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Abstract

We study the convergence properties of the conditional (Kullback–Leibler) entropy in stochastic systems. We have

proved general results showing that asymptotic stability is a necessary and sufficient condition for the monotone

convergence of the conditional entropy to its maximal value of zero. Additionally we have made specific calculations of the

rate of convergence of this entropy to zero in a one-dimensional situation, illustrated by Ornstein–Uhlenbeck and Rayleigh

processes, higher dimensional situations, and a two-dimensional Ornstein–Uhlenbeck process with a stochastically

perturbed harmonic oscillator and colored noise as examples. We also apply our general results to the problem of

conditional entropy convergence in the presence of dichotomous noise. In both the one-dimensional and multidimensional

cases we show that the convergence of the conditional entropy to zero is monotone and at least exponential. In the specific

cases of the Ornstein–Uhlenbeck and Rayleigh processes, as well as the stochastically perturbed harmonic oscillator and

colored noise examples, we obtain exact formulae for the temporal evolution of the conditional entropy starting from a

concrete initial distribution. The rather surprising result in this case is that the rate of convergence of the entropy to zero is

independent of the noise amplitude.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Markov operator; Asymptotic stability; Conditional entropy
1. Introduction

This paper examines the role of noise in the evolution of the conditional (or Kullback–Leibler or relative)
entropy to a maximum. We were led to examine this problem because it is known that in invertible systems
(e.g. measure preserving systems of differential equations or invertible maps) the conditional entropy is fixed
at the value with which the system is prepared [1–4], but that the addition of noise can reverse this invertibility
property and lead to an evolution of the conditional entropy to a maximum value of zero. Here, we make both
general and concrete specific calculations to examine the entropy convergence. We carry this out by studying
the convergence properties of the Fokker–Planck equation using ‘entropy methods’ [5], which have been
known for some time to be useful for problems involving questions related to convergence of solutions in
e front matter r 2005 Elsevier B.V. All rights reserved.
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partial differential [6–12]. Their utility can be traced, in some instances, to the fact that entropy may serve as a
Liapunov functional or play a role in proving Sobolev-type inequalities [13,25]. Studies of the convergence
properties of entropy have attracted a large number of investigators in a variety of fields other than partial
differential equations, e.g. in the dynamic behavior of Markov chains. A partial survey of some of these results
can be found in Refs. [14,15].

There are a variety of different definitions of ‘entropy’ in the physics, information theory, and probability
theory literature which often leads to confusion. For an illuminating discussion of these different definitions,
[14, Chapter 2] should be consulted. Here, we use the term ‘conditional entropy’ as defined in Eq. (2.1) to be
consistent with our previous work [3,16].

The outline of the paper is as follows. Section 2 introduces the dynamic concept of asymptotic stability and
the notion of conditional entropy. (Asymptotic stability is a strong convergence property of ensembles which
implies mixing. Mixing, in turn, implies ergodicity.) This is followed by two main results connecting the
convergence of the conditional entropy with asymptotic stability (Theorem 1), and the existence of unique
stationary densities with the convergence of the conditional entropy (Theorem 2). Section 3 shows that
asymptotic stability is a property that cannot be found in an invertible deterministic system (e.g. a system of
ordinary differential equations), and consequently that the conditional entropy does not have a dynamic (time
dependent) character for this type of invertible dynamics. Section 4 considers the stochastic extension where a
system of ordinary equations is perturbed by Gaussian white noise (thus becoming non-invertible) and gives
general results showing that in this stochastic case asymptotic stability holds. Section 4.1 considers a one-
dimensional situation, and we show that the conditional entropy convergence to zero is at least exponential.
We consider the Ornstein–Uhlenbeck process in Section 4.1.1 and a Rayleigh process in Section 4.1.2. We
consider multidimensional stochastic systems with nondegenerate noise in Section 4.2 and indicate when the
exponential convergence of the entropy holds. Examples of higher dimensional situations with degenerate
noise are considered within the context of a two-dimensional Ornstein–Uhlenbeck process in Section 4.3 with
specific examples of a stochastically perturbed harmonic oscillator (Section 4.3.1) and colored noise (Section
4.3.2) as examples. Section 5 applies our general results to the problem of conditional entropy convergence in
the presence of dichotomous noise. The paper concludes with a short discussion.

2. Asymptotic stability and conditional entropy

Let ðX ;B; mÞ be a s-finite measure space. Let fPtgtX0 be a semigroup of Markov operators on L1ðX ; mÞ, i.e.,
PtfX0 for fX0,

R
Ptf ðxÞmðdxÞ ¼

R
f ðxÞmðdxÞ, and Ptþsf ¼ PtðPsf Þ. If the group property holds for t; s 2 R,

then we say that P is invertible, while if it holds only for t; s 2 Rþ we say that P is non-invertible. We denote
the corresponding set of densities by DðX ; mÞ, or D when there will be no ambiguity, so f 2 D means fX0 and
kf k1 ¼

R
X

f ðxÞmðdxÞ ¼ 1. We call a semigroup of Markov operators Pt on L1ðX ; mÞ asymptotically stable if
there is a density f � such that Ptf � ¼ f � for all t40 and for all densities f

lim
t!1
kPtf � f �k1 ¼ 0.

The density f � is called a stationary density of Pt.
We define the conditional entropy (also known as the Kullback–Leibler or relative entropy) of two densities

f ; g 2 DðX ;mÞ as

Hcðf jgÞ ¼ �

Z
X

f ðxÞ log
f ðxÞ

gðxÞ
mðdxÞ. (2.1)

Observe that Hcðf jgÞp0 for any two densities f ; g. Our first result connects the temporal convergence
properties of Hc with those of Pt.

The proof of the following theorem is much simpler than found in [3, Theorem 7.7], which in turn
generalizes Theorems 9.3.2 and 9.4.2 of Ref. [16].

Theorem 1. Let Pt be a semigroup of Markov operators on L1ðX ;mÞ and f � be a positive density. If

lim
t!1

HcðP
tf jf �Þ ¼ 0 (2.2)
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for a density f then

lim
t!1
kPtf � f �k1 ¼ 0. (2.3)

Conversely, if Ptf � ¼ f � for all tX0 and Condition 2.3 holds for all f with Hcð f j f �Þ4�1, then Condition 2.2
holds as well.

Proof. To prove the first part, note that for densities f ; g 2 D, we have from the Csiszár–Kullback inequality

�kf � gk21X2Hcðf jgÞ.

In particular,

�kPtf � f �k
2
1X2HcðP

tf jf �Þ.

Thus if

lim
t!1

HcðP
tf jf �Þ ¼ 0,

then

lim
t!1
kPtf � f �k1 ¼ 0.

Proof of the converse portion is not so straightforward. Assume initially that f =f � is bounded, so
0pfpaf �. Since Ptf � ¼ f � and Pt is a positivity preserving operator, we have 0pPtfpaf �. Making use of the
inequality

�Hcðf jgÞp
Z

f

g
� 1

� �2

gmðdxÞ, (2.4)

valid for all densities f ; g (for the proof of inequality (2.4) see 4.1), we arrive at

�HcðP
tf jgÞp

Z
Ptf

f �
� 1

����
����jPtf � f �jmðdxÞ

pmaxf1; ja� 1jgkPtf � f �kL1 .

Consequently, HcðP
tf jf �Þ ! 0 as t!1 for every density f such that f =f � is bounded.

