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Abstract

Understanding the regulation of gene control networks and their ensuing dynamics will be a critical component in t
understanding of the mountain of genomic data being currently collected. This paper reviews recent mathematical
work on the tryptophan and lactose operons which are, respectively, the classical paradigms for repressible and
operons.To cite this article: M.C. Mackey et al., C. R. Biologies 327 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Modélisation de la dynamique de l’opéron : les opérons tryptophane et lactose comme paradigmes. L’étude de
la régulation des réseaux de contrôles des gènes et des dynamiques qui en découlent seraune composante critique de
compréhension de la masse de données génomiques collectées. Cet article fait le bilan des récents travaux de m
mathématique sur les opérons tryptophanes et lactoses, qui sontrespectivement les paradigmes classiques pour les op
répressibles et inductibles.Pour citer cet article : M.C. Mackey et al., C. R. Biologies 327 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

Molecular biology as a field would probably n
exist in its present form were it not for the impa

* Corresponding author.
E-mail address:mackey@cnd.mcgill.ca (M.C. Mackey).
1631-0691/$ – see front matter 2004 Published by Elsevier SAS on
doi:10.1016/j.crvi.2003.11.009
of the beautiful little book What is Life?[1] written
by Ernst Schrödinger (one of the fathers of quant
mechanics).What is Life?was the written account o
a series of lectures given by Schrödinger at the Du
Institute for Advanced Studies in 1943.What is Life?
was partially inspired by the work of thephysicistMax
Delbrück and was probably instrumental in recruiti
behalf of Académie des sciences.
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a whole generation oftheoretical physicistslike Walter
Gilbert, Leo Szilard, Seymor Benzer, and Franci
Crick away from physicsper seand into the exciting
new area of ‘molecular biology’ [2]. The results a
history, but it has not ended there. For examp
the current director of the Whitehead Center
Genomic Research at the MIT is Eric Lander, who
D. Phil. from Oxford was not in molecular biology b
rather in mathematics (algebraic coding theory)! T
mathematical and physical sciences continue to pl
large role in the whole area of molecular biology a
some of the potential areas of impact are detaile
the March 2001 issue ofChaos[3].

The operon concept [4], introduced by Jacob a
coworkers in 1960 [5], has had a profound a
lasting effect on the biological sciences. Not lo
after the operon concept was developed, Good
[6] gave the first mathematical analysis of oper
dynamics. Griffith then put forward a more comple
analysis of simple repressible (negative feedback
and inducible (positive feedback [8]) gene cont
networks, and Tyson and Othmer [9] have summari
these results. Extensions considering the stability
inducible operons were published by Selgrade [
11] and Ji-Fa [12], but none of these treatme
considered the role of the DNA transcription a
mRNA translation delays though Tyson and Othm
pointed out that both should be considered.

In this paper we present recent mathematical m
eling work on operon dynamics. In Section 2 we tr
the (repressible) tryptophan operon, and in Sectio
the (inducible) lactose operon is considered. In b
cases we have made every effort to construct bio
ically realistic mathematical models and to make ac
curate parameter estimation from the biological
erature. In Section 4, we conclude the paper w
some general comments related to our philosoph
approach to the modeling of these systems.

2. The repressible tryptophan operon

After Jacob et al. introduced the operon conc
[5], the development of more refined experimen
techniques and the acquisition of more data mad
clear that in addition to repression there are m
regulatory mechanisms involved in the control
operons. These mechanisms vary from operon
operon. One of the most intensively studied of th
systems from an experimental point of view is t
tryptophan operon. An excellent review of this syst
and its regulatory mechanisms is to be found in [13

2.1. The Bliss model

One of the first mathematical models of the try
tophan operon was introduced by Bliss et al. in 19
[14]. The independent variables of this model are
trp mRNAconcentration(M), the concentration of an
thranilate synthase(E) which, according to Bliss e
al., of all the enzymes formed with the polypeptid
of the tryptophan operon is the most important fro
a regulatory point of view, and the tryptophan conc
tration(T ). The equations governing the dynamic ev
lution of these three quantities are

(1)
dM

dt
= KmOR(t − τm) − K1M

(2)
dE

dt
= KpM(t − τp) − K2E

and

(3)
dT

dt
= KtEI(T ) − G(T ) − KT

In Eq. (1), Km is the intrinsic rate of transcriptio
initiation of an operon that is not repressed,R(T )

is the probability that an operon is not repressed
time t , τm is the time delay between initiation o
transcription and initiation of translation,O is the total
operon concentration, andK1 is a positive constan
accounting formRNA depletion due to dilution by
growth and enzymatic degradation.

