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Long Period Oscillations in a G0 Model of Hematopoietic Stem Cells∗
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Abstract. This paper analyzes the dynamics of a G0 cell cycle model of pluripotential stem cells so we can
understand the origin of the long period oscillations of blood cell levels observed in periodic chronic
myelogenous leukemia (PCML). The model dynamics are described by a system of two delayed
differential equations. We give conditions for the local stability of the nontrivial steady state. We
use these conditions to study when stability is lost and oscillations occur, and how various parameters
modify the period of these oscillations. We consider a limiting case of the original model in order to
compute an explicit solution and give an exact form of the period and the amplitude of oscillations.
We illustrate these results numerically and show that the main parameters controlling the period
are the cellular loss (the differentiation rate δ and the apoptosis rate γ), while the cell regulation
parameters (proliferation rate β and cell cycle duration τ) mainly influence the amplitude.
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1. Introduction. Hematological diseases have attracted a significant amount of modeling
attention [1, 22, 18, 17, 19, 20, 21, 33, 41, 44, 45, 47, 56, 58]. This is primarily because
of the existence of periodic hematological diseases, in which there are clear and statistically
significant oscillations in the number of circulating cells with periods ranging from weeks to
months [30].

Some of these periodic hematological diseases involve only one type of blood cell, and all
of these seem to be due to a destabilization of a peripheral control mechanism, e.g., periodic
auto-immune hemolytic anemia [5, 46] and cyclical thrombocytopenia [59, 62]. It is commonly
observed that periodic hematological diseases of this type involve periodicities between two
and four times the bone marrow production delay, and this observation has a clear explanation
within a modeling context.

Other periodic hematological diseases show oscillations in all of the circulating blood cells
(i.e., white cells, red blood cells, and platelets). These diseases often have periods that are
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quite long (on the order of weeks to months) and are believed to be due to a destabilization
of the pluripotential stem cell population from which all of the mature blood cell types are
derived. This is observed in cyclical neutropenia [7, 8, 9, 30, 32, 44, 45, 47] and in chronic
myelogenous leukemia (CML) [26]. This latter disease is the focus of the present paper.

Leukemia is a progressive, malignant disease of the blood-forming organs, characterized
by uncontrolled proliferation of immature and abnormal white blood cells in the bone marrow,
the blood, the spleen, and the liver. It is classified clinically on the basis of the character of
the disease (chronic or acute), the type of cells involved (myeloid, lymphoid, or monocytic),
and the increase or lack of increase in the number of abnormal cells in the blood (leukemic or
aleukemic). In this paper we focus our attention on CML and more specifically on its periodic
form.

CML is characterized by a chromosomal translocation. Typically, leukemic cells share a
chromosome abnormality not found in nonleukemic white blood cells or in other cells of the
body. This abnormality is a reciprocal translocation between chromosome 9 and chromosome
22. This translocation results in chromosome 9 being longer than normal and chromosome
22 being shorter than normal. The DNA removed from chromosome 9 contains most of the
proto-oncogene designated c-Abl, and the break in chromosome 22 located in the middle of
the gene is designated by Bcr. The resulting Philadelphia chromosome has the section of Bcr
fused with most of c-Abl. We then have a chimeric protein Brc-Abl tyrosine kinase (PTK)
that causes a leukemia-like disease [16, 24, 28, 36, 39, 42, 43, 66].

CML is believed to arise in the hematopoietic stem cell compartment based in the bone
marrow that supplies progeny for all of the cellular elements of the blood. Two main lines
of evidence support this belief. First, in CML patients it is generally observed that the
Philadelphia chromosome can be found in all of the hematopoietic lineages [12, 23, 29, 35, 63]
implying that these cells are all derived from a common ancestor containing the Philadelphia
chromosome. The second line of evidence is based on observations in patients with the variant
periodic CML (PCML). In this relatively rare form of the disease, white blood cells, platelets,
and erythrocyte precursors all oscillate with the same period [26] (see Figure 1.1). The most
parsimonious explanation is that this oscillation is derivative from a central oscillation in the
efflux of primitive committed cells from the pluripotential stem cell population.

It has long been known that there is a large variation between patients in the length of
the period of the oscillations in PCML (between 40 to 80 days) [26]. Even more puzzling is
the fact that there is an enormous difference between the periods involved in PCML and the
average pluripotential cell cycle duration which ranges between one to four days [38, 47, 48].
The connection between the relatively short cell cycle durations and the relatively long periods
of peripheral cell oscillations is unclear and not understood. The most important question is
then, “How do short cell cycles give rise to long period oscillations?”

To understand the dynamics of PCML, we consider a model for the regulation of stem cell
dynamics. We employ a G0 model for the stem cell population, whose early features are due to
Lajtha [40] and Burns and Tannock [14]. We wish to understand the influence of parameters
in this stem cell model on the oscillation period when the model becomes unstable and starts
to oscillate.

