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Abstract

We study the convergence properties of the conditional (Kullback—Leibler) entropy in stochastic systems. We have
proved general results showing that asymptotic stability is a necessary and sufficient condition for the monotone
convergence of the conditional entropy to its maximal value of zero. Additionally we have made specific calculations of the
rate of convergence of this entropy to zero in a one-dimensional situation, illustrated by Ornstein—Uhlenbeck and Rayleigh
processes, higher dimensional situations, and a two-dimensional Ornstein—Uhlenbeck process with a stochastically
perturbed harmonic oscillator and colored noise as examples. We also apply our general results to the problem of
conditional entropy convergence in the presence of dichotomous noise. In both the one-dimensional and multidimensional
cases we show that the convergence of the conditional entropy to zero is monotone and at least exponential. In the specific
cases of the Ornstein—Uhlenbeck and Rayleigh processes, as well as the stochastically perturbed harmonic oscillator and
colored noise examples, we obtain exact formulae for the temporal evolution of the conditional entropy starting from a
concrete initial distribution. The rather surprising result in this case is that the rate of convergence of the entropy to zero is
independent of the noise amplitude.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This paper examines the role of noise in the evolution of the conditional (or Kullback—Leibler or relative)
entropy to a maximum. We were led to examine this problem because it is known that in invertible systems
(e.g. measure preserving systems of differential equations or invertible maps) the conditional entropy is fixed
at the value with which the system is prepared [1-4], but that the addition of noise can reverse this invertibility
property and lead to an evolution of the conditional entropy to a maximum value of zero. Here, we make both
general and concrete specific calculations to examine the entropy convergence. We carry this out by studying
the convergence properties of the Fokker—Planck equation using ‘entropy methods’ [S], which have been
known for some time to be useful for problems involving questions related to convergence of solutions in
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partial differential [6—12]. Their utility can be traced, in some instances, to the fact that entropy may serve as a
Liapunov functional or play a role in proving Sobolev-type inequalities [13,25]. Studies of the convergence
properties of entropy have attracted a large number of investigators in a variety of fields other than partial
differential equations, e.g. in the dynamic behavior of Markov chains. A partial survey of some of these results
can be found in Refs. [14,15].

There are a variety of different definitions of ‘entropy’ in the physics, information theory, and probability
theory literature which often leads to confusion. For an illuminating discussion of these different definitions,
[14, Chapter 2] should be consulted. Here, we use the term ‘conditional entropy’ as defined in Eq. (2.1) to be
consistent with our previous work [3,16].

The outline of the paper is as follows. Section 2 introduces the dynamic concept of asymptotic stability and
the notion of conditional entropy. (Asymptotic stability is a strong convergence property of ensembles which
implies mixing. Mixing, in turn, implies ergodicity.) This is followed by two main results connecting the
convergence of the conditional entropy with asymptotic stability (Theorem 1), and the existence of unique
stationary densities with the convergence of the conditional entropy (Theorem 2). Section 3 shows that
asymptotic stability is a property that cannot be found in an invertible deterministic system (e.g. a system of
ordinary differential equations), and consequently that the conditional entropy does not have a dynamic (time
dependent) character for this type of invertible dynamics. Section 4 considers the stochastic extension where a
system of ordinary equations is perturbed by Gaussian white noise (thus becoming non-invertible) and gives
general results showing that in this stochastic case asymptotic stability holds. Section 4.1 considers a one-
dimensional situation, and we show that the conditional entropy convergence to zero is at least exponential.
We consider the Ornstein—Uhlenbeck process in Section 4.1.1 and a Rayleigh process in Section 4.1.2. We
consider multidimensional stochastic systems with nondegenerate noise in Section 4.2 and indicate when the
exponential convergence of the entropy holds. Examples of higher dimensional situations with degenerate
noise are considered within the context of a two-dimensional Ornstein—Uhlenbeck process in Section 4.3 with
specific examples of a stochastically perturbed harmonic oscillator (Section 4.3.1) and colored noise (Section
4.3.2) as examples. Section 5 applies our general results to the problem of conditional entropy convergence in
the presence of dichotomous noise. The paper concludes with a short discussion.

2. Asymptotic stability and conditional entropy

Let (X, 4, 1) be a o-finite measure space. Let {P'},~ be a semigroup of Markov operators on L'(X,p), ie.,
P'f=0 for £ >0, [Pf(x)u(dx) = [f(x)u(dx), and P"*°f = P'(P°f). If the group property holds for 7,5 € R,
then we say that P is invertible, while if it holds only for 7,5 € R™ we say that P is non-invertible. We denote
the corresponding set of densities by Z(X, u), or £ when there will be no ambiguity, so f € & means f >0 and
I = [ vf(u(dx) = 1. We call a semigroup of Markov operators P’ on L'(X, n) asymptotically stable if
there is a density £, such that P'f, = f, for all >0 and for all densities f

lim |P'f —f,], = 0.
—00

The density f, is called a stationary density of P’.
We define the conditional entropy (also known as the Kullback—Leibler or relative entropy) of two densities
fi9€ 2(X, ) as
(x)
1119 =~ [ 16108 T2 wian. 1)
X g(x)
Observe that H.(f]g)<0 for any two densities f,g. Our first result connects the temporal convergence
properties of H. with those of P'.
The proof of the following theorem is much simpler than found in [3, Theorem 7.7], which in turn
generalizes Theorems 9.3.2 and 9.4.2 of Ref. [16].

Theorem 1. Let P' be a semigroup of Markov operators on L' (X, ) and f, be a positive density. If
lim H(P/1f,) =0 (2.2)
— 00
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for a density f then
lim [ Pf =71 = 0. 2.3)

Conversely, if P'f, = f, for all t=0 and Condition 2.3 holds for all f with H.(f|f,)> — oo, then Condition 2.2
holds as well.