Bliss et al. assumed thatR can be modeled by a Hi
function

R(T ) = Km
r

Km
r + T m

with m = 4. In Eq. (2), Kp denotes the rate o
translation initiation permRNAmolecule,τp is the
time delay between initiation of translation and t
appearance of functional enzyme, andK2 is a positive
constant accounting for enzyme depletion due
dilution by growth and enzymatic degradation. Fina
in Eq. (3), Kt is the tryptophan production ra
per enzyme,I (T ) is the fraction of enzyme no
inhibited by the end product,G(T ) is the tryptophan
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consumption rate, andK is the growth rate of the
bacterial culture.

This model clearly considers two different regu
tory mechanisms, repression and enzymatic feedbac
inhibition by tryptophan.R(T ) accounts for repres
sion, whileI (T ) stands for feedback inhibition. Blis
et al. also assert thatI (T ) can be modeled by a Hi
function

I (T ) = Kn
i

Kn
i + T n

with n = 2, and that the demand for tryptophan obe
a Michaelis–Menten-like equation

G(T ) = Gmax
T

T + Kg

The authors made a careful estimation of the pa
meters in this model based on the available experim
tal data. They solved the model equations numeric
and also performed an analytical stability analysis
the steady states. They were able to reproduce th
sults of derepression experiments with cultures of w
and mutantE. coli strains reported in [15]. From thes
experiments, the tryptophan operon loses stability
mutantE. coli cell cultures that have a partial loss
of feedback inhibition. The previously stable stea
state is replaced by an oscillatory production of try
tophan [15]. This mutation is modeled by increas
Ki to ten times its wild type value. However, to o
knowledge, these experiments have never been
cessfully repeated. Moreover, more recent experim
tal evidence has demonstrated that the functionR(T ),
which Bliss et al. used to model repression, is in d
agreement with the experimental facts about the
teraction between thetrp operon and repressor mol
cules. The issue of oscillations in tryptophan cont
was revisited by Xiu et al. [16] in their investigation
the role of growth and dilution rates on stability.

2.2. The Sinha model

In 1988, Sinha [17] introduced a different mod
for the tryptophan operon regulatory system in wh
the DNA-repressor interaction is modelled in a mo
detailed way. The independent variables of the Si
model are the same as in the Bliss et al. model,
thetrp mRNAconcentration(M), the anthranilate syn
thase enzyme concentration(E), and the tryptophan
-

-

concentration(T ). The dynamic equations for the
variables are

(4)
dM

dt
= Km

KoKd + KoT

KoKd + KoT + nRT
O − K1M

(5)
dE

dt
= KpM − K2E

and

(6)
dT

dt
= KtE − Gmax− KT

The first term in the right-hand side of Eq. (4) is t
mRNAproduction rate, which is assumed to be p
portional to the concentration of unrepressed op
ons, with a proportionality constantKm. The concen-
tration of unrepressed operons is calculated by
ing into account the fact that active repressor mo
cules reversibly bind operons to block transcript
initiation, and assuming that this reaction takes pl
sufficiently rapidly that it is in a quasi-steady sta
From this, the concentration of unrepressed ope
is OKo/(Ko +RA), whereKo is the dissociation con
stant of the repressor-operon reaction,O is the total
operon concentration, andRA is the concentration o
active repressor molecules.