This paper is organized as follows. In section 2, we describe the stem cell model in detail
and present an existence and uniqueness result for the solutions of the model equation. In
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Figure 1.1. Published data and analysis of leukocyte, platelet, and reticulocyte population for one PCML
patient [34]. The left column contains the serial blood counts, and the right column contains the corresponding
Lomb periodogram P(T) (power P versus period T in days). The dashed line in the left column represents
the normal level of cells, and the horizontal lines in the Lomb periodogram give the p = 0.05, p = 0.01, and
p = 0.001 significance levels. The details of the computations of the Lomb periodogram can be found in [26].

section 3, we study the nontrivial steady state of the system and its local stability. Section 4
considers the case where the solutions are periodic. We introduce a method of deriving the
solution analytically and give an explicit form for the period and amplitude of the solutions.
We then give some numerical illustrations of this result as parameters are varied. In section
5, we give a short conclusion.

2. Description of the stem cell model. The stem cell model that we consider is a classical
G0 model [14, 50, 61] that partitions cells, based on their functional status, into one of two
phases: a proliferating phrase and a resting phase (the so-called G0-phase). The proliferating
cell population consists of those cells actively engaged in the synthesis of DNA and ultimately
undergoing mitosis and cytokinesis. The numbers of proliferating phase cells are denoted by
P (t), where t is time. In this proliferating phase, cells are committed to undergo cell division
a constant time τ after entry or be lost through apoptosis at a constant rate γ. At the
point of cytokinesis, a cell divides into two daughter cells which enter the resting phase (see
Figure 2.1). The resting phase (G0) cells are denoted by N(t). Cells in the resting phase, by
definition, cannot divide. They may have one of three possible fates. They may differentiate
at a constant rate δ, they may reenter the proliferating phase at a rate β, or they may simply
remain in G0.

The full model for this situation consists of a pair of (age-structured) reaction convection
evolution equations with their associated boundary and initial conditions [58, 44, 45, 51].
Using the method of characteristics [65], these equations can be transformed into a pair of
nonlinear first-order differential delay equations [44, 45, 47]:

dP (t)

dt
= −γP (t) + β(N)N − e−γτβ(Nτ )Nτ ,(2.1)

dN(t)

dt
= −[β(N) + δ]N + 2e−γτβ(Nτ )Nτ ,(2.2)
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Figure 2.1. A schematic representation of the G0 stem cell model. Proliferating phase cells (P ) include
those cells in G1, S (DNA synthesis), G2, and M (mitosis), while the resting phase (N) cells are in the G0-
phase. δ is the rate of differentiation into all the committed stem cell populations, and γ represents a loss of
proliferating phase cells due to apoptosis. β is the rate of cell reentry from G0 into the proliferative phase, and
τ is the duration of the proliferative phase. See [44, 45, 47] for further details.

where Nτ ≡ N(t − τ). The term e−γτβ(Nτ )Nτ in (2.1) represents the number of surviving
cells leaving the proliferating phase that entered a time t−τ earlier. The term 2e−γτβ(Nτ )Nτ

in (2.2) represents the newly born daughter cells coming from the surviving mother cells.
The resting-to-proliferative phase feedback rate β (i.e., the mitotic reentry rate from G0

into proliferation) is taken to be a monotone decreasing Hill function of N

β(N) = β0
θn

θn + Nn
.(2.3)

In (2.3), β0 is the maximal rate of cell movement from G0 into proliferation, θ is the G0 stem
cell population at which the rate of cell movement from G0 into proliferation is one-half of its
maximal value (β0), and n > 0 characterizes the sensitivity of the mitotic reentry rate β to
changes in the size of G0. The Hill function β(N) has often been used in cell cycle models to
describe saturation (see [25], for instance). The choice of this form for β is standard and can
be found in [13, 54, 44].

Note that the dynamics of the resting phase cells described by (2.2) are independent of
the dynamics of the proliferative phase cells but the converse is not true. This is due to the
assumed dependence of β on N as well as the boundary conditions of the original equations
of the problem [44, 45]. Because of this independence, we need only concern ourselves with
(2.2) in the rest of the paper. A solution of (2.2) is a continuous function N : [−τ,+∞) → R+

obeying (2.2) for all t > 0. The continuous function ϕ : [−τ, 0) → R+, ϕ(t) = N(t) for all
t ∈ [−τ, 0] is called the initial condition for N . Using the method of steps, it is easy to prove
that for every ϕ ∈ C([−τ, 0]), where C([−τ, 0]) is the space of continuous functions on [−τ, 0],
there is a unique solution of (2.2) (see, for instance, [51]).

3. Steady states and local stability. The objective of this paper is to understand the
origin of stem cell related periodic hematological disease. Consequently, in this section we
determine conditions such that the solutions of the nonlinear differential delay equation (2.2)
are locally stable. In particular, we investigate the regions of parameter space where the
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solutions become unstable through a Hopf bifurcation.

3.1. Steady states. The steady states N∗ of (2.2) are given by the solutions of dN/dt ≡ 0.
It is clear that they must satisfy either N∗ ≡ 0 (the trivial steady state) or

N∗ = θ

(
β0

δ
(2e−γτ − 1) − 1

)1/n

= θ

(
β0

β∗
− 1

)1/n

.

