼ 0:18. Abkowitz et al. (1988) estimated the mean
proliferation rate of HSCs in mice to be bðQ�Þ ¼

0:06 days�1 which, in combination with the other Hill
function parameters given in Bernard et al. (2003), gives
y2 ¼ 0:5 ð�106Þ cell kg

�1 and k0 ¼ 3:0 days
�1. These

parameters are taken from a variety of experiments
(Lyons, 1999; Oostendorp, 1995), in conjunction with
fitting a visual inspection of the Bernard et al. (2003)
model to experimental data.
The parameter s may be interpreted as the number of

ligand molecules that are required in the activation of a
receptor site, which in the case of HSCs is not well
understood. Bernard et al. (2003) estimate that the value
of s is between 2 and 4. Based on our results and the
discussion of oscillations in the stem cell model analysed
by Pujo-Menjouet et al. (2001), we have used s ¼ 4.

2.2.2. The leukocyte compartment

For the leukocyte control dynamics, we need to
estimate the stationary state (mean) leukocyte count,
N�, as well as the loss rate gN , the leukocyte maturation
time tN and the Hill function parameters f 0, y1 and n.
The loss rate of circulating leukocytes is gN ’

2:4 days�1 (Deubelbeiss et al., 1975). Novak and
Necas (1994) give the daily leukocyte produc-
tion as 2:4�109 cells kg�1day�1. This gives N� ’ 0:5�
109 cells kg�1 day�1 for humans. We have used a range
of N� ’ 0:35–0:7� 10

9 cells kg�1 day. Lebowitz and
Rubinow (1969) estimate a maturation time for neu-
trophils of tN ¼ 3–10 days, following the analysis of
Hearn et al. (1998) we take tN ¼ 3:5 days for the
leukocyte compartment.
The amplification parameter in the leukocyte line, AN ,

has been estimated by Mackey (2000) as 300,000 based
on the data in Cheshier et al. (1999), and as 171,000
based on the data of Abkowitz et al. (2000). The
previous model of Bernard et al. (2003) gives a range of
0–100,000 based on Novak and Necas (1994). We have
taken a value of AN ¼ 75; 200, which is within this
range. We will adjust the units of N so that the
numerical value of AN we use in the steady-state is 75;
the units of N are 109 cells kg�1 body mass while the
units of Q (the quiescent stem cells) are 106 cells kg�1.
The Hill function parameters used in our model

are similar to those given in Bernard et al. (2003),
where the range of the parameter f 0 was given to be
f 0 ¼ 0:4–1:5 days

�1 based on experiments in Sachs and
Lotem (1994) and Ward et al. (1999) on the effects of
G-CSF administration on cell production. Bernard et al.
estimate y1 ¼ 0:36� 108 cells kg

�1 from data given in
Ward et al. (1999); Lotem and Sachs (1998); Akbarza-
deh et al. (2002), and n ¼ 1. In our model, we compute

kN�
¼ kN ðN�Þ ¼

gNN�

ANQ�

from Eq. (2) evaluated at steady-state conditions.
Having found kN�

, we compute f 0

f 0 ¼ kN�

y1 þ N�

y1
¼ 0:4.

2.2.3. The erythrocyte compartment

Mahaffy et al. (1998a) have already estimated most of
the required parameters. The mean (steady state)
erythrocyte number is 3:5� 1011 cells kg�1 body weight.
The maturation time tRM is approximately 6 days, and
the total lifespan, corresponding to the time spent in the
lower compartment in our model, tsum, is 120 days. The
reticulocyte lifespan tret is 2.8 days (Beutler et al., 1995).
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Table 2

Parameters used for the steady state

Parameter name Value used Unit Sources

Stem cell compartment

Q� 1.1 �106 cells kg�1 1

gS 0.1 Days�1 1

tS 2.8 Days 1,2

k0 3.0 Days�1 1

y2 0.5 �106 cells kg�1 1

s 4 (none) 1

Leukocyte compartment

N� 3.55–7 �108 cells kg�1 2,3

gN 2.4 Days�1 1,4,5

tN 3.5 Days 1

AN 75,200

(75.2)

(none) 1,3

f 0 0.40 Days�1 (calculated)

y1 0.36 �108 cells kg�1 1

n 1 (none) 1

Erythrocyte compartment

R� 3.5 �1011 cells kg�1 6

gR 0.001 Days�1 6

tRM 6 Days 6

tsum 120 Days 6

tret 2.8 Days 3

AR 563,000 (none) 3,7

k̄r 1.1 Days�1 (calculated)