When produced by thetrpR operon, represso
molecules are unable to represstrp operons. For this
repression to take place, they need to be activ
by two tryptophan molecules which sequentially bi
non-cooperatively in two independent places. Fr
this, and assuming that this reaction takes place
quasi-steady state, Sinha obtained the concentratio
active repressor given byRA = nT R/(T +Kd), where
n = 2, R is the total repressor concentration, andKd
is the repressor activation dissociation constant.

Compared with the Bliss et al. [14] model, th
Sinha model considers theDNA-repressor and repre
sor-tryptophan interactions in a more detailed w
It also ignores the fact that anthranilate synthas
feedback inhibited by tryptophan as well as ignor
the time delays inherent to the system. These are
important features of the tryptophan operon regulat
system.

It is also important to note that Sinha assume
constant tryptophan consumption rateGmax. Observ-
ing this, Sen and Liu [18] modified the Sinha mod
to study the case of a non-linear tryptophan consu
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tion rate given by a Michaelis–Menten-like functio
G(T ) = GmaxT/(T + Kg). Sinha, as well as Sen an
Liu, studied the stability of their models for variou
values of parametersKo andK2 and found the cor
responding stability regions in the(Ko,K2) parame-
ter space. However, they neither compare their model
with experimental data nor do they discuss whether
values forKo andK2 where stability is lost are phys
iologically attainable in wild type or mutant bacteri
strains.

2.3. A more detailed model

Recently Santillán and Mackey [19] introduced
more detailed mathematical model of the tryptoph
operon regulatory system, which is shown schem
cally in Fig. 1. In this model, all of the known reg
Fig. 1. Schematic representation of thetryptophan operon regulatory system. See the text for a detailed description.
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ulatory mechanisms of the tryptophan operon (rep
sion, transcriptional attenuation, and enzyme feedb
inhibition) are taken into account. The system inh
ent time delays due to transcription and translat
are also included, as well as themRNA dynamics.
The model considers four independent variables:
concentration oftrp operons with operators free
be bound bymRNApolymerase molecules(OF), the
concentration oftrp mRNAmolecules with freeTrpE-
related ribosome binding sites(MF), the concentration
of the enzyme anthranilate synthase(E), and the tryp-
tophan concentration(T ).

Although five different polypeptides are synth
sized during the expression of thetrp operon and they
combine to form the enzymes that catalyze the re
tion pathway which synthesizes tryptophan from c
rismic acid, this model concentrates on anthrani
synthase. The reason for this focus is that this enz
is the most important from a regulatory point of vie
since it is subject to feedback inhibition by tryptoph
and is the first to play its catalytic role in the reacti
pathway [13].

Anthranilate synthase is a complex of twoTrpE
and two TrpD polypeptides. From this, Santillá
and Mackey assume that the anthranilate synth
production rate is one half that of theTrpEpolypeptide
and look only at theTrpE-related ribosome bindin
sites of themRNAchain. The equations governing th
dynamics of these variables are:

dOF

dt
= Kr

Kr + RA(T )

{
µO − kpP

[
OF(t)

(7)− OF(t − τp)e−µτp
]} − µOF

dMF

dt
= kpPOF(t − τm)e−µτm

[
1− A(T )

]

− kρρ
[
MF(t) − MF(t − τρ)e−µτρ

]

(8)− (kdD + µ)MF(t)

(9)
dE

dt
= 1

2
kρρMF(t − τe)e−µτe − (γ + µ)E(t)

and

(10)
dT

dt
= KEA(E,T ) − G(T ) + F(T ,Text) − µT

All the parameters in this model were estima
from reported experimental results, and the detail
the parameter estimation process are in [19], which
also contains an extended description of the mo
derivation.

The factor

Kr

Kr + RA(T )

in Eq. (7) is the fraction of unrepressed opero
This follows from the factthat when active repres
sor reversibly binds free operons, the experiment
reported reaction rates allow one to make a qu
steady-state assumption.Kr is the dissociation con
stant of this reaction, andRA(T ) is the active re-
pressor concentration. The experimentally repo
rates of the repressor activation reaction also sup
a quasi-steady-state assumption. Repressor mole
activate when two tryptophan molecules sequenti
bind an inactive repressor in two independent s
non-cooperatively. From this

RA(T ) = RT (t)

T (t) + Kt

whereR is the total repressor concentration andKt
is the dissociation constant of the repressor activa
constant.