For the positive steady state to exist it is necessary for the following conditions to be satisfied:

0 ≤ τ ≤ τmax ≡ −1

γ
ln

[
δ + β0

2β0

]
and δ < β0.(3.1)

In the rest of the paper we consider τ in the interval [0, τmax]. The trivial steady state N∗ ≡ 0
corresponds to the death of the population. Consequently, we focus our attention on the
nontrivial steady state. It will be shown, however, that the stability of the trivial steady state
is relevant for proving the existence of the periodic solutions in section 4.1.

3.2. Local stability. Define a dimensionless variable x = N/θ so we can write the dynam-
ical equation for the nonproliferating population of cells as

dx

dt
= − [β(x) + δ]x + κβ(xτ )xτ ,(3.2)

where κ(τ) = 2e−γτ and β∗ = δ
κ−1 . To examine the local stability of the steady state

x∗ =

(
β0

β∗
− 1

)1/n

,

we linearize (3.2) in the neighborhood of x∗. Denote the deviation of x away from the steady
state value by z = x− x∗, and set Bτ = β∗ + β′

∗x∗ to obtain

dz

dt
= − [B + δ] z + κBzτ .(3.3)

(The notation Bτ is used to indicate the implicit dependence of B on τ through the parameter
κ.)

If we make the ansatz that z(t) ∼ eλt in (3.3), then the eigenvalue equation λ+ (δ+B) =
κBe−λτ results immediately. This transcendental equation has been studied by Hayes [31]
and Beretta and Kuang [6] who have derived necessary and sufficient conditions for �(λ) ≤ 0,
which corresponds to a locally stable steady state x∗.

In our situation, these conditions depend on the value of n, and we consider two cases:
n ∈ [0, 1] and n > 1. For n ∈ [0, 1], the solutions are locally stable for τ ∈ [0, τmax]. For n > 1,
two subcases must be considered:

1. If nδ ≥ (n− 1)β0, the solutions are locally stable for τ ∈ [0, τmax].
2. If 0 ≤ nδ < (n− 1)β0, define

τn = −1

γ
ln

{
1

2

[
δ

β0

(
1 +

1

n− 1

)
+ 1

]}
.
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(a) For τ ∈ [0, τn], note that B ≤ 0. We then have stability if and only if −1 ≤
κB
δ+B ≤ 1, or

−1 ≤ δ + B

κB
≤ 1 and τ < τcrit ≡

cos−1

(
δ + B

κB

)
√

(κB)2 − (δ + B)2
.

(b) For τ ∈ [τn, τmax] the solutions are locally stable.

The details of the computations leading to these results are in Appendix A. Note that
these inequalities are implicit and involve four different parameters. It is the goal of this paper
to understand the role of each in determining the characteristics of periodic solutions to the
stem cell model.

Since it is only for case 2a that periodic solutions may arise, we now focus our attention
there. Note that λ = 0 is not a root of the eigenvalue equation. It is then clear that if the
equilibrium loses its stability, this must occur through a Hopf bifurcation. In other words, if
the parameters B, δ, κ are such that τ ≡ τcrit, then there is a Hopf bifurcation with pure
imaginary eigenvalues λ = ±iω, ω being a positive real number, and there is a periodic solution
of (3.3) with Hopf period TH = 2π/ω given by

TH =
2π√

(κB)2 − (δ + B)2
=

2πτcrit

cos−1

(
δ + B

κB

) .(3.4)

These results clearly show when we might expect to find long period oscillatory behavior
in (2.2)—namely, when τ > τcrit and γτ → ln 2 or, equivalently, κ → 1. However, long period
oscillations do not necessarily have large amplitudes as we shall see in the numerical results
presented in section 4. It is thus important to understand the link between the period and
the amplitude of the oscillation to make the connection between model behavior and clinical
data as strong as possible. Due to the complexity of the equations, we are unable to delineate
these conditions analytically but have determined then numerically in sections 3.3 and 4.2.

3.3. Long period solutions. In this short section, we numerically illustrate some of the
analytic results obtained in section 3.2.

One of the authors [44, 47, 48] has estimated standard values of the parameters in our
model as shown in Table 3.1. In our numerical simulations we will use this set as a basis
for all investigations of parameter changes. Thus, when the effect of changing one or more
parameters is being investigated, all of the other parameters will be held at the values in Table
3.1.

The results presented in Figure 3.1 show the influence of the Hill coefficient n on the
solutions of (3.2). For these parameters, the steady state x∗ 	 21.571/n, and it is obvious
that the steady state decreases when n increases. When n ≥ 10 oscillations appear around
the steady state (see Figure 3.1(A)). The larger the Hill coefficient n, the larger the period
and amplitude of the oscillation (see Figure 3.1(B)). However, because the Hill function β
is an asymptotically decreasing function that approaches a Heaviside function as n tends to
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Table 3.1
Standard parameters for the cell cycle model.

Parameter Value

δ 0.05 day−1

τ 1 day
β0 1.77 day−1

γ 0.2 day−1

Figure 3.1. (A) Ultrasensitive response of the solution of (3.2) with Hill coefficients n from 1 to 10, with all
other parameters taken from Table 3.1. (B) Ultrasensitive response of the solution of (3.2) with Hill coefficients
n from 10 to 19, with all other parameters taken from Table 3.1.

infinity maximum amplitude A and period T as n → ∞, it is then necessary to change other
parameters to modify A and T .