Kr 0.0382 ð�1011 cells kg�1Þ�m 6

m 6.96 (none) 6

Platelet compartment

P� 2.14 �1010 cells kg�1 8

gP 0.15 Days�1 8

tPM 7 Days 8

tPS 9.5 Days 8

AP 282,000 (none) 3

k̄p 1.17 Days�1 (calculated)

Kp 11.66 ð�1010 cells kg�1Þ�r 8

r 1.29 (none) 8

Sources: 1 ¼ Bernard et al. (2003), 2 ¼Abkowitz et al. (1988),

3 ¼Beutler et al. (1995), 4 ¼Deubelbeiss et al. (1975), 5 ¼Haurie and

Mackey (2000), 6 ¼Mahaffy et al. (1998b), 7 ¼Novak and Necas

(1994), 8 ¼Santillan et al. (2000).
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The loss rate from the erythrocyte compartment was
estimated to be gR ¼ 0:001 days�1. Based on a compar-
ison with the data presented in Erslev (1991) and
Mahaffy et al. (1998a) estimated the Hill function
parameters to be m ¼ 6:96 and Kr ¼ 0:0382.
We used the same approach as in the leukocyte

compartment to estimate kR�
based on the steady-state

values, and k̄r from kR�

kR�
¼

gRR�

ARQ�ð1� e
�gR�tRS Þ

and

k̄r ¼ kR�
ð1þ KRRm

� Þ.

In these calculations we use AR ¼ 563; 000 as the
amplification in the erythrocyte line. Beutler et al.
(1995) estimated 10–12 divisions between the proery-
throblast stage and the mature red blood cells, while
Novak and Necas (1994) estimate 9 doubling stages
between the stem cells and the proerythroblasts, for a
total of 19–21 divisions. Our amplification factor is thus
approximately 219.

2.2.4. The platelet compartment

For platelets, Santillan et al. (2000) have estimated
many of the relevant parameters. Thus, the mean
platelet count is P� ¼ 2:5� 10

8 cellsmL�1 blood. Using
the fact that a 70 kg adult has 6L of blood, we find
P� ¼ 2:14� 10

10 cells kg�1 body mass. By fitting the
TPO concentration versus the platelet count data given
in Kuter (1996), Santillan et al. (2000) estimate the Hill
function parameters to be KP ¼ 31:18 in units of P�,
and r ¼ 1:29. We convert KP to kg cell

�1 (as we
are not going to work in units of P�) so that
KP ¼ 11:66 ð�1010 cells kg�1Þ�1. However, due to the
range of observed steady-state values of P, P� 2

ð1:4; 4Þ � 1010 cells kg�1 body mass, we require some
flexibility in P�, which is implemented in our model by
allowing KP to change: KP 2 ð3; 13Þ � 1010 cells kg�1

body mass. Finally, Santillan et al. (2000) estimated
that gP ¼ 0:15, tPM ¼ 7 days and tPS ¼ 9:5 days.
The estimation of kP�

in the platelet case has been
done somewhat differently than in the erythrocyte and
leukocyte compartments, because it is necessary to set
kP�
to ensure that a non-zero steady state will exist in the

model. In other words, if the efflux from the resting
phase of the stem cell compartment is too large, the
small influx to the resting-phase stem cell compartment
from the proliferating phase will be insufficient and
the stem cells numbers will decrease exponentially to
zero. For this reason, we ensure that (with reference to
Eq. (1)),

�ðkN�
þ kR�

þ kP�
þ b�Þ þ 2e

�gStSb� ¼ 0 (16)

for the values of N�, R� and P� found from the
literature. k̄p is found in the same manner as k̄r, and we
use a value of AP ¼ 282; 000 for the platelet amplifica-
tion factor. Beutler et al. (1995) reports that approxi-
mately 35; 000 platelets are produced per mL of blood
per day, which, translated into the context of our model,
would mean that AP times the steady-state flux out of
the stem cell compartment should be approximately
this amount, or 2:57� 109 cells kg�1 day�1. The steady-
state flux out of the stem cell compartment is kP�

Q�.
We can, therefore, solve for APkP�

� 2500. Since it
turns out from Eq. (16) that kP�

is on the order of 10�2,
this is consistent with our amplification factor. A
summary of the parameters used in the model is given
in Table 2.
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3. Data