µ is the growth rate of the bacterial culture. T
termµO stands for the operon production rate due
DNA replication, which was assumed to be such t
it keeps the total operon concentration at a cons
valueO , balancing dilution by growth.

The term

−kpP
[
OF(t) − OF(t − τp)exp(−µτp)

]

accounts for the rate of free operons binding
mRNApolymerase molecules and later freed when
polymerases have traveled for a distance along
operon in a timeτp. kp is the reaction rate of th
DNA-polymerase binding reaction, assumed to be
reversible, andP is the mRNApolymerase concen
tration. The exponential factor exp(−µτp) takes into
account the dilution ofOF due to exponential growt
during the timeτp.

In Eq. (8),τm is the time it takes for a polymeras
to produce amRNAchain long enough to have a
availableTrpE-related ribosome binding site.A(T )

is the probability for transcription to be premature
terminated due to transcriptional attenuation. Santi
and Mackey [19] takeA(T ) = b[1−exp(−T/c)]. The
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term

−kρρ
[
MF(t) − MF(t − τρ)exp(−µτρ)

]

in Eq. (8) accounts for the rate ofmRNAs being
bound by ribosomes and liberated after they travel
a time τρ along themRNAchain. kρ is the mRNA-
ribosome binding reaction rate andρ is the ribosoma
concentration.

The first term on the right-hand side of Eq. (9),
the anthranilate synthase production rate. The fa
1/2 is incorporated because, as mentioned earlier
enzyme production rate is assumed to be one
that of TrpE polypeptide. TheTrpE production rate
equals the rate of ribosome binding freeTrpE-related
ribosome binding sites a timeτe ago.τe is the time it
takes for a ribosome to synthesize and release aTrpE
polypeptide.

The tryptophan production rate, the first term
the right-hand side of Eq. (10), is assumed to be p
portional to the concentration of active (uninhibite
enzymes (EA) with a proportionality constantK. An-
thranilate synthase is inhibited when two tryptoph
molecules bind theTrpE subunits in a sequential co
operative reaction with a Hill coefficient ofnH � 1.2.
The enzyme feedback inhibition reaction rate c
stants support a quasi-steady state assumption,
which

EA(E,T ) = E(T )
K

nH
i

T nH + K
nH
i

Ki is the dissociation constant of this reaction. T
tryptophan consumption rate constant is modeled
a Michaelis–Menten-type function

G(T ) = Gmax
T

T + Kg

Finally, E. coli can incorporate tryptophan from th
environment. This can be managed by different tryp
phan permeases. The rate of tryptophan uptake is m
eled by Santillán and Mackey as

F(T ,Text) = d
Text

e + Text[1+ T/f ]
Text is the external tryptophan concentration.

All of the model parameters were estimated fro
the available experimental data. The details are g
in Reference [19] supplementary web material.
Table 1 the value of all these parameters is shown.
Table 1
The tryptophan model parameters as estimated in [19]

R � 0.8 µM O � 3.32× 10−3 µM
P � 2.6 µM k−r � 1.2 min−1

ρ � 2.9 µM kr � 460 µM−1 min−1

τp � 0.1 min k−i � 720 min−1

τm � 0.1 min ki � 176 µM−1 min−1

τρ � 0.05 min k−t � 2.1× 104 min−1

τe � 0.66 min kt � 348 µM−1 min−1

γ � 0 min−1 kp � 3.9 µM−1 min−1

kdD � 0.6 min−1 kρ � 6.9 µM−1 min−1

nH � 1.2 µ � 1.0× 10−2 min−1

b � 0.85 c � 4.0× 10−2 µM
Kg � 0.2 µM g � 25 µM min−1

e � 0.9 µM d � 23.5 µM min−1

f � 380 µM K � 126.4 min−1

The model was solved numerically, and the res
compared with derepression experiments perform
by Yanofsky and Horn [20] on wild-type bacterial cu
tures as well astrpL29 and trpL75 mutant strains o
E. coli. In these experiments, a bacterial culture is fi
grown in a medium with a high tryptophan concent
tion during a period of time long enough for thetrp
operon to reach a steady state. Then the bacteria
washed and shifted to a medium without tryptoph
and the response of the anthranilate synthase ac
is measured as a function of time after the nutritio
shift.