In [57] the authors numerically investigated the influence of each parameter (τ , δ, γ, β0, and
n) on the oscillation characteristics. Although the study presented in [57] is a rather complete
review of the different period lengths a solution can show under changes of the parameters,
they were unable to obtain any accurate results on the slight changes of amplitude occurring
with these parameter changes.

The goal of the next section is to develop a technique to obtain an implicit analytic
expression for the amplitude when n tends to infinity. Even though the analytic result is only
implicit, it allows us to carry out a quite accurate numerical study.

4. Approximation of the long period solutions. In this section we analytically study
the periodic solution properties of (3.2). Since β given by (2.3) is a decreasing function, our
model corresponds to a (nonlinear) negative feedback loop with delay. Few general techniques
are available to predict the behavior of such systems, and one has often to rely on numerical
simulations. However, there is a class of delay differential equations that is amenable to
analytic treatment (c.f. [3, 4, 49, 55, 64] and the more recent papers [1, 51, 52]). In this
section we use these techniques, as applied by Mackey and an der Heiden [49], for a limiting
form of the function β.

Consider the Hill function given by (2.3) that defines β. If the Hill coefficient n → ∞,
then β becomes a piecewise constant function (a Heaviside step function), and a complete
characterization of the solutions is possible. Moreover, we can see in Figure 3.1(A) that
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considering n 	 12 is already a good approximation of a high Hill coefficient for our numerical
simulations. The Hill coefficient is often regarded as a cooperativity coefficient, describing
the number of agents (molecules, proteins, or complexes) required to activate or deactivate a
given process. If n was interpreted to be the number of ligand molecules required to activate
or deactivate a receptor site, then values of n = 12 or larger would not be biologically realistic.
However, there are other situations in which cascade effects are known to create switch-like
phenomena [25]. In these circumstances, both experimental data and theoretical modeling
suggest that the large values of n considered are quite realistic [11, 10].

4.1. Reduction of the model for large n. When n → ∞, the feedback function β can be
approximated by the Heaviside step function

β(xτ ) = β0 [1 −H(xτ − θ)] ,(4.1)

where

H(y) =

{
1 if y ≥ 0,
0 otherwise.

(4.2)

From now on we take θ = 1. If we define two new constants by

α = β0 + δ and Γ = 2β0e
−γτ = κβ0,(4.3)

then the full model dynamics are given by

dx

dt
=

⎧⎪⎪⎨
⎪⎪⎩

−δx for 1 ≤ x, xτ ,
−αx for 0 ≤ x < 1 ≤ xτ ,
−αx + Γxτ for 0 ≤ x, xτ < 1,
−δx + Γxτ for 0 ≤ xτ < 1 ≤ x.

(4.4)

This new equation allows us to state our main result. The utility of this result is a consequence
of the method of proof which is given in Appendix B.

Consider a fixed positive constant τ . From the last two equations of (4.4) it is obvious (see
Appendix B for the argument) that the parameter Γ has to be large enough for the solution
to oscillate. If this is not the case, the solution will decrease to 0 as t approaches infinity. It
is sufficient then to impose the condition

Γ > αe−ατ(4.5)

so that Γxτ > αx. A detailed computation leading to the condition (4.5) can be found in
Appendix B. One of the main arguments for choosing this condition is the following. If we
consider the initial function ϕ(t) > 1 for t ∈ [−τ, 0], then the solution decreases to a minimum
value αe−ατ after a certain time t1 + τ , where x(t1) = 1. Then if condition (4.5) is satisfied,
the solution will increase after the time t1 + τ to a maximum value that would be hopefully
required to be higher than 1. To get this maximum value higher than 1 we have to add some
other conditions on Γ. Using some simple computations, it is possible to show that if

Γ > max{αe−ατ , (eατ − e−ατ )/τ},(4.6)
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then the solution of (4.4) will reach its maximum above the critical value 1 for a time t ∈
[t1 + τ, t1 + 2τ ]. This condition will force the slope of the increasing portion of the solution to
be steep, and the period will be short. It is actually possible to give some other conditions on
Γ so that the maximum value could be reached after the time t1 + 2τ . Thus the period would
be longer. However, in our main result presented below, we want to prove that the solution
is periodic and can get long oscillation periods. Consequently, we give conditions to obtain
periodic solutions having a minimum period. By a simple computation, it is then possible to
deduce from this result the conditions to get the period as long as one wish. This is why, as
we shall see further in the numerical illustration, it is possible to choose ad hoc parameters
to obtain longer periods. Note that if we consider the initial function ϕ such that ϕ(t) < 1
for t ∈ [−τ, 0], the techniques are the same and so is the result, except that we need Γ > α
instead of condition (4.5). For simplicity, in the following result, we consider only the case
where ϕ(t) > 1 for t ∈ [−τ, 0] and condition (4.6) to get the shortest period oscillation. The
other cases can be deduced using the same techniques.