Proof. To prove the first part, note that for densities f,g € &, we have from the Csiszar—Kullback inequality
—If = gl =2H (/9.
In particular,
—IIP'f = £, IR =2H PSS ,).
Thus if
lim H(P'f|f,) =0,
=00
then
lim |P'f — /]y = 0.
—00

Proof of the converse portion is not so straightforward. Assume initially that f/f, is bounded, so
0<f<af,. Since P'f, = f, and P'is a positivity preserving operator, we have 0< P'f <af . Making use of the
inequality

2
—H (flg)< / <’; - 1) gu(dx), (2.4)
valid for all densities f, g (for the proof of inequality (2.4) see 4.1), we arrive at

_H.(P'flg)< / ’;f - 1’|P’f ] p(dx)

<max({l, la = I}IPS = fllp

Consequently, H.(P'f|f,) — 0 as t — oo for every density f such that f//f, is bounded.
Now assume that H.(f|f,)> — oo and write f'in the form f = g, + f, where g, =f — f, and

N 0,  f(¥)>af.(x),
fa(x - f(x), 0<f(x)<af*(x)

We have 1 = || fl, = llg.ll1 + IIf .1 and |lg,ll, = f{f»>af*]f,u(dx) — 0 as a — oo. Writing P'f in the form
g S
Pf = lg,ll Pt( ‘ >+I all Pt<.”)
S = o P g ) VP G
we obtain

HAPSIf)> gl He (P,(” a )}/) WA (Pt (f—) p)
gall AL
9a : A S :
>||gau1Hc(”ga”1p*) Wl He (P (mnl) L/) 2.5)

for every a and ¢, where the first inequality follows from the concavity of H.(-|f,) while the second is a
consequence of H.(P'h|f,)=H.(h|f,) valid for any density h. Since 7 {,ﬁ’ m is bounded, we have
H‘.(m{ﬁ If,)> — oo and ‘

g e (Pt<m{:||1) p) =Y
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for every a by the first part of our proof. Finally, observe that

9a
||ga||1Hc( P) = —/ S log A u(dx) + llg,lly log llg,ll;,
9,111 >af.) S

which is convergent to 0 as a — oo, because of the condition H.(f|f,)> — oo and the fact that |g,|;
converges to 0. Letting t — oo in Eq. (2.5) yields

0> lim inf H.(P'f|f,)> ||ga||1Hc< 9a %)
1=00 gl
for all a. Now taking the limit a — oo completes the proof of the if part, and of the theorem.
The semigroup P’ on L'(X, u) is called partially integral if there exists a measurable function ¢ : X x X —
[0, 00) and £y, >0 such that

Pof(0)> /X 4(x, ) 0) 1(dy)

for every density f and

/ / ) ) p(d)>0. O
XJX

Our next result draws a connection between the existence of a unique stationary density f, of P’ and the
convergence of the conditional entropy H. in the case of continuous time systems.

Theorem 2. Let P' be a partially integral continuous semigroup of Markov operators. If there is a unique
stationary density f, for P' and f, >0, then

lim H(P'folf,) =0
Sfor all f, with H.(f,|f ,)> — oo.

Proof. From Pichor and Rudnicki [18, Theorem 2] the semigroup P’ is asymptotically stable if there is a
unique stationary density /, for P’ and f, >0. Thus the result follows from Theorem 1. [

3. Conditional entropy in invertible deterministic systems

In this section we briefly consider the behavior of the conditional entropy in situations where the dynamics
are invertible in the sense that they can be run forward or backward in time without ambiguity. To make this
clearer, consider a phase space X and a dynamics S, : X — X. For every initial point x°, the sequence of
successive points S,(x"), considered as a function of time ¢, is called a trajectory. In the phase space X, if the
trajectory S;(x”) is nonintersecting with itself, or intersecting but periodic, then at any given final time #; such
that ' = S Y (x%) we could change the sign of time by replacing 7 by —¢, and run the trajectory backward using
X' as a new initial point in X. Then our new trajectory S_,(x') would arrive precisely back at x° after a time tr
had elapsed: x° = S,tf(xf). Thus in this case we have a dynamics that may be reversed in time completely
unambiguously.

We formalize this by introducing the concept of a dynamical system {S,},cg, Which is simply any group of
transformations S, : X — X having the two properties: 1. Sy(x) = x; and 2. S,(Sy(x)) = S;1¢(x) for ¢, € R or
Z.. Since, from the definition, for any ¢ € R, we have S,(S_;(x)) = x = S_/(S/(x)), it is clear that dynamical
systems are invertible in the sense discussed above since they may be run either forward or backward in time.
Systems of ordinary differential equations are examples of dynamical systems as are invertible maps.

Our first result is very general, and shows that the conditional entropy of any invertible system is constant
and uniquely determined by the method of system preparation. This is formalized in

Theorem 3. If P' is an invertible Markov operator and has a stationary density f,, then the conditional
entropy is constant and equal to the value determined by f, and the choice of the initial density f for all time t.
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That is,

H(P'folf) = H(folf ) (3.1
for all t.

Proof. Since P is invertible, by Voigt’s theorem' with g = f, it follows that

H(PHfolf) = H(P'P'folf,)
>H((Ptf0 V*) >H((fO lf*)

for all times 7 and ¢. Pick ¥ = —¢ so

Hc(folf*) = H(‘(Ptfo V*) ZHC(fO If*)

and therefore

HC(Ptf‘O V*) = H(?(f(] V*)
for all ¢, which finishes the proof. [

In the case where we are considering a deterministic dynamics S’ : 2 — 2 where 2 C X, then the
corresponding Markov operator is also known as the Frobenius Perron operator [16], and is given explicitly
by

Pifo(x) = fo(ST' DI ()], (3.2)

where J!(x) denotes the Jacobian of S~/(x). A simple calculation shows

_ / P'fy(x) log {P th(x)} dx

7.
. —t —t fO(S_t(x))
_ / So(ST NI (X)) log W] o

fo(y)}
/mwmtw
= HC'(fO V*)

as expected from Theorem 3.
More specifically, if the dynamics corresponding to our invertible Markov operator are described by the
system of ordinary differential equations
Xm'

E:F,-(x), i=1,...,d (3.3)

operating in a region of R? with initial conditions x;(0) = X0, then [16] the evolution of f(z,x) = P'f(x) is
governed by the generalized Liouville equation

HC(PYf‘O V*)

of O(fF;)
g 4
o= "2 o G4
The corresponding stationary density f, is given by the solution of
Z ) _ 0. (3.5)
ax,‘

i
Note that the uniform density f, = 1, meaning that the flow defined by Eq. (3.3) preserves the Lebesgue
measure, is a stationary density of Eq. (3.4) if and only if

Z ax 0. (3.6)

"Voigt’s theorem [19] says that if P is a Markov operator, then H.(Pf|Pg)=H.(f|g) for all f,g € 2.
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In particular, for the system of ordinary differential equations (3.3) whose density evolves according to the
Liouville equation (3.4) we can assert that the conditional entropy of the density P'f,, with respect to the
stationary density f, will be constant for all time and will have the value determined by the initial density f,
with which the system is prepared. This result can also be proved directly by noting that from the definition of
the conditional entropy we may write

1o == [ seo|iog(L) 47~ 1]ax

when the stationary density is f,. Differentiating with respect to time gives

dH. _ f
TR dthg[/ ] dx

or, after substituting from (3.4) for (9f /0r), and integrating by parts under the assumption that f'has compact
support,

dH, A of .Fi)
dt o Rllf* 7 axl‘

dx.