Now assume that Hcðf jf �Þ4�1 and write f in the form f ¼ ga þ f a where ga ¼ f � f a and

f aðxÞ ¼
0; f ðxÞ4af �ðxÞ;

f ðxÞ; 0pf ðxÞpaf �ðxÞ:

(

We have 1 ¼ k f k1 ¼ kgak1 þ kf ak1 and kgak1 ¼
R
ff4af �g

f mðdxÞ ! 0 as a!1. Writing Ptf in the form

Ptf ¼ kgak1Pt ga

kgak1

� �
þ kf ak1Pt f a

kf ak1

� �

we obtain

HcðP
tf jf �ÞXkgak1Hc Pt ga

kgak1

� �����f �
� �

þ kf ak1Hc Pt f a

kf ak1

� �����f �
� �

Xkgak1Hc

ga

kgak1

����f �
� �

þ kf ak1Hc Pt f a

kf ak1

� �����f �
� �

ð2:5Þ

for every a and t, where the first inequality follows from the concavity of Hcð�jf �Þ while the second is a
consequence of HcðP

thjf �ÞXHcðhjf �Þ valid for any density h. Since f a

f �kf ak1
is bounded, we have

Hcð
f a

kf ak1
jf �Þ4�1 and

lim
t!1

Hc Pt f a

kf ak1

� �����f �
� �

¼ 0
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for every a by the first part of our proof. Finally, observe that

kgak1Hc

ga

kgak1

����f �
� �

¼ �

Z
ff4af �g

f log
f

f �
mðdxÞ þ kgak1 log kgak1,

which is convergent to 0 as a!1, because of the condition Hcðf jf �Þ4�1 and the fact that kgak1
converges to 0. Letting t!1 in Eq. (2.5) yields

0X lim inf
t!1

HcðP
tf jf �ÞXkgak1Hc

ga

kgak1

����f �
� �

for all a. Now taking the limit a!1 completes the proof of the if part, and of the theorem.
The semigroup Pt on L1ðX ;mÞ is called partially integral if there exists a measurable function q : X � X !

½0;1Þ and t040 such that

Pt0 f ðxÞX

Z
X

qðx; yÞf ðyÞmðdyÞ

for every density f andZ
X

Z
X

qðx; yÞmðdyÞmðdxÞ40: &

Our next result draws a connection between the existence of a unique stationary density f � of Pt and the
convergence of the conditional entropy Hc in the case of continuous time systems.

Theorem 2. Let Pt be a partially integral continuous semigroup of Markov operators. If there is a unique

stationary density f � for Pt and f �40, then

lim
t!1

HcðP
tf 0jf �Þ ¼ 0

for all f 0 with Hcðf 0jf �Þ4�1.

Proof. From Pichór and Rudnicki [18, Theorem 2] the semigroup Pt is asymptotically stable if there is a
unique stationary density f � for Pt and f �40. Thus the result follows from Theorem 1. &

3. Conditional entropy in invertible deterministic systems

In this section we briefly consider the behavior of the conditional entropy in situations where the dynamics
are invertible in the sense that they can be run forward or backward in time without ambiguity. To make this
clearer, consider a phase space X and a dynamics St : X ! X . For every initial point x0, the sequence of
successive points Stðx

0Þ, considered as a function of time t, is called a trajectory. In the phase space X, if the
trajectory Stðx

0Þ is nonintersecting with itself, or intersecting but periodic, then at any given final time tf such
that xf ¼ Stf

ðx0Þ we could change the sign of time by replacing t by �t, and run the trajectory backward using
xf as a new initial point in X. Then our new trajectory S�tðx

f Þ would arrive precisely back at x0 after a time tf

had elapsed: x0 ¼ S�tf
ðxf Þ. Thus in this case we have a dynamics that may be reversed in time completely

unambiguously.
We formalize this by introducing the concept of a dynamical system fStgt2R, which is simply any group of

transformations St : X ! X having the two properties: 1. S0ðxÞ ¼ x; and 2. StðSt0 ðxÞÞ ¼ Stþt0 ðxÞ for t; t0 2 R or
Z. Since, from the definition, for any t 2 R, we have StðS�tðxÞÞ ¼ x ¼ S�tðStðxÞÞ, it is clear that dynamical
systems are invertible in the sense discussed above since they may be run either forward or backward in time.
Systems of ordinary differential equations are examples of dynamical systems as are invertible maps.

Our first result is very general, and shows that the conditional entropy of any invertible system is constant
and uniquely determined by the method of system preparation. This is formalized in

Theorem 3. If Pt is an invertible Markov operator and has a stationary density f �, then the conditional

entropy is constant and equal to the value determined by f � and the choice of the initial density f 0 for all time t.
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That is,

HcðP
tf 0jf �Þ � Hcðf 0jf �Þ (3.1)

for all t.

Proof. Since P is invertible, by Voigt’s theorem1 with g ¼ f � it follows that

HcðP
tþt0 f 0jf �Þ ¼ HcðP

t0Ptf 0jf �Þ

XHcðP
tf 0jf �ÞXHcðf 0jf �Þ

for all times t and t0. Pick t0 ¼ �t so

Hcðf 0jf �ÞXHcðP
tf 0jf �ÞXHcðf 0jf �Þ

and therefore

HcðP
tf 0jf �Þ ¼ Hcðf 0jf �Þ

for all t, which finishes the proof. &

In the case where we are considering a deterministic dynamics St : X! X where X � X , then the
corresponding Markov operator is also known as the Frobenius Perron operator [16], and is given explicitly
by

Ptf 0ðxÞ ¼ f 0ðS
�tðxÞÞjJ�tðxÞj, (3.2)

where J�tðxÞ denotes the Jacobian of S�tðxÞ. A simple calculation shows

HcðP
tf 0jf �Þ ¼ �

Z
X

Ptf 0ðxÞ log
Ptf 0ðxÞ

f �ðxÞ

� �
dx

¼ �

Z
X

f 0ðS
�tðxÞÞjJ�tðxÞj log

f 0ðS
�tðxÞÞ

f �ðS
�tðxÞÞ

� �
dx

¼ �

Z
X

f 0ðyÞ log
f 0ðyÞ

f �ðyÞ

� �
dy

� Hcðf 0jf �Þ

as expected from Theorem 3.
More specifically, if the dynamics corresponding to our invertible Markov operator are described by the

system of ordinary differential equations

dxi

dt
¼ FiðxÞ; i ¼ 1; . . . ; d (3.3)

operating in a region of Rd with initial conditions xið0Þ ¼ xi;0, then [16] the evolution of f ðt;xÞ � Ptf 0ðxÞ is
governed by the generalized Liouville equation

qf

qt
¼ �

X
i

qðfF iÞ

qxi

. (3.4)

The corresponding stationary density f � is given by the solution ofX
i

qðf �FiÞ

qxi

¼ 0. (3.5)

Note that the uniform density f � � 1, meaning that the flow defined by Eq. (3.3) preserves the Lebesgue
measure, is a stationary density of Eq. (3.4) if and only ifX

i

qFi

qxi

¼ 0. (3.6)
1Voigt’s theorem [19] says that if P is a Markov operator, then HcðPf jPgÞXHcðf jgÞ for all f ; g 2 D.
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In particular, for the system of ordinary differential equations (3.3) whose density evolves according to the
Liouville equation (3.4) we can assert that the conditional entropy of the density Ptf 0 with respect to the
stationary density f � will be constant for all time and will have the value determined by the initial density f 0

with which the system is prepared. This result can also be proved directly by noting that from the definition of
the conditional entropy we may write

Hcðf jf �Þ ¼ �

Z
Rd

f ðxÞ log
f

f �

� �
þ

f �
f
� 1

� �
dx

when the stationary density is f �. Differentiating with respect to time gives

dHc

dt
¼ �

Z
Rd

df

dt
log

f

f �

� �
dx

or, after substituting from (3.4) for ðqf =qtÞ, and integrating by parts under the assumption that f has compact
support,

dHc

dt
¼

Z
Rd

f

f �

X
i

qðf �FiÞ

qxi

dx.

However, since f � is a stationary density of Pt, it is clear from (3.4) that

dHc

dt
¼ 0,

and we conclude that the conditional entropy HcðP
tf 0jf �Þ does not change from its initial value when the

dynamics evolve in this manner.

4. Effects of Gaussian noise

In this section, we turn our attention to the behavior of the stochastically perturbed system

dxi

dt
¼ FiðxÞ þ

Xd

j¼1

sijðxÞxj ; i ¼ 1; . . . ; d (4.1)

with the initial conditions xið0Þ ¼ xi;0, where sijðxÞ is the amplitude of the stochastic perturbation and xj ¼

dwj=dt is a ‘white noise’ term that is the derivative of a Wiener process. In matrix notation we can rewrite
Eq. (4.1) as

dxðtÞ ¼ F ðxðtÞÞdtþ SðxðtÞÞdwðtÞ, (4.2)

where SðxÞ ¼ ½sijðxÞ�i;j¼1;...;d . Here it is always assumed that the Itô, rather that the Stratonovich, calculus, is
used. For a discussion of the differences see Refs. [20,16,21]. In particular, if the sij are independent of x then
the Itô and the Stratonovich approaches yield identical results.