The trpL29 mutant strain has a mutationA to
G at bp 29 in the leader region of thetrp operon.
This change replaces the leader peptide start co
by GUG, and decreases operon expression in c
growing in the presence or absence of tryptoph
This mutation is simulated by Santillán and Mack
by decreasing the rate constantkp to 0.004 times its
normal value.

The straintrpL75 of E. coli has a mutation ofG to
A at bp 75 in the leader region of thetrp operon. This
change decreases the stability of the transcription
titerminator structure, and increases transcription
mination at the attenuator. Consequently, it decrea
operon expression in cells growing in the presenc
absence of tryptophan. This mutation was simula
by increasing the value of parameterb, which deter-
mines the probability of transcriptional attenuation
high tryptophan levels. The normal value of this pa
meter isb � 0.85, and to simulate the mutation it wa
increased tob � 0.9996.



M.C. Mackey et al. / C. R. Biologies 327 (2004) 211–224 217

l

the

e

Fig. 2. Experimentaly measured points [20] and simulated curves of anthranilate synthase activity vs. time after a nutritional shift (minima+
tryptophan medium to minimal medium), with (A) wild, (B) trpL29 mutant, and (C) trpL75mutant strain cultures ofE. coli. Two different sets
of experimental results (crosses and pluses) for the wild-type strain are presented inA. One set of experimental points corresponding to
trpL29 mutant strain is shown inB with circles. Another set ofexperimental points for thetrpL75 mutant strain is shown inC with asterisks.
The corresponding simulations are shown with solid lines in all of the three graphics. The wild-type experimental points and simulation ar
repeated inB andC for comparison.
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The experiments of Yanofsky and Horn were si
ulated numerically. In all of the three cases (wild ty
and two mutants), the model results show a reason
qualitative agreement with the experiments, given
simplifying assumptions inherent to the model. The
sults of these simulations are shown in Fig. 2.

3. The inducible lac operon

3.1. Previous models

The lac operon is the classical bacterial exam
of an inducible system which encodes the genes
the transport of external lactose into the cell and
conversion to glucose and galactose. Many experim
tal studies have examined the control of the ge
involved in lactose metabolism inE. coli. One of
the most recent mathematical modeling studies of
lac operon was carried out by Wong and cowo
ers [21]. Although many of the relevant biologic
details were taken into account in their model, th
failed to treat the transcriptional and translational
lays. Conversely, Mahaffy and Savev [22] mode
lac operon dynamics and included transcriptional a
translational delays, but ignored the conversion of
ternal lactose to allolactose byβ-galactoside and th
spontaneous production rate of mRNA together w
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the individual degradation terms for the proteins.
this section we give a brief summary of the work on
recent model developed by Yildirim et al. [23] on th
lac operon including much of the relevant biologic
detail considered by Wong and coworkers [21] as w
as the transcriptional and translational delays con
ered by Mahaffy and Savev [22]. A more comple
mathematical analysis of the model presented here
be found in [23] and [24].

3.2. The mechanism

The lac operon consists of a promoter/operator
gion and three larger structural geneslacZ, lacY, and
lacA together with a preceding regulatory operon
sponsible for producing a repressor(R) protein. To
understand the mechanism under this control netw
easily, it is helpful to refer to Fig. 3. In the absen
of glucose available for cellular metabolism, but
the presence of external lactose(Le), lactose is trans
ported into the cell by a permease(P ). Intracellular
lactose(L) is then broken down into allolactose (A)
first and then glucose and galactose by the enz
β-galactosidase(B). The allolactose feeds back
bind with the lactose repressor and enable the t
scription process to proceed. In the absence of allolac
tose(A) the repressorR binds to the operator regio
and prevents the RNA polymerase from transcrib
the structural genes. However, if allolactose is pres
a complex is formed between allolactose and the
pressor that makes binding of the repressor to the
erator region impossible. In that case, the RNA po
merase bound to the promoter is able to initiate tr
scription of the structural genes to produce mRN
When a mRNA chain, long enough for a ribosom
to bind it, has been produced, the process of tran
tion is initiated. ThelacZ gene encodes for the mRN
responsible for the production ofβ-galactosidase(B)