However, since f, is a stationary density of P, it is clear from (3.4) that

dH,
dt

=0,

and we conclude that the conditional entropy H.(P'f,|f,) does not change from its initial value when the
dynamics evolve in this manner.

4. Effects of Gaussian noise

In this section, we turn our attention to the behavior of the stochastically perturbed system

dxl—F(x)—i—Za,j(x)f,, i=1,...d 4.1)

with the initial conditions x;(0) = x;, where o;;(x) is the amplitude of the stochastic perturbation and ¢; =
dw;/dt is a ‘white noise’ term that is the derivative of a Wiener process. In matrix notation we can rewrite
Eq. (4.1) as

dx(?) = F(x(2)) dt 4+ 2 (x(2)) dw(r), 4.2)

where X(x) = [0;7(X)]; ;4 Here it is always assumed that the It6, rather that the Stratonovich, calculus, is
used. For a discussion of the differences see Refs. [20,16,21]. In particular, if the ¢;; are independent of x then
the It6 and the Stratonovich approaches yield identical results.

To fully interpret (4.2) we briefly review the properties of the ¢ when they are derived from a Wiener

process. We say that a continuous process {w(#)},. is a one-dimensional Wiener process if:

1. w(0) = 0; and
2. for all values of s and ¢, 0<s<t the random variable w(¢) — w(s) has the Gaussian density

(4.3)

1 x2
gt —s,x) = 772110 =5 exp {— 720 — s)] .

In a completely natural manner this definition can be extended to say that the d-dimensional vector

w(t) = {wi(0), ..., wa(D)} ;>0
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is a d-dimensional Wiener process if its components are one-dimensional Wiener processes. Because of the
independence of the increments, it is elementary that the joint density of w() is

g(t,x1,. .., xq) = g(t,x1) - - - g, Xq) (4.4)
and thus
/ g(t,x)dx =1, 4.5)
Rd
that
/ xig(t,x)dx =0, i=1,...,d (4.6)
d
and
/ xixjg(t,x)dx = o5t, i,j=1,...,d. 4.7
Rd
In (4.7),
L, i=j,
Ojf = {o, i#j @9

is the Kronecker delta. Therefore, the average of a Wiener variable is zero by Eq. (4.6), while the variance
increases linearly with time according to (4.7).

The Fokker—Planck equation that governs the evolution of the density function f(¢, x) of the process x(¢)
generated by the solution to the stochastic differential equation (4.2) is given by

of O[F; (X)f 0*[ay(x)f]
o Z 0x; 2 Z 6xf6x, ’ (49

i=1

where

QU

aj(x) =Y ou(x)op(x).

k=1

If k(z,x,x) is the fundamental solution of the Fokker—Planck equation, i.e., for every xy the function
(¢, x)~>k(t, x,xp) is a solution of the Fokker—Planck equation with the initial condition d(x — xy), then the
general solution f(¢, x) of the Fokker—Planck equation (4.9) with the initial condition

J(x,0) = fo(x)
is given by
f60 = [ kom0 dx (@.10)

From a probabilistic point of view k(z, x,x() is a stochastic kernel (transition density) and describes the
probability of passing from the state x, at time ¢ = 0 to the state x at a time ¢. Define the Markov operators P’
by

P'fo(x) = / k(t, x, x0)f o(x0)dxo, fo € L' 4.11)

Then P'f, is the density of the solution x(¢) of Eq. (4.2) provided that £, is the density of x(0).
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The steady state density f,(x) is the stationary solution of the Fokker—Planck equation (4.9):

d 4
OLFi(x)f i Oay(x)f1 _
. 4.12
Z: 0x; z:] 0x;0x; ( )
In the specific case of X = R and u equal to the Lebesgue measure, we recover from Eq. (2.1) the conditional
entropy

H.(flf,) = —/ f(t,x)In [f([’ x)} dx. (4.13)
R? f*(x)

If the coefficients a; and F; are sufficiently regular so that a fundamental solution k exists, and
Jy k(t,x,p)dx = 1, then the unique generalized solution (4.10) to the Fokker—Planck equation (4.9) is given by
Eq. (4.11). One such set of conditions is the following: (1) the F; are of class C? with bounded derivatives; (2)
the a;; are of class C? and bounded with all derivatives bounded; and (3) the uniform parabolicity condition
holds, i.e., there exists a strictly positive constant p>0 such that

d d

1 12 1 d
Z aij(x)/lmj>pz i, Jinhj€R, x e R
ij=1 i=1

The uniform parabolicity condition implies that k(z, x,y)>0, and thus P'f(x)>0 for every density, which
implies that there can be at most one stationary density, and that if it exists then f, >0. In this setting, the
corresponding conditional entropy H .(P'f,|f ) approaches its maximal value of zero, as r — oo, if and only if
there is a stationary density f, that satisfies (4.12).

4.1. The one-dimensional case

If we are dealing with a one-dimensional system, d = 1, then the stochastic differential Eq. (4.1) simply
becomes

d
d—): = F(x) + 0(x)¢, (4.14)
where again ¢ is a (Gaussian distributed) perturbation with zero mean and unit variance, and a(x) is the
amplitude of the perturbation. The corresponding Fokker—Planck equation (4.9) becomes

of _ AFY] 1[0 (x)]
- ox +§ PSR (4.15)

The Fokker—Planck equation can also be written in the equivalent form

of oS

=—— 4.1
ot ox’ (4.16)

where

1 a[o* ()1

S=- “ox

+ F(x)f (4.17)
is called the probability current.

When stationary solutions of (4.15), denoted by f,(x) and defined by P,f, = f, for all ¢, exist they are given
as the generally unique (up to a multiplicative constant) solution of (4.12) in the case d = 1:

_AF@S) 1 @)

=0. 4.18
Ox 2 ox? (4.18)
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Integration of Eq. (4.18) by parts with the assumption that the probability current S vanishes at the
integration limits, followed by a second integration, yields the solution

exp UQF(Z) d } (4.19)

(%) W 26

This stationary solution f, will be a density if and only if there exists a positive constant K > 0 such that f, can
be normalized.