We have analysed data taken from published studies
of periodic CML. These data were previously analysed
for significant periodicity using Lomb periodogram
(Lomb, 1976) techniques by Fortin and Mackey
(1999). Each primary study presented time series of
patient leukocyte counts, and some also provided
platelet and reticulocyte data. In all but two of the
studies the patient was untreated.
Fortin and Mackey (1999) digitized the published

data, converting the result to PostScript format using
PhotoShop 4.0. The times and values of each data point
were then digitally extracted. Upon Lomb periodogram
analysis, Fortin and Mackey (1999) found 9 sets of data
showing significant periodicity in the leukocytes and
platelets (at significance levels pp0:05, in addition to
several cases in which the platelets were reported to be
oscillating, but the platelet data were not published. We
have analysed the 9 data sets in which leukocytes and
platelets were oscillating; in two of these, oscillations in
the reticulocytes were observed as well. We have also
analysed two data sets for which only leukocyte data
were available. These 11 data sets are the data which we
are interested in simulating with our model.
The original studies in which the data are published

are: Kennedy (1970), Rodriguez and Lutcher (1976),
Gatti et al. (1973), Vodopick et al. (1972), Yamauchi
and Ide (1992) and Umemura et al. (1986), Morley et al.
(1967), Iizuka et al. (1984), Chikkappa et al. (1976) and
Delobel et al. (1973). In the study by Kennedy (1970),
the patient was undergoing constant hydroxyurea
treatment; because the dosage was constant it is not
believed that the treatment initiated the cyclicity. The
patient described in Rodriguez and Lutcher (1976) was
receiving bulsafan treatment; however, there was evi-
dence of cycling before treatment began. None of the
other patients were undergoing treatment. Only leuko-
cyte data are given in Delobel et al. (1973) and Gatti
et al. (1973), while platelet data are given in all the other
cases; only Chikkappa et al. (1976) and Iizuka et al.
(1984) give reticulocyte data. There is considerable
variation not only in the periods, which range from 40
to 80 days, but also in the leukocyte means, for which
the range spans a factor of 6, between 20� 109 and
120� 109 cells L�1.
4. Simulation and fitting

There are several possibilities for the simulation of
PCML in the context of this model. It has been
suggested, for example, that CML originates in the
HSC compartment, both because the Philadelphia
chromosome is found in is all of the hematopoietic
lineages, as mentioned in Section 1, and because in
PCML all cell lines oscillate with the same period. It is
of interest to discover to what extent the observed
relationship between the cell lines is duplicated in the
model. The periods in PCML are also of interest, being
between 40 and 80 days. This is significantly longer than
the periods in other oscillating hematopoietic diseases
like CN, and is two orders of magnitude longer than the
duration of the proliferating phase of the cell cycle in the
stem cells.
A variety of approaches to simulating PCML, based

on existing notions of the mechanisms of the disease,
were initially tried. For example, based on the hypoth-
esis that oscillations are caused by changes in the
dynamics of the HSC, we changed the apoptosis rate gs

in the stem cell compartment to determine whether this
might induce oscillations like those seen in PCML.
However, with the parameters as estimated in Section
2.2, the oscillations generated had periods in the 20 day
range, which is well below the entire observed range in
PCML. In addition, the leukocytes did not oscillate
significantly above the steady state in any of these
simulations in contrast to the clinical data.
In PCML there is a large proliferation of leukocytes,

so we simulated this excessive proliferation by increasing
the parameter AN from its steady-state value of
approximately 75 to much higher values of 1000–5000.
However, this also did not result in leukocyte numbers
at the observed levels, and in general did not lead to a
bifurcation in the stability of the steady state, and
sustained oscillations. Other attempts to simulate
PCML based on intuition were not successful in
duplicating the observed behavior of the system.
However, it must be recognized that the parameter
space for this model is large, and intuitive explorations
are capable of describing the behavior in only a tiny
subset of the parameter space.
Thus, some notion of where in the parameter space to

begin the simulations is essential. In Pujo-Menjouet
et al. (2001), some exploration of long-period oscilla-
tions in a G0 model of HSCs has been carried out. In
fact, Eq. (1) reduces to the equation used in Pujo-
Menjouet et al. (2001) in the case that all the
differentiation rates k are constant. Pujo-Menjouet et
al. (2001) examined how to create long-period oscilla-
tions in the model, both at smaller values of s (the
exponent in the Hill function bðQÞ), and as s ! 1.
Their results (for s ¼ 4) provided a starting point at
which our model generated long-period oscillations.
It is also necessary to specify the initial history of the