Proposition 4.1. Assume that x(t) is solution of (4.4) with an initial condition ϕ ∈ C([−τ, 0]),
where ϕ is such that

ϕ(t) > 1 for t ∈ [−τ, 0] .(4.7)

Suppose also that Γ satisfies (4.6). Then x(t) is an orbitally stable periodic solution with a
period larger than 2τ .

From a biological point of view, condition Γ > αe−ατ means that the maximum number
of new daughter cells entering the resting phase is larger than the number of cells leaving
it (by differentiation, death, or reintroduction into the proliferating cells). The condition
Γ > (eατ − e−ατ )/τ is more technical and does not have any obvious biological interpretation.

Proof. The detailed proof is given in Appendix B. However, for clarity, we give a brief
outline of the thread of the proof to highlight the main steps (cf. Figure 4.1). From the value
of the initial function, and by continuity of the solution, we solve (4.4) for x and xτ larger
than 1, which corresponds to the first differential equation of this system. The solution is
decreasing up to a time t1 such that x(t1) = 1. Then x < 1 while xτ is still larger than 1.
So, we solve the solution of the second differential equation of the system (4.4). The function
decreases until a time t1 +τ where both x and xτ are less than 1. In order to obtain a periodic
solution we apply condition (4.6) so that the solution increases again as a solution of the third
differential of the system. Otherwise, the populations tends to zero as t goes to infinity. Under
condition (4.6) the solution increases up to a time t2 < t1 + 2τ , where it again crosses the
line y = 1. Consequently, it is possible to show that after a certain time at least equal to 2τ
the solution comes back to its original value. This, in turn, allows us to give the period
explicitly.

4.2. Numerical illustration of the results. We present some numerical results for the
solutions of (4.4) corresponding to n → ∞, made using MATLAB with the delay differential
equation solver dde23 [60]. The results of our investigations are shown in Figures 4.2 through
4.6.

These simulations have three main objectives.
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Figure 4.1. Sketch of the solution related to the case B of the proof given in the Appendix B.

Figure 4.2. Evolution of period and amplitude of the solutions of (4.4) when n → ∞ and each of the four
parameters is varied. In clockwise order from the top left the parameter varied is γ = 0 to 0.8 day−1, δ = 0 to
1.5 day−1, β0 = 0 to 7 day−1 and τ = 0 to 5 days. The parameters not varied are held at their values given in
Table 3.1.

• The first is to show the individual influence of each of the four parameters (γ, δ, β0,
and τ) on the amplitude A and period T of the solutions of (4.4) in Figures 4.2 and
4.3.

• The second objective is to investigate the behavior of A and T with respect to changes
in two parameters at a time as shown in Figure 4.4. The combinations are chosen in
a specific way which is explained below.

• The third and last objective is to focus on the “ripples” in the solution behavior
observed during the development of very long period oscillations.

4.2.1. Influence of each parameter individually. In Figure 4.2 we present the dependence
of A and T on each of the parameters γ, δ, β0, and τ , and the solutions themselves are
illustrated in Figure 4.3. In Figure 4.3, the temporal solutions are plotted as a function of
each of the four parameters γ, δ, β0, and τ . In each panel, one can observe the different profiles
taken by the solution, the evolution of the period T given by the shape of the ripples, and
the evolution of the amplitude A given by the color coding (red for the highest amplitudes
and blue for the lowest). This figure contains the results on which Figure 4.2 is based but
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Figure 4.3. Solution profiles of (4.4) when n → ∞ and each of the four parameters is varied individually.
In clockwise order from the top left the parameter varied is γ = 0 to 0.7 day−1, δ = 0 to 1.4 day−1, τ = 0 to
5 days, and β0 = 0 to 5 day−1. In each figure one can observe the solution behavior when a parameter changes,
the evolution of the period, and the evolution of the amplitude through the color coding. The parameters that do
not change on a figure are drawn from the parameter set in Table 3.1. The white line in each figure represents
the solution for this fixed parameter set.

offers more insight into solution dependencies on parameter changes. Indeed, by examining
the solution profiles one can observe the formation of “ripples” before large transitions in
period and/or amplitude which was impossible to illustrate in Figure 4.2. We will come back
to these ripples later.

4.2.2. The effect of changing two parameters at the same time. From these results,
two natural parameter groupings emerge.

1. The first one consists of γ and δ (the apoptosis and differentiation rates). As each
one increases, there is generally a slight decrease in amplitude A, while period T can vary
dramatically and increase to approach infinity. A and T are not simply correlated for this
pair of parameters.

2. The second group consists of β0 and τ . Increases in these two parameters give large
increases in A but smaller increases in T than the first group. Note that changes in A and T are
positively correlated with changes in β0 and τ , so variations of β0 or τ involve similar variations
in both amplitude and period. The mechanism of this behavior is not well understood and is
still under investigation.