We now discuss rigorous results concerning the one-dimensional case. Let a(x) = ¢>(x). Assume that a, d’,
and F are continuous on X = (a, ff), where co<a < ff<oo. Let a(x)>0 for all x € (2, f) and x( be any point in
(o, B). If we want to study the long term behavior, as t — oo, of the process x(¢) given by Eq. (4.14), we need to
know that the process exists for all > 0; in other words that there is no explosion in finite time, and that it lives
in the interval (o, ). If, for example, o were absorbing so that with positive probability we could reach o in
finite time, then a solution f of Eq. (4.15) would show a decrease in norm in L'(a, ).

There is a relation between the behavior of x(7) at the boundary points o« and f, and the existence and
uniqueness of solutions of the corresponding Fokker—Planck equation as described by [22,23]. In particular, if
the condition

X0 X p X
/“ exp {— /xo if((zz)) dz] dx = /XO exp {— Aﬂ if((zz)) dz} dx =00 (4.20)

holds, then the generalized solutions P’f of the Fokker—Planck equation exist and constitute a semigroup of
Markov operators on L!(«, B). If only one of the integrals is finite then this conclusion holds as well, but we
restrict ourselves to Condition (4.20) because it is also necessary for the existence of a stationary solution of
Eq. (4.14), cf. Pinsky [24]. Thus, we conclude that there is a stationary density f, if and only if Condition
(4.20) holds and

b1 ¥2F(z)
— . 4.21
L 20 exp[/x0 20) dz] dx<oo ( )
Define
a2(x) K T2F(2)
D(x) = — and B(x)=—In 20 - /x 0 dz,
where K is such that f,(x) = e 2™ is normalized. Then the Fokker—Planck equation (4.15) can be rewritten as
of 0 of ,
and
Sy =B,
A sufficient condition for an exponential decay of the conditional entropy is the Bakry—Emery condition [25]
|, D(x)F(x) ., (D'(x))*
= Y Py - >, : 4.2
2D(x)—l— 2D F'(x) 2D(v) A xeX (4.23)
where >0 is a positive constant. Consequently, if Eq. (4.23) holds then [9,25]
H(f(Pth lf*) = e_utHc‘(fO lf*) (4-24)

for all initial densities /) with H.(f,,|f,)> — oco. In the following example of an Ornstein—Uhlenbeck process
the choice of a Gaussian initial density will result in equality in Eq. (4.24).

4.1.1. Example of an Ornstein— Uhlenbeck process

Trying to find specific examples of o(x) and F(x) for which one can determine the time dependent solution
f(t,x) of Eq. (4.15) is not easy. One solution that is known is the one for an Ornstein—Uhlenbeck process.
Since it is an Ornstein—Uhlenbeck process, which was historically developed in thinking about perturbations



M.C. Mackey, M. Tyran-Kamiriska | Physica A 365 (2006) 360-382 369

to the velocity of a Brownian particle, we denote the dependent variable by v so we have o(v) = ¢ a constant,
and F(v) = —yv with >=0. In this case, Eq. (4.14) becomes

d
d—i = —pv+0aé (4.25)

with the corresponding Fokker—Planck equation

o ) 7
or v 2 ov?’
The unique stationary solution is

67702/02 y 2/ 2
S ———— 4.27
f*(l)) fjoos 677”2/02 do naz € ( )

Further, from Risken [21, Eq. (5.28)] the fundamental solution k(z, v, vy) is given by

(4.26)

_ 1 (v — exp(=yH)vy)’°
k(t, v, U(]) = \/T(l‘) exp{— 2b([) }, (428)
where
b(r) = g—; [1—e 1. (4.29)

Note that for a given y and ¢ the function k(¢, -, y) is a Gaussian density with mean vy exp(—y¢) and variance
b(?). Since k(¢,v,v9) >0 for all v, vy € R, the semigroup of Markov operators

P'fo(v) = /R k(t, v, vo)f (vo) dvg

satisfies all of the conditions of Theorem 2. Thus we can assert from Theorem 2 that lim,_, o, H.(P'f,|f,) =0
for all f) with H.(f|f,)> — oo.

In the case of the Ornstein—Uhlenbeck process, the sufficient condition (4.23) for the exponential lower
bound on the conditional entropy reduces to

—F'(v)=A, veR.
Thus, A =y and Eq. (4.24) becomes

HC(Pth lf*) = 672),1H600 V*)
for all initial densities £, with H.(f,|f,)> — oo.

We will now show that this lower bound is optimal. Let us first calculate the conditional entropy of two
Gaussian densities. Let ¢;,¢9,>0 and let z;,z; € R. Consider densities of the form

gi(x3zi) = \/Z exp{_qz(x - Zi)2}3 X € R> l= 172
b
Then
g1(x,z1) qi 2 2
log=————==log,/——q;(x —z1)" + ¢,(x — z3)".
g2(x, 22) q> o : ’ :
Since

1
/ gi(x,z)x*dx = — + Z% and / g1(x,z1)xdx = zy,
R 2q, R

we arrive at

1 1
g1 2)lga(,22) = 5 log 2+ 3 (1 - %) — a1 = 22 (4.30)
1 1
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Now let f, be a Gaussian density of the form

fo®) = \/% exp{—ai(v = )},

where ¢; >0 and ¢, € R. Since

P'fo(v) = /Rk(t, v, v0)f o(vo) dvo,

we obtain by direct calculation using Eq. (4.28)

€1

J — # _ _ —7yt\2
Pfo) = \/ 2(e2" 1 2e1b(1)) <P { e ¢ e L) }

Consequently, from Eq. (4.30), with ¢, = ¢1 /(e 4 2¢1b(¢)), ¢, = 7/0°, z1 = c2¢77", and z, = 0, it follows
that

HC(P'folf*)zélog[l— (1 L)e—zyr} vl (1

q 2m¢2 .
- Yy /‘72>e—2,f_ (4.31)
0°C1

C62¢; o2
In particular, if ¢, = y/a? then H.(f,|f,) = —(yc3/6?) and
HC(P[fO lf*) = e_szC(fO lf*)7 t>0

4.1.2. A Rayleigh process
Another example for which we have an analytic form for the density f(¢, x) is that of

dv A
- —yv + % +0&, vel0,00) (4.32)
and the associated Fokker—Planck equation is
of 0 A o2 O°f
—=—||w—-—= - —=. 4.
ot 60[(/0 21))4 T W (433)
The unique equilibrium solution, with the proper normalization, is given by
_ 2 (0N gt e
1.0 = 5 (a) e (4.34)
where
1/4
p=3(5+1)>0 (4.39)
2 \o

and I’ is the gamma function. The fundamental solution is [26]

k(t, v, v0) = f (0)k(t, v, vo), (4.36)

where l%(t, v,v9)>0 for all ,v,v9>0. Again from Theorem 2 it follows that lim,_,, H.(P'f,|f,) = 0 for all £,
with H.(f,|f,)> — oo.