variables, since there are delays in the system. In our
simulations, the histories over times t 2 ½�240;�120�
were set to the healthy, default values. Then, while
t 2 ½�120; 0�, the system was integrated, allowing
transient behavior to disappear; in most cases, since of
course the parameters were significantly different from
the steady-state (healthy) parameters, oscillations
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occurred during this time. Simulations were compared
to observed data starting at t ¼ 0. Thus, the histories
immediately prior to comparison with the data are not
constant functions, but vary depending on the para-
meter choices for the particular simulation.
We use and compare two distinct approaches to the

fitting of the model to the observed data. In the first
approach, we have used B. Ermentrout’s implementa-
tion of the Marquardt–Levenberg method, described in
Press et al. (1992), which is included with the software
xppaut. The Marquardt–Levenberg method minimizes
the function

w2 ¼
XN

i¼1

ðys � yiÞ
2

s2i
, (17)

where yi are the observed data points, ys are the
simulated data points, si are the estimated standard
deviations of the noise in the observed data points, and
N is the total number of points available. However, we
do not have access to values of si for each data point,
and have had to assume that

si ¼ s ¼ constant (18)

over each data set. In our case, xppaut sets s2 to be the
standard deviation of the data for the leukocytes,
platelets and reticulocytes separately, to provide scaling
information to the algorithm.
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Fig. 2. An example of the results of the Marquardt–Levenberg fitting to the V

while platelets are in units of 1010 kg�1. In the left-hand panels are the observ

panel plots show the data and the simulation sub-sampled at the observed d
In this case, minimizing w2 is simply the same as
minimizing the sum of squares

S ¼
XN

i¼1

ðys � yiÞ
2 (19)

for each data type, i.e. for the leukocytes, platelets and
reticulocytes separately.
The primary advantage of this method of fitting is

that it quite rapidly converges to a nearby minimum in
w2, using a variable step size in the parameter adjustment
to aid convergence. However, it has the disadvantage
that in a parameter space in which there are many local
‘energy’ (w2) minima, the algorithm will converge to a
local minimum and will not be able to escape that
minimum even if there is a global minimum elsewhere in
parameter space.
Because of the problem of multiple local minima, it

was necessary to make every effort to begin the
Marquardt–Levenberg convergence algorithm at a point
in parameter space from which it was likely that a ‘good’
minimum would be reached. This process was carried
out by hand, using our putative understanding of the
possible biological processes involved in PCML as well
as experience with generating oscillations in the model.
For example, the parameter AN was set higher than the
steady state, while tS, k0 and gS were set within estimated
ranges to generate long-period oscillations. The other
parameters were initiated at their steady-state values.
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plots show the data and the simulation sub-sampled at the observed data times reported by Iizuka et al. (1984).

Table 3

Parameter estimates for the 11 patients of this study based on the Marquardt–Levenberg method

Default AN f 0 AP kP gS k0

75.00 0.40 28.00 1.17 0.18 3.00

Iizuka 167.7 (1.23) 5.81 (1.17) 39.17 (0.00) 0.45 (0.00) 0.18 (0.02) 3.01 (0.99)

Chikkappa 277.5 (1.19) 5.42 (0.65) 59.44 (1.06) 0.55 (0.51) 0.18 (0.02) 3.30 (1.57)

Delobel 283.6 (2.87) 6.70 (0.99) 28.14 (0.00) 0.44 (0.00) 0.18 (0.02) 3.01 (0.52)

Gatti 169.0 (0.25) 5.81 (0.10) 28.21 (0.00) 0.44 (0.00) 0.19 (0.02) 3.04 (0.00)

Kennedy 190.1 (0.31) 3.50 (0.13) 13.96 (51.80) 0.32 (24.71) 0.19 (0.02) 2.30 (0.00)

Morley 291.7 (10.08) 30.09 (9.41) 30.14 (0.59) 0.56 (0.26) 0.13 (0.02) 4.17 (0.03)

Rodriquez 335.9 (19.52) 3.54 (9.09) 1.57 (854.00) 0.06 (280.39) 0.18 (0.02) 1.54 (7.83)

Umemura 153.3 (33.11) 1.39 (16.55) 16.52 (48.31) 1.46 (6.02) 0.19 (0.01) 2.47 (10.98)