Having identified these two parameter groupings, it is interesting to see how A and T
depend on variation of two of the four parameters at the same time. We first choose to vary
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Figure 4.4. Period and amplitude evolution when two parameters in (4.4) are varied at the same time. The
amplitude is shown in the left-hand figures and the period in the right-hand figures. In the figures showing the
periods, the sharply peaked lines represent the period approaching infinity. The parameters that do not change
in a given figure are drawn from the parameter set of Table 3.1.
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Figure 4.5. Variation in the local maxima and minima with variations in β0 and δ. The more local
maxima and minima the solutions have, the longer the periods are, giving rise to the ripples observed in Figure
4.3 showing very long period oscillations. The parameters, when they do not vary, are taken from Table 3.1.

parameters within the same group, i.e., δ and γ (the death and differentiation rates) and β0

and τ (the cell cycle regulation parameters). Then we compare the effects of variation of
one parameter from the death and differentiation group (we choose δ for our simulations, but
the behavior is qualitatively the same with changes in γ) with changes in both of the cell
cycle regulation parameters β0 and τ . The results are presented in Figure 4.4 and can be
summarized as follows.

For the death (γ) and differentiation (δ) rates, neither parameter has a predominant
influence. Changes in both lead to slight changes of the same magnitude in A but can produce
a dramatically long period T . For changes in the cell cycle regulation parameters β0 and τ one
also observes an approximately equal influence of both on both the amplitude A and period
T . However, the influence of these on changes in the amplitude A is more profound than the
effects of the death and differentiation rates.

When the amplitude is plotted as a function of the parameters β0 and δ (Figure 4.4,
bottom left) it is obvious that for small δ the influence of β0 on A is greater than when δ is
large.

4.2.3. Investigation of ripple formation. In this last section, we investigate the ripples
observed when the period of the solution becomes very long. In Figure 4.5 we illustrate this
for variations of β0 and for δ. It is clear that each time a new wave appears it is accompanied
by the appearance of another local minimum and local maximum. This number increases
when the parameters increase (the number is larger when δ changes, corresponding to the fact
that the influence of the death and differentiation rates have a larger influence on the period
T than on the amplitude A).

Figure 4.6 examines how the local minima and maxima appear and change as τ is varied.
As τ increases the number of ripples (cf. the three dimensional figure in the lower right
portion of Figure 4.2). This is also shown on the upper right side where new local minima
and maxima occur after τ = 1.2, 2.6, 3.7, and 4.7. A plot of the solution x(t) versus x(t− τ)
(Figure 4.6(B)) shows that each time a new ripple appears it corresponds to a new small loop
in the cycle. The appearance of each new loop is associated with an increase in the period T .

This pattern may be related to the onset of crises described in [15]. However, we observe
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Figure 4.6. Close-up of the case where τ varies. Observe that the local maxima and minima increase when
τ increases (A) and the other parameters are taken from Table 3.1. On the projection of the solution onto the
plane x(t− τ) versus x(t), note that for each new local extremum a new loop appears (B), where τ = 1, 1.5, 3,
and 6, respectively. The behavior is, in fact, more complicated and can be plotted in three dimensions (C),
where τ = 3 days and γ = 0.18 day−1. This figure represents the solution in the x(t − τ) versus x(t − τ/2)
versus x(t) space. In the same figure we plot a projection of the solution on the plane x(t− τ/2) versus x(t) to
make a link with the qualitative behavior observed in graph C.

neither period doubling nor subduction (i.e., the appearance of a nonchaotic attractor within
a chaotic attractor causing the chaotic attractor to be replaced by the nonchaotic attractor
involving the appearance of windows). This does not mean that it is impossible to find some
cases where instability occurs with chaotic behaviors under certain conditions. Indeed, this has
been proved analytically in [2] and [18]. This means that regarding our choice of parameters
for which long period oscillations occur, the increase of the number of extrema does not occur
by doubling but just through the successive adding of extrema without leading to chaos.

The increase of the period through the mechanism of increasing the number of extrema can
be simply explained. Consider the case where the initial condition ϕ(t) is such that ϕ(t) > 1
for t ∈ [0, τ ] (see the computations of Appendix B). The solution of (4.4) decreases until a
value t1 such that x(t1) = 1. Then the solution reaches a minimum value at time t1 + τ . If
Γxτ > αx (where Γ and α are defined by (4.3)), the solution increases after the time t1 + τ .
To complete the period, the solution has to reach 1, which can be done for a value t2 > t1
such that x(t1) = 1. However, if Γxτ 	 αx, the slope of the curve is small, and it becomes
very likely that after a time tc1 ∈ [t1 + τ, t2], Γxτ < αx, so that the curve decreases again
until a time tc2 > tc1 where Γxτ > αx, etc. Then, the solution increases slowly with many
oscillations until the time t2, after which x(t) ≥ 1.

In Appendix B we analytically demonstrate the two first cases. Case A is one in which there
is only one local minimum and one maximum and t2 ∈ [t1 + τ, t1 +2τ ]. Case B corresponds to
two local minima and maxima and t2 ∈ [t1+2τ, t1+3τ ]. These considerations can be extended
indefinitely and the reader is welcome to compute the other tedious cases (t2 ∈ [t1+3τ, t1+4τ ],
etc.). These two cases show the mechanism of ripple production and how it is possible to obtain
solutions with periods as long as wanted.