In the case of 4 = ¢ the solution of Eq. (4.32) is called a Rayleigh process [27, pp. 135-136] because the
stationary density f,(v) is the Rayleigh distribution. The sufficient Condition (4.23) for the exponential lower
bound on the conditional entropy reduces to

—F'(®)=4, ve(0,00).

Since F'(v) = —y — (62 /2v%), we obtain 4 = y. Then Eq. (4.24) becomes
Hc(Pth lf*) = e727‘)‘1—16(f0 V*)

for all initial densities f, with H.(f,|f,)> — oo.
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Let ¢ € (0,1) be a constant and f be as in Eq. (4.35). By a direct calculation it is easily checked that

2 _
Pfo(v) = IR0)) a(t)ﬁvzﬁ’le’“(’)”z, v e (0,00), t=0,
is a solution of Eq. (4.33), where

y
o2(1 — ce~ 1)

Now observe that

ot) =

)

p )
HAPf,lf.,) = log (—0_22([)) +ﬁ(1 : )=/3<log(1—c~e-2"'"f)+ce-2"»’f)

for every 1>=0. Hence

log(1 — ce™ ") 4 ce= %"

HC(P{}(OU(*) = log(l — C) Ty

H(folf )

4.2. The multidimensional case

In this section first we turn our attention to the existence of a stationary density in the case of
multidimensional diffusion when the matrix X(x) is nonsingular at every point x. This case is much more
involved than the one-dimensional case and does not yield simple necessary and sufficient conditions for the
existence of a stationary density.

Let us assume that F and a are of class C?> and C°, respectively, and that

d
Z a;j(x)A;4; >0 for x € RY and 1 € R? —{0}.
ij=1
Under these assumptions, the so-called Liapunov method [24] implies that if there exists a nonnegative
function ¥ of class C* on R and a positive constant >0 such that
sup L™ V(x)<0, (4.37)
|x| =7

where the operator

L™ =) Fix) =t > ap(x) == (4.38)
=1 Xi =

ax,@x_/ ’

then there is a wunique stationary density f, and f,(x)>0 for all x. Again, from Theorem 2
lim, oo H(P'folf,) =0 for all £, with H.(f,|f,)> —oc. If we simply take V(x) = |x|*, then Condition
(4.37) becomes

d d
sup (Z Cl;'/'(X) +2 Z X,‘F,’(X)) <0.
i=1

IXI=r\ ;=1

One can also write an integral test [28] which reduces to Condition (4.21) in the one-dimensional case. Let

1 1 ¢
Ai(x) =— xTa(x)x = W Z ai(x)x;x;,
ij=1

|x[*
and
d d
Ax(x) = Tr(a(x)) + 25, F(x)) = Y aix) +2 ) xiFilx).
i=1 i=1
Now define
B(r) = sup A=A o(r) = inf Ay(x).

|x|=r A1(x) Ix|=r
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Finally, for r>1, let
J(r) :/ bs) ds
1 N

and assume that there exists rp >0 such that the following two conditions hold:
oo oo
: 1 .
/ e/Pdr=00 and / — /D dr<co. (4.39)
o o or)

We claim that Condition (4.39) implies Condition (4.37). To see this, for r=ry define

- r o0 l
Joy = [ e / 1 v gg4s,
0= e[ e s

and take ¥ to be of class C? on R? such that V(x) = J(|x|) for |x|>ro. It is easy to check that
T
TD 4 — 1)

|x|
and that 2L7V(x)< — 1 for |x|=ry.

We now discuss the speed of convergence of the conditional entropy. Refs. [9,25] provide a general sufficient
condition for such convergence in the case of multidimensional diffusions for which the Fokker—Planck
equation can be written in a divergence form:

of

o7 = dVDEYS +/VB), (4.40)

where D(x) is locally uniformly positive and B(x) is a real-valued function such that the stationary solution
Su) =

is a density. For simplicity assume that D(x) = D is a constant. Then the Fokker—Planck equation (4.40)
describes the evolution of densities for the system

2LV (x) = A1 (x)J"(1x]) +

dx(7) = —DVB(x(1)) dt + V2DI dw(z), (4.41)
where [ is the identity matrix. If there is A>0 such that
o’B
D ( (x)> >, (4.42)
axiaxj ij=1,..d

then we have

H(f(Pth lf*) 26_2/“1_10(/{0 lf*) (4-43)
for all initial densities £ with H.(f,|f,)> — oo.

4.3. Multidimensional Ornstein— Uhlenbeck process

Consider the multidimensional Ornstein—Uhlenbeck process

% = Fx+ X¢, (4.44)

where Fis a d x d matrix, 2 is a d x d matrix an ¢ is d-dimensional vector. The formal solution to Eq. (4.44) is
given by

x(t) = eF'x(0) + / t eI 3 dw(r) (4.45)
0

where e’ = 3"% (#"/n!) F" is the fundamental solution to X(z) = FX(z) with X(0) =1, and w(?) is the
standard d-dimensional Wiener process. From the properties of stochastic integrals it follows that

t
n(t) = / eIy dw(r)
0
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has mean 0 and covariance
t
T
R(t) = En(Hn(n)' = / eFrxTest ds,
0

where B! is the transpose of the matrix B. The matrix R(f) is nonnegative definite but not necessarily positive
definite. We follow the presentation of [29,30]. For each >0 the matrix R(¢) has constant rank equal to the
dimension of the space

[F,2l={F'"'Z¢; : Lj=1,....d,6; = (5j1,...,0;)"}.

If m = rank R(?) then d — m coordinates of the process 7(f) are equal to 0 and the remaining m coordinates
constitute an m-dimensional Gaussian process. Thus if m <d there is no stationary density. If rank R(¢) = d
then the transition probability function of x(¢) is given by the Gaussian density

1
(2n)"*(det R(2))"/? .

where R(¢)"! is the inverse matrix of R(7). An invariant density /' , exists if and only if all eigenvalues of F have
negative real parts, and in this case the unique stationary density f, has the form

k(t,x,x0) =

p{—% (x —eFxo) TR H(x — e’Fxo)}, (4.46)

Julx) =

1 L -
(Zn)d/z(det R exp{—z X 'R, x}, (4.47)

where R, is a positive definite matrix given by
© T
R, = / efxxTe’” ds,
0

and is a unique symmetric matrix satisfying
FR,+ R.F'" = —33". (4.43)

We conclude that if [F, 2] contains d linearly independent vectors and all eigenvalues of F have negative real
parts, then from Theorem 2 it follows that lim,_, ., H.(P'f,|f,) = 0 for all f, with H.(f,|f,)> — oo.
To simplify the following we first recall some properties of multivariate Gaussian distributions. Let O, O,
be positive definite matrices and let
gi(x, z)

1 —
:(271)"/2(detQ[)‘/zeXp{_2 (X_Z)TQ[ 1(x_2)}.