Vodopick (1) 236.7 (0.04) 5.74 (0.01) 45.56 (0.63) 0.83 (0.20) 0.18 (0.02) 2.93 (0.04)

Vodopick (2) 327.1 (0.04) 9.61 (0.11) 65.50 (3.38) 0.93 (0.67) 0.18 (0.02) 2.51 (0.41)

Yamauchi 138.8 (64.16) 1.83 (109.56) 17.94 (47.39) 0.92 (29.40) 0.19 (0.01) 2.03 (14.56)

The top line of the table gives the default values from Table 2 for comparison. Error estimates, in percent, are shown in brackets.
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Sample plots showing the data and the fit are given in
Figs. 2 and 3. As shown in the plots, there are long-
period oscillations forming an envelope around much
higher-frequency oscillations, particularly in the leuko-
cytes. This was a typical feature of most of our
simulations, and has also occurred in previous models
based on the G0 description of the stem cells (Pujo-
Menjouet et al., 2001). It is therefore not an artifact
of particular parameter sets chosen by the fitting
algorithms.
It should be noted that the data are quite sparsely
sampled, over significant time periods. For example, in
the Vodopick et al. (1972) data, the first few points are
at t ¼ 10; 40; 54 . . . days, where near the end of the data
set there are points at every 2 or 3 days. The sparse
sampling means that over wide time ranges, it is not
possible for the fitting algorithm to distinguish between
simulations which contain higher-frequency oscillations
and those which do not. In addition, there are segments
of the observed data which do seem to show rapid
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changes; see for example Iizuka et al. (1984) and Gatti
et al. (1973).
The parameters found using the Marquardt–Leven-

berg algorithm are given in Table 3. In this table, the
values in parentheses are the errors in the estimates,
given as a percentage of the corresponding parameter
value. These estimates are based on the covariance
matrices computed by the fit procedure.
In these results, several trends of importance emerge.

First, the values of the amplification parameter AN in
the leukocyte line are all well above the steady-state
value of 75. The rate of differentiation into the leukocyte
line, f 0, is also significantly greater than the steady-state
value, implying that in PCML not only is there more
amplification of the cellular precursors entering the
leukocyte line, but that there are increased numbers of
stem cells entering the leukocyte pathway. Both of these
conclusions drawn from the model fitting procedure are
consistent with clinical observations, giving us added
confidence in the fitting results. It was found in
simulations that changing the parameter y2, part of
the Hill function regulating the rate of proliferation of
the quiescent stem cells, does not significantly improve
the fit. y2 has not been included in the table, nor in
subsequent fitting procedures. However, k0, which scales
the overall proliferation rate of the stem cells, has varied
between 1.5 and 4 in these results, consistent with the
(Bernard et al., 2003) range of k0 of 2.0–10.0.
The parameter estimates for gS with the Marquardt

–Levenberg method require some discussion, as in some
cases the system was so sensitive to small changes in gS

that either convergence was apparently impossible, or
given convergence the estimated error was so small that
it seemed unreasonable. Where gS could not be included
in the fitting procedure, it was left fixed at a value near
the default value, with the requirement that the fitting
procedure gave reasonable convergence in the other
parameters. It is for this reason that the cited errors in
Table 3 for gS are very small. Also for this reason, it is
not meaningful to draw conclusions about the relation-
ship between the results for gS and the apoptosis in the
stem cell compartment in PCML. This limitation does
not apply, however, to the second fitting approach,
discussed below.
In the second parameter estimation scheme, we

implemented a simulated annealing procedure. Simu-
lated annealing is an approach to optimization which
simulates physical cooling of metals. Originally derived
from computer simulation of physical equilibrium
(Metropolis et al., 1953), the algorithm explores the
parameter space looking for a minimum in an ‘energy
function’, which in this case is the sum of squares as
given in Eq. (19). However, unlike other optimization
procedures, in simulated annealing the current para-
meter set may be altered to one which gives a higher

energy, when one yielding a lower energy cannot be
found. In this way, the system is perturbed out of local
minima. The cooling, or annealing, is done by gradually
decreasing the likelihood that such an upward move will
be accepted. Simulated annealing is known to be highly
advantageous when the energy function contains many
local minima.
Our energy function is given by

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

ðLs
i � LiÞ

2

L̄2
þ

ðPs
i � PiÞ

2

P̄2

� �vuut

þ d
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2
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2

þ
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2

Þ

� 	

þ d
ðvarðNsÞ � varðNÞÞ

2

varðNÞ
2

þ
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� 	
.