To fully interpret (4.2) we briefly review the properties of the x when they are derived from a Wiener
process. We say that a continuous process fwðtÞgt40 is a one-dimensional Wiener process if:
1.
 wð0Þ ¼ 0; and

2.
 for all values of s and t, 0pspt the random variable wðtÞ � wðsÞ has the Gaussian density

gðt� s;xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðt� sÞ
p exp �

x2

2ðt� sÞ

� �
. (4.3)

In a completely natural manner this definition can be extended to say that the d-dimensional vector

wðtÞ ¼ fw1ðtÞ; . . . ;wdðtÞgt40
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is a d-dimensional Wiener process if its components are one-dimensional Wiener processes. Because of the
independence of the increments, it is elementary that the joint density of wðtÞ is

gðt;x1; . . . ;xdÞ ¼ gðt;x1Þ � � � gðt;xd Þ (4.4)

and thusZ
Rd

gðt;xÞdx ¼ 1, (4.5)

that Z
Rd

xigðt;xÞdx ¼ 0; i ¼ 1; . . . ; d (4.6)

and Z
Rd

xixjgðt; xÞdx ¼ dij t; i; j ¼ 1; . . . ; d. (4.7)

In (4.7),

dij ¼
1; i ¼ j;

0; iaj

(
(4.8)

is the Kronecker delta. Therefore, the average of a Wiener variable is zero by Eq. (4.6), while the variance
increases linearly with time according to (4.7).

The Fokker–Planck equation that governs the evolution of the density function f ðt;xÞ of the process xðtÞ

generated by the solution to the stochastic differential equation (4.2) is given by

qf

qt
¼ �

Xd

i¼1

q½FiðxÞf �

qxi

þ
1

2

Xd

i;j¼1

q2½aijðxÞf �

qxiqxj

, (4.9)

where

aijðxÞ ¼
Xd

k¼1

sikðxÞsjkðxÞ.

If kðt; x;x0Þ is the fundamental solution of the Fokker–Planck equation, i.e., for every x0 the function
ðt; xÞ7!kðt;x; x0Þ is a solution of the Fokker–Planck equation with the initial condition dðx� x0Þ, then the
general solution f ðt;xÞ of the Fokker–Planck equation (4.9) with the initial condition

f ðx; 0Þ ¼ f 0ðxÞ

is given by

f ðt;xÞ ¼

Z
kðt;x; x0Þf 0ðx0Þdx0. (4.10)

From a probabilistic point of view kðt;x;x0Þ is a stochastic kernel (transition density) and describes the
probability of passing from the state x0 at time t ¼ 0 to the state x at a time t. Define the Markov operators Pt

by

Ptf 0ðxÞ ¼

Z
kðt; x;x0Þf 0ðx0Þdx0; f 0 2 L1. (4.11)

Then Ptf 0 is the density of the solution xðtÞ of Eq. (4.2) provided that f 0 is the density of xð0Þ.
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The steady state density f �ðxÞ is the stationary solution of the Fokker–Planck equation (4.9):

�
Xd

i¼1

q½F iðxÞf �

qxi

þ
1

2

Xd

i;j¼1

q2½aijðxÞf �

qxiqxj

¼ 0. (4.12)

In the specific case of X ¼ Rd and m equal to the Lebesgue measure, we recover from Eq. (2.1) the conditional
entropy

Hcðf ðtÞjf �Þ ¼ �

Z
Rd

f ðt;xÞ ln
f ðt; xÞ

f �ðxÞ

� �
dx. (4.13)

If the coefficients aij and F i are sufficiently regular so that a fundamental solution k exists, andR
X

kðt; x; yÞdx ¼ 1, then the unique generalized solution (4.10) to the Fokker–Planck equation (4.9) is given by
Eq. (4.11). One such set of conditions is the following: (1) the F i are of class C2 with bounded derivatives; (2)
the aij are of class C3 and bounded with all derivatives bounded; and (3) the uniform parabolicity condition
holds, i.e., there exists a strictly positive constant r40 such that

Xd

i;j¼1

aijðxÞliljXr
Xd

i¼1

l2i ; li; lj 2 R; x 2 Rd .

The uniform parabolicity condition implies that kðt; x; yÞ40, and thus Ptf ðxÞ40 for every density, which
implies that there can be at most one stationary density, and that if it exists then f �40. In this setting, the
corresponding conditional entropy HcðP

tf 0jf �Þ approaches its maximal value of zero, as t!1, if and only if
there is a stationary density f � that satisfies (4.12).

4.1. The one-dimensional case

If we are dealing with a one-dimensional system, d ¼ 1, then the stochastic differential Eq. (4.1) simply
becomes

dx

dt
¼ F ðxÞ þ sðxÞx, (4.14)

where again x is a (Gaussian distributed) perturbation with zero mean and unit variance, and sðxÞ is the
amplitude of the perturbation. The corresponding Fokker–Planck equation (4.9) becomes

qf

qt
¼ �

q½F ðxÞf �
qx

þ
1

2

q2½s2ðxÞf �
qx2

. (4.15)

The Fokker–Planck equation can also be written in the equivalent form

qf

qt
¼ �

qS

qx
, (4.16)

where

S ¼ �
1

2

q½s2ðxÞf �
qx

þ F ðxÞf (4.17)

is called the probability current.

When stationary solutions of (4.15), denoted by f �ðxÞ and defined by Ptf � ¼ f � for all t, exist they are given
as the generally unique (up to a multiplicative constant) solution of (4.12) in the case d ¼ 1:

�
q½F ðxÞf ��

qx
þ

1

2

q2½s2ðxÞf ��
qx2

¼ 0. (4.18)
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Integration of Eq. (4.18) by parts with the assumption that the probability current S vanishes at the
integration limits, followed by a second integration, yields the solution

f �ðxÞ ¼
K

s2ðxÞ
exp

Z x

x0

2F ðzÞ

s2ðzÞ
dz

� �
. (4.19)

This stationary solution f � will be a density if and only if there exists a positive constant K40 such that f � can
be normalized.

We now discuss rigorous results concerning the one-dimensional case. Let aðxÞ ¼ s2ðxÞ. Assume that a; a0;
and F are continuous on X ¼ ða;bÞ, where1paobp1. Let aðxÞ40 for all x 2 ða;bÞ and x0 be any point in
ða;bÞ. If we want to study the long term behavior, as t!1, of the process xðtÞ given by Eq. (4.14), we need to
know that the process exists for all t40; in other words that there is no explosion in finite time, and that it lives
in the interval ða; bÞ. If, for example, a were absorbing so that with positive probability we could reach a in
finite time, then a solution f of Eq. (4.15) would show a decrease in norm in L1ða;bÞ.

There is a relation between the behavior of xðtÞ at the boundary points a and b, and the existence and
uniqueness of solutions of the corresponding Fokker–Planck equation as described by [22,23]. In particular, if
the conditionZ x0

a
exp �

Z x

x0

2F ðzÞ

s2ðzÞ
dz

� �
dx ¼

Z b

x0

exp �

Z x

x0

2F ðzÞ

s2ðzÞ
dz

� �
dx ¼ 1 (4.20)

holds, then the generalized solutions Ptf of the Fokker–Planck equation exist and constitute a semigroup of
Markov operators on L1ða; bÞ. If only one of the integrals is finite then this conclusion holds as well, but we
restrict ourselves to Condition (4.20) because it is also necessary for the existence of a stationary solution of
Eq. (4.14), cf. Pinsky [24]. Thus, we conclude that there is a stationary density f � if and only if Condition
(4.20) holds andZ b

a

1

s2ðxÞ
exp

Z x

x0

2F ðzÞ

s2ðzÞ
dz

� �
dxo1. (4.21)

Define

DðxÞ ¼
s2ðxÞ
2

and BðxÞ ¼ � ln
K

s2ðxÞ
�

Z x

x0

2F ðzÞ

s2ðzÞ
dz,

where K is such that f �ðxÞ ¼ e�BðxÞ is normalized. Then the Fokker–Planck equation (4.15) can be rewritten as

qf

qt
¼

q
qx

DðxÞ
qf

qx
þ B0ðxÞf

� �� �
(4.22)

and

f �ðxÞ ¼ e�BðxÞ.