Then

B 1 d t 1 _ 1 _
Zlg, Z; = log dZt gf =5 (=2 O (= 2 + 5 (x = 2)" 07 N (x — ). (4.49)

Since [g,(x,0)xx" dx = Q,, we have
/gl(x,zl)xxT dx = Q, +21le and /gl(x,zl)xdx =z.

Note also that zT Oz can be written with the help of the trace of a matrix as Tr[Qzz"] for any matrix Q and any
vector z. Consequently,

detQ, 1

1
detQ, T2 T(07" = 07D =5 TH{Q5 (21 — 2)(z1 — 22)'] (4.50)

Hilgi 2l 22) = 5 log

Now let f;, be a Gaussian density of the form

Solx) = —% (x = m(0)"V(0)~!(x — m(O))}, (4.51)

1
Q) (det V(0))'/? exp{
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where V(0) is a positive definite matrix and m(0) € R?. From Eq. (4.45) it followsTthat x(#) is Gaussian with the
following mean vector m(t) = e*'m(0) and covariance matrix V(z) = e V(0)e’r + R(z). Hence

: ex
o Pdet Vo) 2T

Pfox) = {—% (= m() V(0! (e - m(z))}.

Consequently, from Eq. (4.50), with Q, = V(¢), z; = m(t), Q, = R,, and z; = 0, we obtain

1. detV(n 1

3 — _ _
HAPfolf.) = 5 log G p™ + 5

Tr(I — R;'V (1)) — % Tr(R, 'm(tym(2)"). (4.52)

In particular, if V(0) = R,, then V' (f) = R, and
H(Pfolf,) = =3 Tr(R, 'm(ym(n)") (4.53)

for all 120 and every f|, of the form given by Eq. (4.51).

As a specific example of the multidimensional Ornstein—Uhlenbeck process, to which Egs. (4.43) and (4.53)
can be applied, consider the case when 2 = ¢l and F'is a diagonal matrix, ¥ = —Al with A>0. Then R;l =
(2A/a*) I and f,(x) = e 2™, where

B(x) = % log((2m)? det R,) +% xTx.

Thus Condition (4.42) becomes

o* (9’ B(x) _
2 aX,‘an ij=1 d_ '

.....

Since e’ = e~*I, we conclude from Eq. (4.53) that H.(P'f,|f,) = e *'H (f,|f ), so the estimate in Eq. (4.43)
is optimal. We will show in the next section that in the case of a non-invertible matrix X a slower speed of
convergence might occur.

To obtain a lower bound on the conditional entropy for the case of a not necessarily invertible matrix 2 and
a general f), we make use of the inequality

HAPfolf)> / / Lo O H okt -,y IK(1, - 72)) dyy . (4.54)

(For the proof of inequality (4.54) see Appendix B.) From Eq. (4.50) with Q, = R(?), Q, = R(?), z; = ¢'l'y,,
and z; = ef'y, it follows that

H (k(t,-, y)Ik(t,-, ;) = —%TY[R(I)ileIF(M — ) _yz)TetFTl

Since Tr[R(#)"'eFyyTe 1< |y|2eF R(t)"'e'F|| for any y by the Schwartz inequality, we obtain from Eq.
(4.54)

AP =5 1 PIRO [ [ = nalF o 00 a7, dys (455

Finally, observe that the norm of R(s)~! is bounded, because R(f)~' converges to R;l as t — oo. Thus, for
sufficiently large ¢ we have

HA(Pf)> — e IR / / 191 — 312 00n)f () dyy dys. (4.56)

The considerations of the previous paragraphs have been quite general and resulted in the lower bound
estimate of inequality (4.54). There are two concrete examples for which it is relatively easy to place a precise
lower bound on the conditional entropy evolution. These are the noisy harmonic oscillator and the colored
noise which we illustrate in the following:
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4.3.1. Harmonic oscillator
Consider the second order system

2
m&x ., (4.57)

mga Ty g T =t
with constant positive coefficients m, y and . Introduce the velocity v = ‘3;; as a new variable. Then Eq. (4.57)

is equivalent to the system

dx

addp 4.58

a =" (4.58)
m % = — — 0’x + o (4.59)

and the corresponding Fokker—Planck equation is

of _ _Af] 1AAGute’Nf] o O

o x 'm ov 2m2 o
We can use the results of Section 4.3 in the two-dimensional setting with
0 1 0 0
F = _60_2 Y and Z:(O E).
m m m
Since

- {0)2)2(5)

the transition density function is given by Eq. (4.46). The eigenvalues of F are equal to
3 —V—f-\/y — dmw? and A ==V —4mw2
| = =
2m

and are either negative real numbers when 72 >4mw’ or complex conjugate numbers with negative real parts
when 2 <4maw?. Thus the stationary density is given by Eq. (4.47). As is easily seen R, being a solution to Eq.

(4.48), is given by

a
293
R, = / 5
o
0 -
2my

The inverse of the matrix R, is

0
0 m

and the unique stationary density becomes

f (x,0) = ))UJ\/_ *(V/Gz) [w?x? +mv]

As in Section 4.3 we conclude that lim,_ o, H.(P'f,lf,) = 0 for all f, with H (f|f,)> — o
The bound on the temporal convergence of H.(P'f,|f,) to zero, as given by Eq. (4.56), is determined by
lle’F ||?. Thus, we are going to calculate [|e’"'||> to see the nature of the general formula (4.56) and to compute

expression (4.53) for the conditional entropy in the case of initial Gaussian densities.
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First consider the overdamped case when 4, # 4, are real. Define, for >0,

)»zeilt _ /"Lle/lzl e/lg[ _ e/llf
c(t)=———— and a()=———7—
1) R () =——4

Then
w ci() (1)
© T lam @

e P = &1 4+ ! 4 (2122 + 1)Pe3(0).
If we take m(0) = (1,2,)T, i = 1,2 then m(¢) = ¢*'m(0) in Eq. (4.53), and
H(Pfolf.) = H(flf).