and transcription of thelacY gene produces mRNA ul
timately responsible for the production of a membra
permease(P ). The mRNA produced by transcriptio
of the lacA gene encodes for the production of thi
galactoside transacetylase which is thought to not pla
a role in the regulation of thelac operon [25] and will
not be further considered here.
Fig. 3. Schematic representation of the lactose operon regulatory system. See the text for a detailed description.
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There is another control mechanism known
catabolite repression. The presence of glucose in
external medium inhibits the production of cAMP
the bacterium. cAMP is necessary for transcription
initiation to take place efficiently. In the prese
work we ignore these regulatory mechanism si
we compare with experimental in which there is
glucose in the culture medium and thus, cAMP
always produced at a high rate.

3.3. A new mathematical model

The lac operon regulatory pathway is fairly com
plex: it involves three repressor binding sites (ope
tors), and two CAP binding sites. Moreover, one
pressor can bind two different operators simulta
ously [26]. A detailed model of all these regulato
elements is beyond the scope of this work. None
less, according to Yagil and Yagil [27], the fraction of
free operators as a function of allolactose(A) can be
modeled via a Hill-type function of the form:

(11)f (A) = 1+ K1A
n

K + K1An

wheren, K and K1 are parameters to be estimat
from experimental data. The dynamics of mRN
production are given by Eq. (12), which is deriv
as follows. First, note that the production of mRN
from DNA via transcription is not an instantaneo
process but requires a period of timeτM before we
have a mRNA long enough to be bound by a riboso
The rate of change of the ribosome binding sit
concentration (M) is a balance between a producti
termαMf and a loss term(γM + µ)M. The argumen
of f in the production term is e−µτM AτM , where
AτM ≡ A(t − τM), to account for the timeτM required
to produce the ribosome binding site. The factor e−µτM

accounts for the growth dependent allolactose dilu
during the transcriptional period. The loss term
Eq. (12) is made up of an mRNA degradation te
(γMM) and an effective loss due to dilution (µM).

(12)
dM

dt
= αM

1+ K1(e−µτM AτM )n

K + K1(e−µτM AτM )n
− (γM + µ)M

The dynamics of the concentration (B) of β-ga-
lactosidase are described by Eq. (13) in whichτB
is the time required forβ-galactosidase productio
through mRNA translation. We assume that the r
of production ofB is proportional to the concentratio
of M a timeτB ago times a dilution factor due to ce
growth during the translation process,(αB e−µτBMτB).
The loss rate ofB is given by(γB + µ)B.

(13)
dB

dt
= αB e−µτBMτB − (γB + µ)B

For the allolactose concentration (A) dynamics, the
first term in Eq. (14) gives theβ-galactosidase med
ated gain in allolactose from the conversion of lacto
The second term accounts for allolactose loss via c
version to glucose and galactose (again mediated b
β-galactosidase). Since theyare enzymatic reaction
both of these expressions are taken to be in Michae
Menten form. The last term takes into account
degradation and dilution of allolactose.