A sufficient condition for an exponential decay of the conditional entropy is the Bakry–Emery condition [25]

1

2
D00ðxÞ þ

D0ðxÞF ðxÞ

2DðxÞ
� F 0ðxÞ �

ðD0ðxÞÞ2

4DðxÞ
Xl; x 2 X , (4.23)

where l40 is a positive constant. Consequently, if Eq. (4.23) holds then [9,25]

HcðP
tf 0jf �ÞXe�2ltHcðf 0jf �Þ (4.24)

for all initial densities f 0 with Hcðf 0jf �Þ4�1. In the following example of an Ornstein–Uhlenbeck process
the choice of a Gaussian initial density will result in equality in Eq. (4.24).

4.1.1. Example of an Ornstein– Uhlenbeck process

Trying to find specific examples of sðxÞ and F ðxÞ for which one can determine the time dependent solution
f ðt;xÞ of Eq. (4.15) is not easy. One solution that is known is the one for an Ornstein–Uhlenbeck process.
Since it is an Ornstein–Uhlenbeck process, which was historically developed in thinking about perturbations
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to the velocity of a Brownian particle, we denote the dependent variable by v so we have sðvÞ � s a constant,
and F ðvÞ ¼ �gv with gX0. In this case, Eq. (4.14) becomes

dv

dt
¼ �gvþ sx (4.25)

with the corresponding Fokker–Planck equation

qf

qt
¼

q½gvf �

qv
þ

s2

2

q2f

qv2
. (4.26)

The unique stationary solution is

f �ðvÞ ¼
e�gv

2=s2Rþ1
�1

e�gv2=s2 dv
¼

ffiffiffiffiffiffiffiffi
g

ps2

r
e�gv2=s2 . (4.27)

Further, from Risken [21, Eq. (5.28)] the fundamental solution kðt; v; v0Þ is given by

kðt; v; v0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pbðtÞ
p exp �

ðv� expð�gtÞv0Þ
2

2bðtÞ

� �
, (4.28)

where

bðtÞ ¼
s2

2g
½1� e�2gt�. (4.29)

Note that for a given y and t the function kðt; �; yÞ is a Gaussian density with mean v0 expð�gtÞ and variance
bðtÞ. Since kðt; v; v0Þ40 for all v; v0 2 R, the semigroup of Markov operators

Ptf 0ðvÞ ¼

Z
R

kðt; v; v0Þf 0ðv0Þdv0

satisfies all of the conditions of Theorem 2. Thus we can assert from Theorem 2 that limt!1HcðP
tf 0jf �Þ ¼ 0

for all f 0 with Hcðf 0jf �Þ4�1.
In the case of the Ornstein–Uhlenbeck process, the sufficient condition (4.23) for the exponential lower

bound on the conditional entropy reduces to

�F 0ðvÞXl; v 2 R.

Thus, l ¼ g and Eq. (4.24) becomes

HcðP
tf 0jf �ÞXe�2gtHcðf 0jf �Þ

for all initial densities f 0 with Hcðf 0jf �Þ4�1.
We will now show that this lower bound is optimal. Let us first calculate the conditional entropy of two

Gaussian densities. Let q1; q240 and let z1; z2 2 R. Consider densities of the form

giðx; ziÞ ¼

ffiffiffiffi
qi

p

r
expf�qiðx� ziÞ

2
g; x 2 R; i ¼ 1; 2.

Then

log
g1ðx; z1Þ

g2ðx; z2Þ
¼ log

ffiffiffiffiffi
q1

q2

r
� q1ðx� z1Þ

2
þ q2ðx� z2Þ

2.

SinceZ
R

g1ðx; z1Þx
2 dx ¼

1

2q1

þ z21 and

Z
R

g1ðx; z1Þxdx ¼ z1,

we arrive at

Hcðg1ð�; z1Þjg2ð�; z2ÞÞ ¼
1

2
log

q2

q1

þ
1

2
1�

q2

q1

� �
� q2ðz1 � z2Þ

2. (4.30)
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Now let f 0 be a Gaussian density of the form

f 0ðvÞ ¼

ffiffiffiffiffi
c1

p

r
expf�c1ðv� c2Þ

2
g,

where c140 and c2 2 R. Since

Ptf 0ðvÞ ¼

Z
R

kðt; v; v0Þf 0ðv0Þdv0,

we obtain by direct calculation using Eq. (4.28)

Ptf 0ðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

pðe�2gt þ 2c1bðtÞÞ

r
exp �

c1

e�2gt þ 2c1bðtÞ
ðv� c2e

�gtÞ
2

� �
.

Consequently, from Eq. (4.30), with q1 ¼ c1=ðe�2gt þ 2c1bðtÞÞ, q2 ¼ g=s2, z1 ¼ c2e
�gt, and z2 ¼ 0, it follows

that

HcðP
tf 0jf �Þ ¼

1

2
log 1� 1�

g
s2c1

� �
e�2gt

� �
þ

1

2
1�

g
s2c1
�

2gc22
s2

� �
e�2gt. (4.31)

In particular, if c1 ¼ g=s2 then Hcðf 0jf �Þ ¼ �ðgc22=s
2Þ and

HcðP
tf 0jf �Þ ¼ e�2gtHcðf 0jf �Þ; tX0.

4.1.2. A Rayleigh process

Another example for which we have an analytic form for the density f ðt; xÞ is that of

dv

dt
¼ �gvþ

A

2v
þ sx; v 2 ½0;1Þ (4.32)

and the associated Fokker–Planck equation is

qf

qt
¼

q
qv

gv�
A

2v

� �
f

� �
þ

s2

2

q2f
qv2

. (4.33)

The unique equilibrium solution, with the proper normalization, is given by

f �ðvÞ ¼
2

GðbÞ
g
s2

	 
b
v2b�1e�gv2=s2 , (4.34)

where

b ¼
1

2

A

s2
þ 1

� �
40 (4.35)

and G is the gamma function. The fundamental solution is [26]

kðt; v; v0Þ ¼ f �ðvÞ
~kðt; v; v0Þ, (4.36)

where ~kðt; v; v0Þ40 for all t; v; v040. Again from Theorem 2 it follows that limt!1HcðP
tf 0jf �Þ ¼ 0 for all f 0

with Hcðf 0jf �Þ4�1.
In the case of A ¼ s2 the solution of Eq. (4.32) is called a Rayleigh process [27, pp. 135–136] because the

stationary density f �ðvÞ is the Rayleigh distribution. The sufficient Condition (4.23) for the exponential lower
bound on the conditional entropy reduces to

�F 0ðvÞXl; v 2 ð0;1Þ.

Since F 0ðvÞ ¼ �g� ðs2=2v2Þ, we obtain l ¼ g. Then Eq. (4.24) becomes

HcðP
tf 0jf �ÞXe�2gtHcðf 0jf �Þ

for all initial densities f 0 with Hcðf 0jf �Þ4�1.
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Let c 2 ð0; 1Þ be a constant and b be as in Eq. (4.35). By a direct calculation it is easily checked that

Ptf 0ðvÞ ¼
2

GðbÞ
aðtÞbv2b�1e�aðtÞv

2

; v 2 ð0;1Þ; tX0,

is a solution of Eq. (4.33), where

aðtÞ ¼
g

s2ð1� ce�2gtÞ
.

Now observe that

HcðP
tf 0jf �Þ ¼ log

g
s2aðtÞ

� �b

þ b 1�
g

s2aðtÞ

� �
¼ bðlogð1� ce�2gtÞ þ ce�2gtÞ

for every tX0. Hence

HcðP
tf 0jf �Þ ¼

logð1� ce�2gtÞ þ ce�2gt

logð1� cÞ þ c
Hcðf 0jf �Þ.

4.2. The multidimensional case

In this section first we turn our attention to the existence of a stationary density in the case of
multidimensional diffusion when the matrix SðxÞ is nonsingular at every point x. This case is much more
involved than the one-dimensional case and does not yield simple necessary and sufficient conditions for the
existence of a stationary density.