ð20Þ

Here, N and P refer to leukocytes and platelets, while
the superscript s indicates simulation, and the lack of a
superscript indicates observed data. The bars indicate
that the mean has been taken, and ‘var’ refers to the
variance. M is the number of data points available.
In the cases where platelet data are not available, the

terms involving platelets are simply left out. Where
reticulocyte data are available, the energy function is

E ¼
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, ð21Þ

where the notation is as it is in Eq. (20), and L refers to
the reticulocytes.
This energy function is simpler than it may appear.

The first and dominant term is the usual sum of squares,
with the leukocytes and platelets each normalized by
their means to prevent the fit being dominated by one of
them. (In other words, the presence of N̄, P̄ and L̄ in
Eqs. (20) and (21) provides scaling information.) The
square root deforms this function monotonically,
making the energy landscape less steep. Such monotonic
deformations are common in simulated annealing
approaches. The remaining terms involving the means
and variances of the leukocytes and platelets are scaled
by a small parameter d; these terms encourage oscilla-
tory solutions (recall that all of our data have been
previously tested for periodicity using the Lomb
algorithm (Fortin and Mackey, 1999)). Without these
terms, non-oscillatory solutions would frequently
emerge from the annealing process, because a constant
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solution can have a lower sum-of-squares energy
function than an out-of-phase but oscillatory solution,
or an oscillatory solution at a slightly different
frequency Adding these terms to the energy function
successfully reduced the likelihood that the simulations
would converge to a steady-state solution.
The details of our simulated annealing procedure are

as follows. We use the Metropolis acceptance rule
(Metropolis et al., 1953) for determining whether a
proposed perturbation of the parameters will be
accepted, namely that it is accepted if the move will
decrease the energy. If none of the moves tested decrease
the energy, then an uphill move is accepted with
probability P ¼ e�DE=T , where T is the ‘‘temperature’’.
Thus, as T decreases, the probability that an uphill move
will be accepted decreases. In determining how and
when to change the temperature, we have used a
geometric cooling schedule, in which the temperature
is decreased according to the rule

Tn ¼ T0an, (22)

where a 2 ð0:99520:999Þ. This is done after the system
undergoes a random walk of a given length, where the
moves in the random walk are generated by perturba-
tions of the relevant parameters and selected by the
Metropolis algorithm. The initial temperature T0 is
chosen using the criterion that a given fraction (usually
half) of the attempted uphill moves will be accepted in
the initial random walk. The framework for our
program is due to Salamon et al. (2002), which can be
consulted for a more detailed discussion of simulated
annealing.
We have applied this approach to the PCML data,

comparing the simulations for leukocytes and platelets,
as well as reticulocytes where applicable. The results of
the parameter estimates, along with errors in percen-
tages, are given in Table 4. In terms of the qualitative
features of the simulations, the high-frequency oscilla-
Table 4

Parameter estimates for the 11 patients of this study based on the simulated

Default AN f 0 AP

75.00 0.40 28.00

Iizuka 423.8 (4.51) 2.22 (12.5) 24.30 (1

Chikkappa 314.4 (39.35) 12.74 (6.97) 4.21 (1

Delobel 187.6 (4.74) 19.91 (0.77) 34.16 (1

Gatti 251.3 (6.87) 8.44 (3.60) 37.57 (

Kennedy 124.5 (9.32) 1.98 (4.89) 5.57 (1

Morley 763.0 (2.60) 20.48 (2.03) 26.88 (1

Rodriquez 388.6 (2.59) 5.57 (12.6) 8.48 (1

Umemura 68.8 (0.81) 3.76 (0.5) 13.85 (

Vodopick (1) 316.3 (0.68) 2.75 (2.60) 55.97 (

Vodopick (2) 359.9 (19.6) 9.07 (8.30) 19.07 (

Yamauchi 532.4 (42.0) 0.53 (27.6) 8.94 (

The top line of the table gives the default values from Table 2 for comparis
tions observed in the Marquardt–Levenberg fits ap-
peared again in the simulated annealing fits, which is not
surprising as the system has no way of selecting for the
removal of these high-frequency oscillations with the
sparsely sampled data available.
Figs. 4 and 5 show examples of the simulated

annealing output, both with fine sampling (left-hand
plots) and with sampling at the same times as the
observed data (right-hand plots). Note that the high-
frequency oscillations are not visible at the lower
sampling rate corresponding to the rate at which the
clinical data were collected.
As in the results for the Marquardt–Levenberg