(14)

dA

dt
= αAB

L

KL + L
− βAB

A

KA + A
− (γA + µ)A

The lactose concentration (L) dynamics are more
complicated and given by Eq. (15). The first te
in Eq. (15) accounts for the increase of intracellu
lactose through the permease facilitated transpo
external lactose (Le). The second term deals wit
intracellular lactose loss to the extracellular flu
because of the reversible nature of the perme
mediated transport [28–31]. The third term accou
for the conversion of lactose to allolactose as well a
the hydrolysis of lactose to glucose and galactose
β-galactosidase(B). The fourth term is the decrease
internal lactose concentration due to degradation
dilution.
dL

dt
= αLP

Le

KLe + Le
− βL1P

L

KL1 + L

(15)− αAB
L

KL + L
− (γL + µ)L

The permease concentration (P ) dynamics are
given by Eq. (16). The first term reflects the a
sumption that permease production is directly prop
tional to the mRNA concentration a timeτP in the
past, whereτP is the time it takes to translate a pe
mease polypeptide. The exponential factor e−µτP ac-
counts for dilution of mRNA concentration due to c
growth. The second term accounts for the degrada
and dilution of permease.

(16)
dP

dt
= αPe−µτPMτP − (γP + µ)P
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Table 2
The estimated parameters for thelac operon model, taken from [23
24]

n 2 µmax 3.47× 10−2 min−1

γM 0.411 min−1 γB 8.33× 10−4 min−1

γA 0.52 min−1 K 1000
αM 9.97× 10−4 mM min−1 τB 2.0 min
αA 1.76× 104 min−1 KL1 1.81 mM
αB 1.66× 10−2 min−1 KA 1.95 mM
βA 2.15× 104 min−1 τM 0.10 min
KL 9.7× 10−4 M γL 0.0 min−1

γP 0.65 min−1 αL 2880 min−1

αP 10.0 min−1 τP 0.83 min
βL1 2.65× 103 min−1 KLe 0.26 mM
K1 2.52× 10−2 (µM)−2

3.4. Analysis of the model and comparison with
experimental data

We have carried out an extensive search of
existing literature for data that would allow us
estimate the model parameters in Eqs. (12)–(16) wh
are summarized in Table 2, and the details of how
arrived at these parameter values can be found in [

The model as formulated in Eqs. (12)–(16) c
have one, two, or three steady states depending
the values of the parameters(µ,Le). The details of
how these steady states are determined are conta
in [23] and [24]. The results of these considerations
presented in Fig. 4. There we show in(Le, Ā) space
the region where a non-negative steady state can e
Note in particular that for a range ofLe values there
may be coexisting two stable and one unstable ste
state values of the intracellular allolactose levelsĀ

and, consequently, of( �M, �B, Ā, �L, �P ).
In other words, analytical and numerical stu

ies of the model predict that for physiologically r
alistic values of external lactose and the bacte
growth rate, a regime exists where there may b
bistable steady state behavior, and that this co
sponds to a cusp bifurcation in the model dyna
ics. This means that, as the external lactose c
centrationLe is increased, the bacterial culture must
switch from a low-internal-allolactose-concentrati
uninduced steady state to a high-internal-allolacto
concentration induced steady state. For very lowLe
values, only the uninduced state exists. Conversely
very highLe concentrations, only the induced state
available for the system. All these facts are in agr
d

.

Fig. 4. The region in the(Le, Ā) space where a non-negative stea
state can exist as a function of external lactose levelsLe for the
model when all parameters are held at the estimated value
Table 2 and when̄µ = 2.26× 10−2 min−1. The shaded area show
the region where a steady state is not defined, while the solid
is the locus of(Le, Ā) values satisfying the steady state. The in
box shows that at large values ofLe there is still a separation o
the line for the steady state from the region where steady state
not defined. Notice that for these values of the parameters there is
range ofLe values for which there are three coexisting steady-s
values of allolactoseA. The point marked with a * corresponds
the minimum lactose level for induction at this growth rate, a
predicts that induction should occur for a lactose concentration o
about 62.0 µM.

ment with the experimentally-observed dynamic
havior ofE. colicultures. On the other hand, the mod
also predicts a range ofLe values in which both the
uninduced and the induced stable steady states c
ist. If this bistability behavior is real, an hysteres
phenomenon must be observed in inducing and u
ducing thelac operon of a given bacterial culture b
changing the external lactose concentration. This
diction is qualitatively confirmed by the observatio
in [32] and [33].