Next consider the underdamped case with complex 4;, 4;, and let

/ 2 a2

2m

and

Then
t

P P cos(fit) — o sin(fr) sin(ft)
¢ = B\ 2+ B>)sin(Bt)  Bcos(Br) + asin(fr)

and we have
ot
e |12 = eﬁ—z (2B cos2(B) + (22 + (o2 + ) + 1) sin*(B1)).

If we take m(0) = (0, §)T then m(r) = e*(sin(pr), f cos(Bt) + asin(Br))! in Eq. (4.53), and
g2 . .
H(P'folf ) = I ((Beos(Br) + asin(B)” + (o + B2) sin®(BO)H (| ,)-
Finally, consider the critically damped case when A; = /,, that is > = 4mw?, and set

_r
2m’

Then we have
0 1 1 — At t
F — d tF — At
(-ﬁ 21) me e =N 2 14u

le1? = Q2+ (A + 1)),

If we take m(0) = (1,2)" then m(r) = e*m(0) and Eq. (4.53) becomes
Ho(P'folf ) = e H(folf,)-

But, if we take m(0) = (1,0), then m(r) = e*(1 — A1, —2%*f)" and
H(P'folf,) = (1 = i)’ + 2OV H A \f )

In all these three cases the speed of convergence of the conditional entropy is determined by [e’/|*. A
straightforward argument based on our expressions for [e’||> shows that the convergence is most rapid for
the overdamped case, intermediate for the underdamped, and slowest for the critically damped case. Note that
these conclusions are independent of the initial density, and specifically independent of the noise amplitude.

and
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4.3.2. Colored noise
Consider the system

d

Yt (4.60)
where o>0 and 5 is the one-dimensional Ornstein—Uhlenbeck process with parameters y,o >0

dn

= mtoe <.
Then Eq. (4.60) is equivalent to the system

d_’;: —ax + 0, (4.61)

d

& e (4:62)

and the corresponding Fokker—Planck equation is

o _lex—o)f] Ayl o T
or 0x ov 2 o2’
We can use the results of Section 4.3 in the two-dimensional setting with

—o 1 0 0
F = and 2 = .
( 0 —“/> (0 0)

Observe that

ra={(0) () (o)

The eigenvalues of F are given by

Al=—0o and Ay = —7,

and are evidently negative. Finally,

a2 1 1
Ri=———| «
and
a4y -1
R :2<x(oc+y)
* o2 -1

o

Thus, the unique stationary density is equal to

fx,v)= Mj” exp{— OH;/ (et + )x> — 2axv + 1)2)}.
no g

As in Section 4.3 we conclude that lim,_,o, H.(P'f,|f,) = 0 for all f, with H.(f,|f,)> — oo.

As in the case of the harmonic oscillator the bound on the temporal convergence of H .(P'f,|f ) to zero, as
given by Eq. (4.56), is determined by ||e’'||>. Again we calculate ||e’"||? to see the nature of the formula (4.56)
and compute expression (4.53) for the conditional entropy in the case of initial Gaussian densities.

First, consider the case when o#7y. The fundamental matrix is given by

o (e Bo) !

0 e o—7

(efyt _ efo:t)

) with () =
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and
”erF”2 — 672}1 + 6720(1‘, + 52(0

If we take m(0) = (1,0)", then m(r) = e *m(0) in Eq. (4.53) and
H(f(Pth V*) = eizmHL’(fO U[*)

Similarly, for m(0) = (1,0 — )T we have m(7) = e "'m(0) and

H(f(Pth lf*) = e_zytHC(fO U(*)

Now consider the case when o = y. We have

e " e
olf = ( . ) and [le|? = e 22+ ).
0 e
Eq. (4.53) becomes, for m(0) = (0, 1)" and m(r) = e77'(1,1)",
H(P'folf ) = e "2y = 2yt + DHA(f oS-
In both cases the speed of convergence of the conditional entropy is determined by ||e’" ||*. Again note that
these conclusions are independent of the initial density, and specifically independent of the noise amplitude.

ZF”Z

5. Markovian dichotomous noise

Another example where we can use our results is the case of dichotomous noise [20, Section 8]. The state
space of the Markovian dichotomous noise £(f) consists of two states {c;,c_} and is characterized by a
transition probability from the state ¢, to c¢_ in the small time interval Az given by oAt + o(A¢), and from the
state c_ to ¢y given by At + o(At), where o, §>0. It has the correlation function

2
af(cy —c-
(i) = L exp—a+ .
(o +p)
A system subject to this type of noise is described by the equation
dx

T F(x)+ a(x)&.

The pair (x(¢), &(¢)) is Markovian and writing a(x, c+) = F(x) + c+a(x) we arrive at
dx(1) = a(x(1), <(1) dz.

The process £(7) determines which deterministic system,

dx, dx_
T a(x,cy) or T a(x,c_),

to choose. We assume that given the initial condition x.(0) = x, each of these equations has a solution x ()
and x_(7), respectively, defined and finite for all />0, and we write 7/ (x) = x4(¢) and 7’ (x) = x_(2).
Furthermore, we assume that there is a minimal open set X such that 7/, (X) € X for all 7>0. Let Z(X x
{cy,c_}) be the sigma algebra of Borel subsets of X x {c¢,,c_} and let u be the product measure on (X x
{ci,c_}) which, on every set of the form B x {c.}, is equal to the length of the set B. The norm of any element f'
of the space L'(X x {cy,c_}, n) is equal to

1l = /X (ol dx + /X ()l dx,

and we now define a semigroup of Markov operators on this space which describes the temporal evolution of
the densities of the process (x(z), &(¢)).
The evolution equation for the densities f (¢, x) = f(¢, x, c+) of the process (x(¢), &(¢)) is of the form

of . OlaCx,co)f (]
6_;__76x B —of  +Bf (5.1)
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@f; _ Ola(x, c_)f _]

= +of . —Bf_. (5.2)
Formally writing /' = (f,.f )T, we arrive at the equation

0

a_{ — Af + MY, (5.3)
where

Al e4)f 4]