procedure, the most prominent result is the high overall
rate of amplification in the leukocyte line. In some cases
these are an order of magnitude above the default value
of 75, though in those cases the errors are typically quite
high as well. Here, error estimation was done by finding
how far from the estimated parameter one had to go for
the energy function to increase by 10 percent. This value
is based on the observed similarity of results within this
range of energy values.
In the simulated annealing results, the values of f 0

range widely above the default values as they do for the
Marquardt–Levenberg results. In both simulations there
is a wide range of values of the parameter AP, which is
necessary if the simulations are to match the platelet
data. The rate of apoptosis in the stem cell compart-
ment, gS, is usually found to be around the default range
of 0.16–0.2, but occasionally was altered by the
annealing procedure to a much lower value. This
occurred in the fits to the data of Chikkappa et al.
(1976) and Yamauchi and Ide (1992), and it is
interesting to note that in these cases f 0 was closer to
its default value of 0.4. Increasing f 0 and AN and
perhaps also decreasing gS seem to be ways that the
model can produce long-period oscillations at the
leukocyte levels seen in PCML. Physiologically, this is
annealing method

kP gS k0

1.17 0.18 3.00

0.00) 1.07 (10.4) 0.17 (2.42) 3.09 (7.81)

2.39) 4.55 (20.15) 0.12 (5.39) 2.81 (13.9)

6.85) 0.83 (4.99) 0.17 (0.23) 2.89 (0.47)

7.39) 0.53 (5.62) 0.15 (5.00) 1.02 (8.16)

2.90) 3.53 (11.34) 0.13 (3.20) 0.98 (7.98)

9.9) 0.75 (2.27) 0.18 (0.08) 3.77 (4.95)

3.8) 0.05 (28.1) 0.18 (7.38) 1.63 (12.2)

2.60) 1.74 (1.3) 0.17 (0.04) 2.32 (0.2)

1.15) 1.58 (5.00) 0.16 (2.50) 3.88 (1.9)

6.21) 5.06 (13.2) 0.14 (5.08) 1.30 (8.4)

4.92) 1.93 (5.6) 0.04 (19.38) 1.05 (14.3)

on. Error estimates, in percent, are shown in brackets.
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Fig. 4. An example of the results of the simulated annealing fitting to the Vodopick et al. (1972) data, Case 2. Leukocytes are in units of 109 kg�1,

while platelets are in units of 1010 kg�1. In the left-hand panels are the observed data; the centre panels shows the full simulation and the right-hand

panel plots show the data and the simulation sub-sampled at the observed data times reported by Vodopick et al. (1972).
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consistent with excess proliferation in the leukocyte line
as well at the stem cell level. Because this model does not
explicitly represent each stage of leukocyte development,
perhaps a decrease in gS is as close as the system can
come to representing excess proliferation of stem cells
that are differentiating into the leukocyte line.
Our simulations also allow us to comment on the

likely origin of the oscillations observed in PCML.
Using the parameter sets presented in Tables 3 and 4, we
ran simulations in a model system containing only the
stem cells and leukocytes; in other words, the coupling
to the platelet and erythrocyte compartments was
removed. In most cases, this ‘‘decoupled’’ system still
oscillates, implying that the parameter changes in the
stem cell and leukocyte compartments are sufficient to
destabilize the steady state and lead to oscillations. In
the remaining (non-oscillating) cases, the decoupled
system was close, in parameter space, to one that did
oscillate. (These nearby parameter sets were found either
by examining the results of the simulated annealing
procedure that generated the parameter sets of Table 4,
or by running the annealing procedure with the
decoupled model beginning from the parameter sets in
Table 4.)
In addition, when the leukocyte compartment is then

removed, leaving only the stem cell compartment in the
model, the oscillations disappear, and the stem cell
population decreases to zero. Thus, we feel that we can
assert with some certainty that the oscillatory nature of
PCML is due to a bifurcation in the combined dynamics
of the regulation of the HSC and the neutrophil control.
The nature of this bifurcation will be studied in a future,
more mathematically oriented, communication.
Overall, the quality of the simulated annealing fits is

notably better than that of the Marquardt–Levenberg
fits, almost certainly because less prior knowledge (of
where to begin the fit) is required, and the simulated
annealing approach is less likely to converge to a local
minimum. In order to compare the relative quality of the
fits from the two procedures, we computed a w2-like
function for all the fits; this function was the same as the
energy function defined in Eqs. (20) and (21), except that
the terms involving the means and variances of the
simulation and data (those terms that were scaled by d in
the energy function) were omitted.
Thus, we computed