This phenomenon is, however, more complex, and a good way to show this complexity
is to plot the solution in a three-dimensional space. When we plot the solution x(t) versus
x(t− τ) versus x(t− τ/2) to get the phase-three-dimensional figure (Figure 4.6(C)), one can
see that 1 is an unstable point. The solution approaches 1 in an oscillatory fashion but is
ultimately repulsed as it approaches 1, numerical evidence for the existence of a homoclinic
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Figure 5.1. Variation of the actual period P/ε as a function of ε (where ε = δτ represents the rate of loss
through differentiation), comparing the results obtained by Fowler and Mackey (Figure 4.2 of [27]) and in this
paper. Because our approach is valid only for n → +∞, we take the same parameters as Fowler and Mackey,
that is, b = β0τ = 3.9 and µ = (2e−γτ − 1)/τ = 1.2, but we consider a larger value for n (n = 20 instead of 3).

orbit. The analysis of this behavior is complicated and still under investigation.

5. Discussion and conclusions. Periodic chronic myelogenous leukemia (PCML) is a com-
plex and poorly understood disease that is probably due to alterations at the stem cell level
leading to oscillations in stem cell numbers and a consequent oscillation in cellular efflux, as
well as other alterations in cellular maturation patterns. In this paper we have concentrated
on the nature of the long period oscillations by analyzing the dynamics of a G0 model for stem
cell dynamics. This model contains four main parameters, and we have examined the role of
each on the stem cell oscillation amplitude and period when the nontrivial steady state loses
its stability.

The technique we have used is the same as used by Mackey and an der Heiden [49].
Although the examination of the solution behavior for n → ∞ does not give information
about the dynamics of the full problem, it does allow us to analytically investigate the role of
each parameter in determining the period and the amplitude of the periodic solutions for the
simplified problem.

Our results can be summarized as follows. We have shown that long period oscillations
(period T on the order of weeks to months) in cellular efflux are possible even with short
duration cell cycles τ (on the order of one to four days). We have also shown how the
amplitude A and period T of these oscillations are determined by the four cell cycle parameters.
Qualitatively, the cell cycle regulation parameters (β0 and τ) have their major influence on
the oscillation amplitude, while the oscillation period is correlated with the cell death and
differentiation parameters (δ and γ). The importance of these four parameters has been
recently shown by Moore and Lib in [53] for the case of CML. The authors use the latin
hypercube sampling method, and they conclude that in CML the most promising research
ways for treatments of this disease should be those that affect these specific parameters; this
confirms our results.

In [27], Fowler and Mackey implement a new way of solving a nonlinear differential delay
equation and, more particularly, the stem cell model we investigate here. This method is based
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on the relaxation oscillation analysis of the Van der Pol oscillator developed by Kevorkian
and Cole [37]. The authors have shown analytically that it is possible to obtain long period
oscillations in the stem cell model when the proliferation rate is very small. Our approach is
different but gives equivalent results. In Figure 5.1 we compare the period computed using
our technique with the corresponding result given in Figure 4.2 of [27]. The same parameter
values were used except for n which is taken to be n = 20 instead of n = 3 as used by Fowler
and Mackey. (We use a large value of n because our results are only valid in this case.)
The results corresponding to our two different approaches show the same quantitative results,
illustrating the equivalence of the two different approaches.

Appendix A. Conditions for local stability. We assume that γ and τ are different from
0. Then, κ(τ) = 2e−γτ > 0 and β∗ = δ/(κ − 1) > 0. Before proving the stability results we
note that κ− 1 
= 0. Further, because of the definition of x∗ = (β0/β∗ − 1)1/n, we must have
κ− 1 > 0, which is equivalent to τ < ln 2/γ. Moreover, from the definition of x∗ we require

β0
κ− 1

δ
− 1 ≥ 0,

which is equivalent to the condition

τ ≤ τmax(A.1)

with

τmax = −1

γ
ln

[
1

2

(
δ

β0
+ 1

)]
.

We obviously require that

0 <
1

2

(
δ

β0
+ 1

)
< 1,

which is equivalent to

δ < β0.(A.2)

Since τmax ≤ ln 2/γ, we consider for the rest of this section that inequalities (A.1) and (A.2)
hold.

Assuming these conditions hold, we explicitly compute Bτ . By the definition of β∗ and
computing β′

∗(x), we obtain

Bτ = β∗ + β′
∗x∗ = β∗ − β∗

nxn∗
1 + xn∗

= β0
1

(1 + xn∗ )2
[1 + (1 − n)xn∗ ].(A.3)

Because the parameter τ is our reference, we write Bτ , where τ is implicitly given in β∗ through
κ. The sign of Bτ plays an important role in determining the local stability conditions. From
(A.3), it is clear that the sign of Bτ depends on the sign of

1 + (1 − n)xn∗ ,(A.4)

with n ∈ R
+.
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1. If n ∈ [0, 1], then Bτ > 0.
2. If n > 1, then 1 − n < 0 and

1 + (1 − n)xn∗ ≥ 0 ⇔ τ ≥ τn,(A.5)

where

τn = −1

γ
ln

{
1

2

[
δ

β0

(
1 +

1

n− 1

)
+ 1

]}
.