Let us assume that F and a are of class C2 and C3, respectively, and thatXd

i;j¼1

aijðxÞlilj40 for x 2 Rd and l 2 Rd � f0g.

Under these assumptions, the so-called Liapunov method [24] implies that if there exists a nonnegative
function V of class C2 on Rd and a positive constant r40 such that

sup
jxjXr

L�V ðxÞo0, (4.37)

where the operator

L� ¼
Xd

i¼1

F iðxÞ
q
qxi

þ
1

2

Xd

i;j¼1

aijðxÞ
q2

qxiqxj

, (4.38)

then there is a unique stationary density f � and f �ðxÞ40 for all x. Again, from Theorem 2
limt!1HcðP

tf 0jf �Þ ¼ 0 for all f 0 with Hcðf 0jf �Þ4�1. If we simply take V ðxÞ ¼ jxj2, then Condition
(4.37) becomes

sup
jxjXr

Xd

i;j¼1

aijðxÞ þ 2
Xd

i¼1

xiF iðxÞ

 !
o0.

One can also write an integral test [28] which reduces to Condition (4.21) in the one-dimensional case. Let

A1ðxÞ ¼
1

jxj2
xTaðxÞx ¼

1

jxj2

Xd

i;j¼1

aijðxÞxixj ,

and

A2ðxÞ ¼ TrðaðxÞÞ þ 2hx;F ðxÞi ¼
Xd

i¼1

aiiðxÞ þ 2
Xd

i¼1

xiF iðxÞ.

Now define

bðrÞ ¼ sup
jxj¼r

A2ðxÞ � A1ðxÞ

A1ðxÞ
and aðrÞ ¼ inf

jxj¼r
A1ðxÞ.
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Finally, for rX1, let

JðrÞ ¼

Z r

1

bðsÞ
s

ds

and assume that there exists r040 such that the following two conditions hold:Z 1
r0

e�JðrÞ dr ¼ 1 and

Z 1
r0

1

aðrÞ
eJðrÞ dro1. (4.39)

We claim that Condition (4.39) implies Condition (4.37). To see this, for rXr0 define

~JðrÞ ¼

Z r

1

e�JðsÞ

Z 1
s

1

aðqÞ
eJðqÞ dqds,

and take V to be of class C2 on Rd such that V ðxÞ ¼ ~JðjxjÞ for jxjXr0. It is easy to check that

2L�V ðxÞ ¼ A1ðxÞ ~J
00ðjxjÞ þ

~J 0ðjxjÞ

jxj
ðA2ðxÞ � A1ðxÞÞ

and that 2L�V ðxÞp� 1 for jxjXr0.
We now discuss the speed of convergence of the conditional entropy. Refs. [9,25] provide a general sufficient

condition for such convergence in the case of multidimensional diffusions for which the Fokker–Planck
equation can be written in a divergence form:

qf

qt
¼ divðDðxÞðrf þ frBðxÞÞÞ, (4.40)

where DðxÞ is locally uniformly positive and BðxÞ is a real-valued function such that the stationary solution

f �ðxÞ ¼ e�BðxÞ

is a density. For simplicity assume that DðxÞ ¼ D is a constant. Then the Fokker–Planck equation (4.40)
describes the evolution of densities for the system

dxðtÞ ¼ �DrBðxðtÞÞdtþ
ffiffiffiffiffiffiffi
2D
p

I dwðtÞ, (4.41)

where I is the identity matrix. If there is l40 such that

D
q2BðxÞ
qxiqxj

� �
i;j¼1;...;d

XlI , (4.42)

then we have

HcðP
tf 0jf �ÞXe�2ltHcðf 0jf �Þ (4.43)

for all initial densities f 0 with Hcðf 0jf �Þ4�1.

4.3. Multidimensional Ornstein– Uhlenbeck process

Consider the multidimensional Ornstein–Uhlenbeck process

dx

dt
¼ Fxþ Sx, (4.44)

where F is a d � d matrix, S is a d � d matrix an x is d-dimensional vector. The formal solution to Eq. (4.44) is
given by

xðtÞ ¼ etF xð0Þ þ

Z t

0

eðt�sÞFSdwðtÞ (4.45)

where etF ¼
P1

n¼0 ðt
n=n!ÞF n is the fundamental solution to _X ðtÞ ¼ FX ðtÞ with X ð0Þ ¼ I , and wðtÞ is the

standard d-dimensional Wiener process. From the properties of stochastic integrals it follows that

ZðtÞ ¼
Z t

0

eðt�sÞFSdwðtÞ
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has mean 0 and covariance

RðtÞ ¼ EZðtÞZðtÞT ¼
Z t

0

esFSSTesFT

ds,

where BT is the transpose of the matrix B. The matrix RðtÞ is nonnegative definite but not necessarily positive
definite. We follow the presentation of [29,30]. For each t40 the matrix RðtÞ has constant rank equal to the
dimension of the space

½F ;S�:¼fFl�1S�j : l; j ¼ 1; . . . ; d; �j ¼ ðdj1; . . . ; djpÞ
T
g.

If m ¼ rankRðtÞ then d �m coordinates of the process ZðtÞ are equal to 0 and the remaining m coordinates
constitute an m-dimensional Gaussian process. Thus if mod there is no stationary density. If rankRðtÞ ¼ d

then the transition probability function of xðtÞ is given by the Gaussian density

kðt;x;x0Þ ¼
1

ð2pÞd=2ðdetRðtÞÞ1=2
exp �

1

2
ðx� etF x0Þ

TRðtÞ�1ðx� etF x0Þ

� �
, (4.46)

where RðtÞ�1 is the inverse matrix of RðtÞ. An invariant density f � exists if and only if all eigenvalues of F have
negative real parts, and in this case the unique stationary density f � has the form

f �ðxÞ ¼
1

ð2pÞd=2ðdetR�Þ
1=2

exp �
1

2
xTR�1� x

� �
, (4.47)

where R� is a positive definite matrix given by

R� ¼

Z 1
0

esFSSTesFT

ds,

and is a unique symmetric matrix satisfying

FR� þ R�F
T ¼ �SST. (4.48)

We conclude that if ½F ;S� contains d linearly independent vectors and all eigenvalues of F have negative real
parts, then from Theorem 2 it follows that limt!1HcðP

tf 0jf �Þ ¼ 0 for all f 0 with Hcðf 0jf �Þ4�1.
To simplify the following we first recall some properties of multivariate Gaussian distributions. Let Q1, Q2

be positive definite matrices and let

giðx; zÞ ¼
1

ð2pÞd=2ðdetQiÞ
1=2

exp �
1

2
ðx� zÞTQ�1i ðx� zÞ

� �
.

Then

log
g1ðx; z1Þ

g2ðx; z2Þ
¼

1

2
log

detQ2

detQ1

�
1

2
ðx� z1Þ

TQ�11 ðx� z1Þ þ
1

2
ðx� z2Þ

TQ�12 ðx� z2Þ. (4.49)

Since
R

g1ðx; 0ÞxxT dx ¼ Q1, we haveZ
g1ðx; z1ÞxxT dx ¼ Q1 þ z1z

T
1 and

Z
g1ðx; z1Þxdx ¼ z1.

Note also that zTQz can be written with the help of the trace of a matrix as Tr½QzzT� for any matrix Q and any
vector z. Consequently,

Hcðg1ð�; z1Þjg2ð�; z2ÞÞ ¼
1

2
log

detQ1

detQ2

þ
1

2
Tr½ðQ�11 �Q�12 ÞQ1� �

1

2
Tr½Q�12 ðz1 � z2Þðz1 � z2Þ

T
�. (4.50)

Now let f 0 be a Gaussian density of the form

f 0ðxÞ ¼
1

ð2pÞd=2ðdetV ð0ÞÞ1=2
exp �

1

2
ðx�mð0ÞÞTV ð0Þ�1ðx�mð0ÞÞ

� �
, (4.51)
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where V ð0Þ is a positive definite matrix and mð0Þ 2 Rd . From Eq. (4.45) it follows that xðtÞ is Gaussian with the
following mean vector mðtÞ ¼ etF mð0Þ and covariance matrix V ðtÞ ¼ etF V ð0ÞetFT

þ RðtÞ. Hence

Ptf 0ðxÞ ¼
1

ð2pÞd=2ðdetV ðtÞÞ1=2
exp �

1

2
ðx�mðtÞÞTV ðtÞ�1ðx�mðtÞÞ

� �
.