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i¼1

ðNs
i � NiÞ

2

N̄
2

þ
ðPs

i � PiÞ
2

P̄
2

þ
ðLs

i � LiÞ
2

L̄
2

� �vuut (23)

(leaving out the platelet and reticulocyte terms when
data were not available). This w function is not the same
as the usual w2; notably, the means of the data are in our
function in place of the standard deviations usually used
in computing w2. However, since there are indications
that fluctuations of cell numbers are not normally
distributed even in normal circumstances (Perazzo et al.,
2000), there is no significant advantage in using the
usual w2 function for comparison. There is an advantage
in using the mean values, as we have done, for this
ensures that the platelets and the neutrophils are
‘weighted’ equally. Using the function given in
Eq. (23), we find that the simulated annealing fits have
lower w values by an order of magnitude, on average,
than the Marquardt–Levenberg fit results. This quanti-
tatively confirms the observation that the simulations
generated by the simulated annealing fit parameters
‘look better’ when compared to the data.
5. Discussion and conclusions

PCML is a strange cycling disease of the hemato-
poietic system in which oscillating levels of circulating
leukocytes, platelets and/or reticulocytes are observed
(Fortin and Mackey, 1999; Haurie et al., 1998).
Typically it is observed that all of these three differ-
entiated cell types have the same oscillation period, but
that the relation of the oscillation mean and amplitude
to the normal levels is variable. Given the common
appearance of the abnormal Philadelphia chromosome
in all of the nucleated progeny of the HSCs, the simplest
conclusion is that CML, and its periodic variant, arise
from derangements partially involving the dynamics of
the stem cells.
Here, we have synthesized several previous mathema-

tical models of hematopoietic stem cell dynamics
(Mackey, 1978, 1979a, 2000; Pujo-Menjouet et al.,
2001), and models for the regulation of neutrophils
(Hearn et al., 1998; Haurie and Mackey, 2000; Bernard
et al., 2003), platelets (Bélair and Mackey, 1987;
Santillan et al., 2000) and erythrocytes (Mackey,
1979b; Bélair et al., 1995; Mahaffy et al., 1998a) into a
single model for the regulation of the hematopoietic
system. Based on estimates of parameters for a typical
normal human, we have systematically explored the
changes in some of these parameters necessary to
account for the quantitative data on leukocyte, platelet
and reticulocyte cycling in 11 patients with PCML.
We have used two different fitting procedures (the

Marquardt–Levenberg procedure as well as simulated
annealing), and there is an interesting and encouraging
concordance between the results of both. In the most
general terms, both lead to qualitative and quantitative
agreement with the published data on PCML in
reproducing the period, amplitudes and mean values
of the oscillating cell types as well as the relative phase
differences between them. It is significant that the
present model is capable of duplicating the overall
features of the coupled oscillations in several cell lines.
The platelet oscillations in the fitted simulations,
particularly with the simulated annealing method,
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matched the observed data fairly well, including the
relative phase. Where reticulocyte data were available,
the oscillations were also matched. This indicates that
the model is capable of generating the observed coupling
between the cell lines.
Note that there is often a high-frequency oscillation

on top of these long time periods, but there is nothing in
the available data that would rule out the possibility of
high-frequency oscillations in cell numbers. However, it
is likely that if the model included distributions of
maturation delay times, rather than single discrete
delays, some smoothing of this high-frequency output
might occur.
Our results indicate that the oscillatory nature of

PCML is probably generated through a bifurcation in
the dynamics of the coupled HSC compartment and the
regulation of differentiated leukocytes. Based on the
simulations, the critical model parameter changes
required to simulate the periodic chronic myelogenous
leukemia patient data are the amplification in the
leukocyte line (AN ), the differentiation rate from the
stem cell compartment into the leukocyte line (f 0), and
the rate of apoptosis in the stem cell compartment (gS).
Our model system is also particularly sensitive to
changes in gS, suggesting that changes in the numbers
of proliferating stem cells may be important in generat-
ing PCML. However, there was no indication that the
rate of re-entry from the quiescent stem cell compart-
ment to the proliferating phase stem cells was involved.
The platelet parameters seem to be of secondary
importance, and changes in these seem to merely adjust
levels of mean platelet levels and amplitude of the
excursions from the mean.
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