Note that for n > 1 we need

1 <
1

2

[
δ

β0

(
1 +

1

n− 1

)
+ 1

]
or

n

n− 1
δ > β0.

Then, from the direct application of the Hayes theorem [31], we obtain the result given in the
different cases of section 3.2.

Appendix B. Proof of Proposition 4.1. In order to present a proof as clearly as possible,
we solve (4.4) only for the case where the initial condition

ϕ(t) > 1 for t ∈ [−τ, 0]

(the case where ϕ(t) < 1 works exactly in the same way). And we consider the situation where
the period will be the shortest. In other words, when the solution increases, the slope of the
curve representing the solution will be the steepest. Because of the continuity of ϕ and the
solution x, there exists t1 > 0 such that x(t) and x(t− τ) are > 1 for t ∈ [0, t1]. The solution
of (4.4) then satisfies

dx

dt
= −δx for t ∈ [0, t1] .

Thus, the first part of the solution for this initial function is given by x(t) = ϕ(0)e−δt, and
this will persist until a time t1 defined implicitly by x(t1) = 1, or

t1 =
lnϕ(0)

δ
.

In the next interval, defined by t ∈ [t1, t1 + τ ] , the dynamics are given by the solution of

dx

dt
= −αx.

The solution on this interval is given by x(t) = e−α(t−t1). This solution persists until a time
t1 + τ at which point x(t1 + τ) = e−ατ .

Note that the value of x(t1 + τ) is independent of the initial function x0(t). This is
a consequence of the particular dynamics of 4.4 which destroys all memory of the solution
behavior when x, xτ ≥ 1.

The solution in the next interval will be such that x, xτ < 1. Because we assume that
Γ is sufficiently greater than α from Condition 4.6, the solution increases and there exists a
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time t2 such that x(t2) = 1 with t2 ∈ [t1 + τ, t1 + 2τ ]. We note that this case corresponds
to the situation where the period is the shortest. The other cases where t2 > t1 + 2τ can be
computed with the same method and are not shown here.

It is clear that for t1 + τ < t, we need to set the condition Γ > αe−ατ in order to get
Γxτ > αx. Then, in a similar way, if we want the condition 0 < t2 − (t1 + τ) < τ to hold, it
is easy to prove that we also need Γ > (eατ − e−ατ )/τ . Since the condition (4.6) holds, then
0 < t2 − (t1 + τ) < τ . On the interval [t1 + τ, t2], x(t) is the solution of

dx

dt
= −αx + Γxτ ,

with xτ (t) given by xτ (t) = x(t − τ) = e−α(t−(t1+τ)). On this interval, x(t) has the explicit
form x(t) = f1(t), where

f1(t) = e−α(t−(t1+τ))
[
e−ατ + Γ(t− (t1 + τ))

]
.(B.1)

The solution continues until the time t2 defined by x(t2) = 1.
On the next interval [t2, t1 + 2τ ], we have t− τ ∈ [t2 − τ, t1 + τ ] ⊂ [t1, t1 + τ ], so xτ (t) =

e−α(t−(t1+τ)). Thus, the solution satisfies

dx

dt
= −δx + Γxτ(B.2)

and is given by x(t) = e−δ(t−t2)[1 − Γ
β0
eα(t1+τ)−δt2(e−β0t − e−β0t2)]. On the next interval

[t1 + 2τ, t2 + τ ], xτ (t) = f1(t− τ). On this interval, the solution x(t) also satisfies (B.2). It is
given by

x(t) = e−δ(t−(t1+2τ)) [x(t1 + 2τ) + Γ(j(t) − j(t1 + 2τ))] ,

where

j(t) =
1

δ − α

(
e−ατ + Γ(t− (t1 + 2τ)) − Γ

δ − α

)
e(δ−α)(t−(t1+2τ)).

Then the maximum is given at a time t2 + τ by

x(t2 + τ) = e−δ(t2−(t1+τ)) [x(t1 + 2τ) + Γ(j(t2 + τ) − j(t1 + 2τ))] .(B.3)

After the time t2 + τ, both xτ and x are greater than 1, and then the solution satisfies
x′(t) = −δx(t) until a time t3, where x(t3) = 1. We do not need to know xτ . Consequently,
on the interval [t2 + τ, t3] , the solution is x(t) = x(t2 +τ)e−δ(t−(t2+τ)), where x(t2 +τ) is given
by (B.3). The time t3 is then found to be

t3 =
ln (x(t2 + τ))

δ
+ t2 + τ.

On the interval [t3,t3 + τ ], the solution satisfies

dx(t)

dt
= −αx(t)
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and is x(t) = e−α(t−t3). Then x(t3 + τ) = e−ατ = x(t1 + τ). It is then easy to see that
we have established the existence of a limit cycle in our system with a period T given by
T = t3 − t1 ≥ 2τ. The amplitude is the distance between the minimum reached for the first
time at t = t1 + τ with the value x(t1 + τ) = e−ατ , and the maximum reached for the second
time at t = t2 + τ given by (B.3) for the case where τ < t2 − (t1 + τ) < 2τ .
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