—o B 0
M = ( " —ﬁ) and Af = Ja(x, f_)f_]
- Ox

Then the operator A generates a semigroup of Markov operators T on L'(X x {c,,c_},p). Since M is a
bounded operator, 4 + M also generates a semigroup of Markov operators P’, and

t
Plfy=T'fy+ / T MPf, ds
0

holds for every f, € L'(X x {cy,c_}, ). The semigroup P’ gives the generalized solution f(z,-) of Eq. (5.3)
with the initial condition (0, -) = f|,. Using the results of Pichdr and Rudnicki [18, Proposition 2] we infer that
if there is an xy € X such that a(xo, c;)#a(xo, c_), then the semigroup P’ is partially integral, and if X is the
minimal set such that 7/, (X) C X, then this semigroup can have at most one stationary density. Consequently,
if a stationary density f, exists, Theorem 2 implies that

fim H(Pfolf,) =0 54
for all £, with H.(f,|f,)> — oo, where the conditional entropy for P' on L'(X x {c;,c_}, n) is equal to
Pt Pt _
H(Pfolf) = - / Pf(x,c)log DL g / Pr(x.c)log L5 4y
X fixes) x fuxe)

by Eq. (2.1).
The density of the state variable x(¢) is an element of the space L'(X,m), where m is the Lebesgue measure
on X. It is given by

p(t,x) = Pfo(x,cq) + Plfo(x,c). (5.5)
Thus, the stationary density f, of P’ gives us the stationary density of x(7)

p*(x) zf*(xa C-‘r) +f*(x, C—)'
Since

p(t, x)
P.(x)

1ummw=—AMmm% dx= H(P'folf ). (5.6)

we conclude that
lim H(p(t)lp,) = 0. (5.7)

For a general one-dimensional system with dichotomous noise, one can derive a formula for the stationary
density. For the sake of clarity, we follow [31] and restrict our discussion to the case of symmetric
dichotomous noise where

¢t =—c_=c¢ and a=2p,
and

a(X, C+)a(x9 C,) < 09
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where the zeros of a(x, ¢, )a(x, c_) are the boundaries of X. Then the unique stationary density of P is given by

1 an !
So(x,ex) = Km exp{—oﬂ/ <a(z, cy) * a(z, C—)) dz},

where K is a normalizing constant.
As a specific example, consider the linear dichotomous flow

dr __ x+<
ar = ! ’
where y>0. Then ¢y = +¢ and a(x, c+) = —yx £+ ¢ for x € R. Thus

T(x)=xe"" £ ¢ (1 —e™h
Y
and the state space is

X = (_f,f).
Y

The stationary density /', in this case is given by

f.(x,xc) = L (l — szz) "
S E =y F 0B 2a/y | @Y )

where B is the beta function. Since a(x, +c¢)> 0> a(x, —c) for all x € X, Conditions (5.4) and (5.7) hold, where
the stationary density p, of the state variable x(¢) is equal to

(m———l——l—ﬁﬁaml
PyX) = cB(1/2,0/y) 2 '

6. Discussion

Here we have examined the evolution of the conditional (or Kullback—Leibler or relative) entropy to a
maximum in stochastic systems. We were motivated by a desire to understand the role of noise in the evolution
of the conditional entropy to a maximum since in invertible systems (e.g. measure preserving systems of
differential equations or invertible maps) the conditional entropy is fixed at the value with which the system is
prepared. However, the addition of noise can reverse this property and lead to an evolution of the conditional
entropy to a maximum value of zero. We have made concrete calculations to see how the entropy converges,
and shown that it is monotone and at least exponential in several situations.

Specifically, in Section 2 we introduced the dynamic concept of asymptotic stability and the notion of
conditional entropy, and gave two main results connecting the convergence of the conditional entropy with
asymptotic stability (Theorem 1), and the existence of unique stationary densities with the convergence of the
conditional entropy (Theorem 2). In Section 3 we illustrated the well-known fact that asymptotic stability is a
property that cannot be found in an invertible deterministic system, such as a system of ordinary differential
equations. Consequently the conditional entropy cannot have a temporal dependence for deterministic
invertible dynamics, and will always have a value determined by the system preparation. Section 4 introduced
a stochastic extension to this invertible and constant entropy situation in which a system of ordinary equations
is perturbed by Gaussian white noise (thus becoming non-invertible). We summarized some general results
showing that in this stochastic case asymptotic stability holds. Then in Section 4.1 we considered specific one-
dimensional examples, and showed that the conditional entropy convergence to zero is monotone and at least
exponential, considering the specific examples of an Ornstein—Uhlenbeck process in Section 4.1.1 and a
Rayleigh process in Section 4.1.2. We went on to look at multidimensional stochastic systems with
nondegenerate noise in Section 4.2, showing that the exponential convergence of the entropy still holds.
Examples of higher dimensional situations with degenerate noise were considered within the context of a two-
dimensional Ornstein—Uhlenbeck process in Section 4.3 with specific examples of a stochastically perturbed
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harmonic oscillator (Section 4.3.1) and colored noise (Section 4.3.2) as examples. In the cases of the
Ornstein—Uhlenbeck and Rayleigh processes as well as the stochastically perturbed harmonic oscillator and
colored noise examples, we obtained exact formulae for the temporal evolution of the conditional entropy
starting from a concrete initial distribution. The rather surprising result is that the rate of convergence of the
entropy to zero is independent of the noise amplitude. The final Section 5 applied our general results to the
problem of conditional entropy convergence in the presence of dichotomous noise.
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Appendix A. Proof of inequality (2.4)

Jensen’s inequality states that when v is a normalized measure and ¢ is a concave function then

¢( / g(z)v(dz)) > / Hg(V(d:).

Since log is a concave function, Jensen’s inequality implies

/ flogg 1(dx)< log / fg u(dx).

Now note that

/(g—1>2gu(dX)=/l(§>2g—2§g+l u(dx)=/(§)2gu(dx)—1.
Thus,
[ (2 l)zgu((m] < [ (L1 aua

Appendix B. Proof of inequality (4.54)

_Hc(f|g)< lOg

To derive inequality (4.54), first write
Pifi(x)
P'f5(x)
where ¢(u, v) = vlog(u/v) is convex. From the properties of convex functions there always exist sequences of
real numbers {a,} and {b,} such that

HAP'f\Pfs) = — / Pf () log dv=— / o(PF (), P'f (),

¢o(u,v) = sup{a,u + b,v : n € N}.

Remembering (4.11) we can then write

P13+ BP0 =y [ KX 3001+ [ K320
= [ [ttty 0 + bt x50 01020y
= [ [ 100000k 500+ bkt x 3 dy
< [ [ 1002020004053 k.55 dy, d
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Thus,

Slellg {anP'f 1(x) + by P'f5(x)} = @(P'f (x), P'/f5(x)) = //fl()ﬁ)fz(l/z)@(k(f, X, 1), k(t,x,,))dy, dy,,

SO

HC(Ptfl(x)|Ptfz(x))> — / /fl(Vl)fz(Vz) {/ o(k(t,x, ), k(t, x,yz))dx] dy, dy,
o / / Fr O A0V H (1, %, 1),k (1, %, 7)) dyy .
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