Consequently, from Eq. (4.50), with Q1 ¼ V ðtÞ, z1 ¼ mðtÞ, Q2 ¼ R�, and z2 ¼ 0, we obtain

HcðP
tf 0jf �Þ ¼

1

2
log

detV ðtÞ

detR�
þ

1

2
TrðI � R�1� V ðtÞÞ �

1

2
TrðR�1� mðtÞmðtÞTÞ. (4.52)

In particular, if V ð0Þ ¼ R�, then V ðtÞ ¼ R� and

HcðP
tf 0jf �Þ ¼ �

1
2
TrðR�1� mðtÞmðtÞTÞ (4.53)

for all tX0 and every f 0 of the form given by Eq. (4.51).
As a specific example of the multidimensional Ornstein–Uhlenbeck process, to which Eqs. (4.43) and (4.53)

can be applied, consider the case when S ¼ sI and F is a diagonal matrix, F ¼ �lI with l40. Then R�1� ¼

ð2l=s2Þ I and f �ðxÞ ¼ e�BðxÞ, where

BðxÞ ¼
1

2
logðð2pÞd detR�Þ þ

l
s2

xTx.

Thus Condition (4.42) becomes

s2

2

q2BðxÞ
qxiqxj

� �
i;j¼1;...;d

¼ lI .

Since etF ¼ e�ltI , we conclude from Eq. (4.53) that HcðP
tf 0jf �Þ ¼ e�2ltHcðf 0jf �Þ, so the estimate in Eq. (4.43)

is optimal. We will show in the next section that in the case of a non-invertible matrix S a slower speed of
convergence might occur.

To obtain a lower bound on the conditional entropy for the case of a not necessarily invertible matrix S and
a general f 0, we make use of the inequality

HcðP
tf 0jf �ÞX

Z Z
f 0ðy1Þf �ðy2ÞHcðkðt; �; y1Þjkðt; �; y2ÞÞdy1 dy2. (4.54)

(For the proof of inequality (4.54) see Appendix B.) From Eq. (4.50) with Q1 ¼ RðtÞ, Q2 ¼ RðtÞ, z1 ¼ etF y1,
and z2 ¼ etF y1 it follows that

Hcðkðt; �; y1Þjkðt; �; y2ÞÞ ¼ �
1
2
Tr½RðtÞ�1etF ðy1 � y2Þðy1 � y2Þ

TetFT

�.

Since Tr½RðtÞ�1etF yyTetFT

�pkyk2ketFT

RðtÞ�1etFk for any y by the Schwartz inequality, we obtain from Eq.
(4.54)

HcðP
tf 1jf �ÞX�

1

2
ketFk2kRðtÞ�1k

Z Z
ky1 � y2k

2f 0ðy1Þf �ðy2Þdy1 dy2. (4.55)

Finally, observe that the norm of RðtÞ�1 is bounded, because RðtÞ�1 converges to R�1� as t!1. Thus, for
sufficiently large t we have

HcðP
tf 1jf �ÞX� ke

tFk2kR�1� k

Z Z
ky1 � y2k

2f 0ðy1Þf �ðy2Þdy1 dy2. (4.56)

The considerations of the previous paragraphs have been quite general and resulted in the lower bound
estimate of inequality (4.54). There are two concrete examples for which it is relatively easy to place a precise
lower bound on the conditional entropy evolution. These are the noisy harmonic oscillator and the colored
noise which we illustrate in the following:
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4.3.1. Harmonic oscillator

Consider the second order system

m
d2x

dt2
þ g

dx

dt
þ o2x ¼ sx (4.57)

with constant positive coefficients m, g and s. Introduce the velocity v ¼ dx
dt
as a new variable. Then Eq. (4.57)

is equivalent to the system

dx

dt
¼ v, (4.58)

m
dv

dt
¼ �gv� o2xþ sx (4.59)

and the corresponding Fokker–Planck equation is

qf

qt
¼ �

q½vf �

qx
þ

1

m

q½ðgvþ o2xÞf �

qv
þ

s2

2m2

q2f
qv2

.

We can use the results of Section 4.3 in the two-dimensional setting with

F ¼

0 1

�
o2

m
�

g
m

0
@

1
A and S ¼

0 0

0
s
m

 !
.

Since

½F ;S� ¼
0

0

� �
;

0
s
m

 !
;
s
m

1

�
g
m

 !( )
,

the transition density function is given by Eq. (4.46). The eigenvalues of F are equal to

l1 ¼
�gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 4mo2

p
2m

and l2 ¼
�g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 4mo2

p
2m

,

and are either negative real numbers when g2X4mo2 or complex conjugate numbers with negative real parts
when g2o4mo2. Thus the stationary density is given by Eq. (4.47). As is easily seen R�, being a solution to Eq.
(4.48), is given by

R� ¼

s2

2go2
0

0
s2

2mg

0
BBB@

1
CCCA.

The inverse of the matrix R� is

R�1� ¼
2g
s2

o2 0

0 m

 !

and the unique stationary density becomes

f �ðx; vÞ ¼
go

ffiffiffiffi
m
p

ps2
e�ðg=s

2Þ½o2x2þmv2�.

As in Section 4.3 we conclude that limt!1HcðP
tf 0jf �Þ ¼ 0 for all f 0 with Hcðf 0jf �Þ4�1.

The bound on the temporal convergence of HcðP
tf 0jf �Þ to zero, as given by Eq. (4.56), is determined by

ketFk2. Thus, we are going to calculate ketFk2 to see the nature of the general formula (4.56) and to compute
expression (4.53) for the conditional entropy in the case of initial Gaussian densities.
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First consider the overdamped case when l1al2 are real. Define, for tX0,

c1ðtÞ ¼
l2el1t � l1el2t

l2 � l1
and c2ðtÞ ¼

el2t � el1t

l2 � l1
.

Then

etF ¼
c1ðtÞ c2ðtÞ

c01ðtÞ c02ðtÞ

 !

and

ketFk2 ¼ e2l1t þ e2l2t þ ðl1l2 þ 1Þ2c22ðtÞ.

If we take mð0Þ ¼ ð1; liÞ
T, i ¼ 1; 2 then mðtÞ ¼ eli tmð0Þ in Eq. (4.53), and

HcðP
tf 0jf �Þ ¼ e2li tHcðf 0jf �Þ.

Next consider the underdamped case with complex l1; l2, and let

a ¼ �
g
2m

and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mo2 � g2

p
2m

.

Then

etF ¼
eat

b

b cosðbtÞ � a sinðbtÞ sinðbtÞ

�ða2 þ b2Þ sinðbtÞ b cosðbtÞ þ a sinðbtÞ

 !

and we have

ketFk2 ¼
e2at

b2
ð2b2 cos2ðbtÞ þ ð2a2 þ ða2 þ b2Þ2 þ 1Þ sin2ðbtÞÞ.

If we take mð0Þ ¼ ð0;bÞT then mðtÞ ¼ eatðsinðbtÞ; b cosðbtÞ þ a sinðbtÞÞT in Eq. (4.53), and

HcðP
tf 0jf �Þ ¼

e2at

b2
ððb cosðbtÞ þ a sinðbtÞÞ2 þ ða2 þ b2Þ sin2ðbtÞÞHcðf 0jf �Þ.

Finally, consider the critically damped case when l1 ¼ l2, that is g2 ¼ 4mo2, and set

l ¼ �
g
2m

.

Then we have

F ¼
0 1

�l2 2l

� �
and etF ¼ elt

1� lt t

�l2t 1þ lt

 !

and

ketFk2 ¼ e2ltð2þ ðl2 þ 1Þ2t2Þ.

If we take mð0Þ ¼ ð1; lÞT then mðtÞ ¼ eltmð0Þ and Eq. (4.53) becomes

HcðP
tf 0jf �Þ ¼ e2ltHcðf 0jf �Þ.

But, if we take mð0Þ ¼ ð1; 0ÞT, then mðtÞ ¼ eltð1� lt;�l2tÞT and

HcðP
tf 0jf �Þ ¼ e2ltðð1� ltÞ2 þ l2t2ÞHcðf 0jf �Þ.

In all these three cases the speed of convergence of the conditional entropy is determined by ketFk2. A
straightforward argument based on our expressions for ketFk2 shows that the convergence is most rapid for
the overdamped case, intermediate for the underdamped, and slowest for the critically damped case. Note that
these conclusions are independent of the initial density, and specifically independent of the noise amplitude.
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4.3.2. Colored noise

Consider the system

dx

dt
¼ �axþ Z, (4.60)

where a40 and Z is the one-dimensional Ornstein–Uhlenbeck process with parameters g; s40

dZ
dt
¼ �gZþ sx.

Then Eq. (4.60) is equivalent to the system

dx

dt
¼ �axþ v, (4.61)

dv

dt
¼ �gvþ sx, (4.62)

and the corresponding Fokker–Planck equation is

qf

qt
¼

q½ðax� vÞf �

qx
þ

q½gvf �

qv
þ

s2

2

q2f
qv2

.

We can use the results of Section 4.3 in the two-dimensional setting with

F ¼
�a 1

0 �g

 !
and S ¼

0 0

0 s

� �
.

Observe that

½F ;S� ¼
0

0

� �
0

s

� �
;

s

�gs

 !( )
.

The eigenvalues of F are given by

l1 ¼ �a and l2 ¼ �g,

and are evidently negative. Finally,

R� ¼
s2

2gðaþ gÞ

1

a
1

1 aþ g

0
@

1
A

and

R�1� ¼
2aðaþ gÞ

s2

aþ g �1

�1
1

a

0
@

1
A.

Thus, the unique stationary density is equal to

f �ðx; vÞ ¼

ffiffiffiffiffi
ag
p
ðaþ gÞ
ps2

exp �
aþ g
s2
ðaðaþ gÞx2 � 2axvþ v2Þ

n o
.

As in Section 4.3 we conclude that limt!1HcðP
tf 0jf �Þ ¼ 0 for all f 0 with Hcðf 0jf �Þ4�1.

As in the case of the harmonic oscillator the bound on the temporal convergence of HcðP
tf 0jf �Þ to zero, as

given by Eq. (4.56), is determined by ketFk2. Again we calculate ketFk2 to see the nature of the formula (4.56)
and compute expression (4.53) for the conditional entropy in the case of initial Gaussian densities.

First, consider the case when aag. The fundamental matrix is given by

etF ¼
e�at bðtÞ

0 e�gt

� �
with bðtÞ ¼

1

a� g
ðe�gt � e�atÞ
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and

ketFk2 ¼ e�2gt þ e�2at þ b2ðtÞ.

If we take mð0Þ ¼ ð1; 0ÞT, then mðtÞ ¼ e�atmð0Þ in Eq. (4.53) and

HcðP
tf 0jf �Þ ¼ e�2atHcðf 0jf �Þ.

Similarly, for mð0Þ ¼ ð1; a� gÞT we have mðtÞ ¼ e�gtmð0Þ and

HcðP
tf 0jf �Þ ¼ e�2gtHcðf 0jf �Þ.

Now consider the case when a ¼ g. We have

etF ¼
e�gt te�gt

0 e�gt

� �
and ketFk2 ¼ e�2gtð2þ t2Þ.

Eq. (4.53) becomes, for mð0Þ ¼ ð0; 1ÞT and mðtÞ ¼ e�gtðt; 1ÞT,

HcðP
tf 0jf �Þ ¼ e�2gtð2g2t2 � 2gtþ 1ÞHcðf 0jf �Þ.

In both cases the speed of convergence of the conditional entropy is determined by ketFk2. Again note that
these conclusions are independent of the initial density, and specifically independent of the noise amplitude.

5. Markovian dichotomous noise

Another example where we can use our results is the case of dichotomous noise [20, Section 8]. The state
space of the Markovian dichotomous noise xðtÞ consists of two states fcþ; c�g and is characterized by a
transition probability from the state cþ to c� in the small time interval Dt given by aDtþ oðDtÞ, and from the
state c� to cþ given by bDtþ oðDtÞ, where a;b40. It has the correlation function

hxðtÞxðsÞi ¼
abðcþ � c�Þ

2

ðaþ bÞ2
expð�ðaþ bÞtÞ.

A system subject to this type of noise is described by the equation

dx

dt
¼ F ðxÞ þ sðxÞx.

The pair ðxðtÞ; xðtÞÞ is Markovian and writing aðx; c�Þ ¼ F ðxÞ þ c�sðxÞ we arrive at

dxðtÞ ¼ aðxðtÞ; xðtÞÞdt.

The process xðtÞ determines which deterministic system,

dxþ

dt
¼ aðx; cþÞ or

dx�

dt
¼ aðx; c�Þ,

to choose. We assume that given the initial condition x�ð0Þ ¼ x, each of these equations has a solution xþðtÞ

and x�ðtÞ, respectively, defined and finite for all tX0, and we write pt
þðxÞ ¼ xþðtÞ and pt

�ðxÞ ¼ x�ðtÞ.
Furthermore, we assume that there is a minimal open set X such that pt

�ðX Þ 	 X for all t40. Let BðX �
fcþ; c�gÞ be the sigma algebra of Borel subsets of X � fcþ; c�g and let m be the product measure on BðX �
fcþ; c�gÞ which, on every set of the form B� fc�g, is equal to the length of the set B. The norm of any element f

of the space L1ðX � fcþ; c�g;mÞ is equal to

k f k1 ¼

Z
X

jf þðxÞjdxþ

Z
X

jf �ðxÞjdx,

and we now define a semigroup of Markov operators on this space which describes the temporal evolution of
the densities of the process ðxðtÞ; xðtÞÞ.

The evolution equation for the densities f �ðt;xÞ ¼ f ðt; x; c�Þ of the process ðxðtÞ; xðtÞÞ is of the form

qf þ
qt
¼ �

q½aðx; cþÞf þ�
qx

� af þ þ bf � (5.1)
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qf �
qt
¼ �

q½aðx; c�Þf ��
qx

þ af þ � bf �. (5.2)

Formally writing f ¼ ðf þ; f �Þ
T, we arrive at the equation

qf

qt
¼ Af þMf , (5.3)

where

M ¼
�a b

a �b

 !
and Af ¼

�
q½aðx; cþÞf þ�

qx

�
q½aðx; c�Þf ��

qx

0
BB@

1
CCA.

Then the operator A generates a semigroup of Markov operators Tt on L1ðX � fcþ; c�g;mÞ. Since M is a
bounded operator, AþM also generates a semigroup of Markov operators Pt, and

Ptf 0 ¼ Ttf 0 þ

Z t

0

Tt�sMPsf 0 ds

holds for every f 0 2 L1ðX � fcþ; c�g; mÞ. The semigroup Pt gives the generalized solution f ðt; �Þ of Eq. (5.3)
with the initial condition f ð0; �Þ ¼ f 0. Using the results of Pichór and Rudnicki [18, Proposition 2] we infer that
if there is an x0 2 X such that aðx0; cþÞaaðx0; c�Þ, then the semigroup Pt is partially integral, and if X is the
minimal set such that pt

�ðX Þ 	 X , then this semigroup can have at most one stationary density. Consequently,
if a stationary density f � exists, Theorem 2 implies that

lim
t!1

HcðP
tf 0jf �Þ ¼ 0 (5.4)

for all f 0 with Hcðf 0jf �Þ4�1, where the conditional entropy for Pt on L1ðX � fcþ; c�g; mÞ is equal to

HcðP
tf 0jf �Þ ¼ �

Z
X

Ptf ðx; cþÞ log
Ptf ðx; cþÞ

f �ðx; cþÞ
dx�

Z
X

Ptf ðx; c�Þ log
Ptf ðx; c�Þ

f �ðx; c�Þ
dx

by Eq. (2.1).
The density of the state variable xðtÞ is an element of the space L1ðX ;mÞ, where m is the Lebesgue measure

on X. It is given by

pðt;xÞ ¼ Ptf 0ðx; cþÞ þ Ptf 0ðx; c�Þ. (5.5)

Thus, the stationary density f � of Pt gives us the stationary density of xðtÞ

p�ðxÞ ¼ f �ðx; cþÞ þ f �ðx; c�Þ.

Since

HcðpðtÞjp�Þ ¼ �

Z
X

pðt;xÞ log
pðt; xÞ

p�ðxÞ
dxXHcðP

tf 0jf �Þ, (5.6)

we conclude that

lim
t!1

HcðpðtÞjp�Þ ¼ 0. (5.7)

For a general one-dimensional system with dichotomous noise, one can derive a formula for the stationary
density. For the sake of clarity, we follow [31] and restrict our discussion to the case of symmetric
dichotomous noise where

cþ ¼ �c� ¼ c and a ¼ b,

and

aðx; cþÞaðx; c�Þo0,
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where the zeros of aðx; cþÞaðx; c�Þ are the boundaries of X. Then the unique stationary density of Pt is given by

f �ðx; c�Þ ¼ K
1

jaðx; c�Þj
exp �a

Z x 1

aðz; cþÞ
þ

1

aðz; c�Þ

� �
dz

� �
,

where K is a normalizing constant.
As a specific example, consider the linear dichotomous flow

dx

dt
¼ �gxþ x,

where g40. Then c� ¼ �c and aðx; c�Þ ¼ �gx� c for x 2 R. Thus

pt
�ðxÞ ¼ xe�gt �

c

g
ð1� e�gtÞ

and the state space is

X ¼ �
c

g
;
c

g

� �
.

The stationary density f � in this case is given by

f �ðx;�cÞ ¼
g

2ð
gxþ cÞBð1=2; a=gÞ
1�

g2

c2
x2

� �a=g

,

where B is the beta function. Since aðx;þcÞ404aðx;�cÞ for all x 2 X , Conditions (5.4) and (5.7) hold, where
the stationary density p� of the state variable xðtÞ is equal to

p�ðxÞ ¼
g

cBð1=2; a=gÞ
1�

g2

c2
x2

� �a=g�1

.

6. Discussion

Here we have examined the evolution of the conditional (or Kullback–Leibler or relative) entropy to a
maximum in stochastic systems. We were motivated by a desire to understand the role of noise in the evolution
of the conditional entropy to a maximum since in invertible systems (e.g. measure preserving systems of
differential equations or invertible maps) the conditional entropy is fixed at the value with which the system is
prepared. However, the addition of noise can reverse this property and lead to an evolution of the conditional
entropy to a maximum value of zero. We have made concrete calculations to see how the entropy converges,
and shown that it is monotone and at least exponential in several situations.

Specifically, in Section 2 we introduced the dynamic concept of asymptotic stability and the notion of
conditional entropy, and gave two main results connecting the convergence of the conditional entropy with
asymptotic stability (Theorem 1), and the existence of unique stationary densities with the convergence of the
conditional entropy (Theorem 2). In Section 3 we illustrated the well-known fact that asymptotic stability is a
property that cannot be found in an invertible deterministic system, such as a system of ordinary differential
equations. Consequently the conditional entropy cannot have a temporal dependence for deterministic
invertible dynamics, and will always have a value determined by the system preparation. Section 4 introduced
a stochastic extension to this invertible and constant entropy situation in which a system of ordinary equations
is perturbed by Gaussian white noise (thus becoming non-invertible). We summarized some general results
showing that in this stochastic case asymptotic stability holds. Then in Section 4.1 we considered specific one-
dimensional examples, and showed that the conditional entropy convergence to zero is monotone and at least
exponential, considering the specific examples of an Ornstein–Uhlenbeck process in Section 4.1.1 and a
Rayleigh process in Section 4.1.2. We went on to look at multidimensional stochastic systems with
nondegenerate noise in Section 4.2, showing that the exponential convergence of the entropy still holds.
Examples of higher dimensional situations with degenerate noise were considered within the context of a two-
dimensional Ornstein–Uhlenbeck process in Section 4.3 with specific examples of a stochastically perturbed
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harmonic oscillator (Section 4.3.1) and colored noise (Section 4.3.2) as examples. In the cases of the
Ornstein–Uhlenbeck and Rayleigh processes as well as the stochastically perturbed harmonic oscillator and
colored noise examples, we obtained exact formulae for the temporal evolution of the conditional entropy
starting from a concrete initial distribution. The rather surprising result is that the rate of convergence of the
entropy to zero is independent of the noise amplitude. The final Section 5 applied our general results to the
problem of conditional entropy convergence in the presence of dichotomous noise.
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Appendix A. Proof of inequality (2.4)

Jensen’s inequality states that when n is a normalized measure and f is a concave function then

f
Z

gðzÞnðdzÞ

� �
X

Z
fðgðzÞÞnðdzÞ.

Since log is a concave function, Jensen’s inequality impliesZ
f log

f

g
mðdxÞp log

Z
f

f

g
mðdxÞ.

Now note thatZ
f

g
� 1

� �2

gmðdxÞ ¼

Z
f

g

� �2

g� 2
f

g
gþ 1

" #
mðdxÞ ¼

Z
f

g

� �2

gmðdxÞ � 1.

Thus,

�Hcðf jgÞp log 1þ

Z
f

g
� 1

� �2

gmðdxÞ

" #
p
Z

f

g
� 1

� �2

gmðdxÞ.
Appendix B. Proof of inequality (4.54)

To derive inequality (4.54), first write

HcðP
tf 1jP

tf 2Þ ¼ �

Z
Ptf 1ðxÞ log

Ptf 1ðxÞ

Ptf 2ðxÞ
dx � �

Z
jðPtf 1ðxÞ;P

tf 2ðxÞÞ,

where jðu; vÞ ¼ v logðu=vÞ is convex. From the properties of convex functions there always exist sequences of
real numbers fang and fbng such that

jðu; vÞ ¼ supfanuþ bnv : n 2 Ng.

Remembering (4.11) we can then write

anPtf 1ðxÞ þ bnPtf 2ðxÞ ¼ an

Z
kðt;x; y1Þf 1ðy1Þdy1 þ bn

Z
kðt;x; y2Þf 2ðy2Þdy2

¼

Z Z
fankðt; x; y1Þf 1ðy1Þf 2ðy2Þ þ bnkðt;x; y2Þf 1ðy1Þf 2ðy2Þgdy1 dy2

¼

Z Z
f 1ðy1Þf 2ðy2Þfankðt; x; y1Þ þ bnkðt;x; y2Þgdy1 dy2

p
Z Z

f 1ðy1Þf 2ðy2Þjðkðt;x; y1Þ; kðt;x; y2ÞÞdy1 dy2.
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Thus,

sup
n2N

fanPtf 1ðxÞ þ bnPtf 2ðxÞg ¼ jðPtf 1ðxÞ;P
tf 2ðxÞÞ ¼

Z Z
f 1ðy1Þf 2ðy2Þjðkðt;x; y1Þ; kðt; x; y2ÞÞdy1 dy2,

so

HcðP
tf 1ðxÞjP

tf 2ðxÞÞX�

Z Z
f 1ðy1Þf 2ðy2Þ

Z
jðkðt;x; y1Þ; kðt;x; y2ÞÞdx

� �
dy1 dy2

¼ �

Z Z
f 1ðy1Þf 2ðy2ÞHcðkðt;x; y1Þ; kðt;x; y2ÞÞdy1 dy2.
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[12] A. Arnold, J.A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P.A. Markowich, G. Toscani, C. Villani, Monatsh.

Math. 142 (2004) 35.

[13] P. Markowich, C. Villani, Mat. Contemp. 19 (2000) 1.

[14] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley Series in Telecommunications, Wiley, New York, 1991.

[15] P. Diaconis, L. Saloff-Coste, Ann. Appl. Probab. 6 (1996) 695 (ISSN 1050–5164).

[16] A. Lasota, M.C. Mackey, Chaos, Fractals and Noise: Stochastic Aspects of Dynamics, Springer, Berlin, New York, Heidelberg, 1994.
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