Although a full analysis of the stability propertie
of the model is not possible due to its complex
we have found that the basic properties contained
reduced version of this model [23] (which consider
only the dynamics ofM, B, and A) are apparently
retained in this much morecomplicated model as far a
we are able to ascertain analytically and numerically.

Given the parameter values determined in Tabl
we numerically solved the model equations to co
pare the predicted behavior with three distinct exp
imental data sets. The first data set is from [34].
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Fig. 5.β-galactosidase activity vs. time whenLe = 8.0×10−2 mM.
The experimental datasets were taken from [34] forE. coli ML30
(◦) and from [35] forE. coli 294 (�). The model simulation (solid
line) was obtained using the parameters of Table 2 with a gro
rateµ̄ = 2.26× 10−2 min−1. For details see, [24].

there, the activity ofβ-galactosidase in anE. coli cul-
ture (strain ML 30) was measured after the bacte
were switched from a glucose-rich non-lactose t
non-glucose lactose-rich medium. The second data
is from [35]. In this paper, Pestka et al. studied s
cific inhibition of translation of single mRNA mole
cules and gave data for the specific activity ofβ-ga-
lactosidase versus time forE. coli 294 in the presenc
of IPTG. These two data sets and the model sim
tion determined usingMatlab’s dde23 [36] routine
are shown in Fig. 5.

For this simulation, initial values for the variab
were chosen close to the steady state values w
Le = 8.0× 10−2 mM. (With this value ofLe there is a
single uninduced steady state.) To compare these
sets of experimental data with the model simulat
predictions, the data were scaled so the steady-
values of measuredβ-galactosidase activities an
those produced by the simulation were equal. As s
in Fig. 5, there is relatively good agreement betwe
both sets of experimental data and the model predi
temporal approach ofβ-galactosidase activity to it
steady-state value.

In the experiments of Pestka et al. [35], the bacte
culture medium has no glucose all of the time. T
means that catabolite repression is not a factor in
regulation of thelac operon and thus, the comparis
with our simulations is straightforward. This is n
t

the case with the experiments of Knorre [34] sin
in such case, the bacterial were originally growing
a medium rich in glucose. Notice however that t
time course of both experimental data is quite simi
This does not necessarily justifies the compari
of such experimental data with our model resu
but highlights the necessity of including catabol
repression in further mathematical models of thelac
operon in order to test its influence on the syst
dynamic behavior.

As a third test of the model, a data set from Go
win [37] was used. In this paper, the dynamic behav
of β-galactosidase was studied in chemostat cultu
of E. coli synchronized with respect to cell divisio
by periodic phosphate feeding at a period equal to
bacterial doubling time. Experimentally, oscillatio
in β-galactosidase concentration were observed wit
a period equal to the feeding period. Since in these
periments, there is no glucose present in the envi
ment, we can attempt to simulate them with our mod

To mimic the periodic phosphate feeding in o
simulation, we assumed that the bacterial growth
varies as a function of time in manner given by

(17)µ(t) = µ̄ − α mod(t, T )

Here,µ̄ is the maximal growth rate for the bacter
T is the period of the feeding andα is a positive
parameter with dimension min−2. mod(t, T ) is a
function that gives the remainder on division oft

by T . Selection of this type of function is motivated b
the observation that growth rates decrease as nut
levels fall and sharply increase after the addition
nutrient.

The maximal value ofµ(t) corresponds the time
that phosphate was added. The minimal value of
function represents the minimal amount of nutrie
left in the vessel. Assuming no nutrient is leftε
minutes before the addition of phosphate and let
ε → 0, α can be estimated if the doubling time (T )
is known:α � µ̄/T . In Fig. 6, we compare the da
on β-galactosidase activityfrom the forced culture a
a function of time with the model predictions for
feeding period ofT = 100 min which is the populatio
doubling time. Again, there is a reasonable go
agreement between the model predicted curve and
dataset.
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Fig. 6. Oscillation inβ-galactosidase activity in response to perio
phosphate feeding with periodT = 100 min, which is the culture
doubling time, andµ̄ = 2.26 × 10−2 min−1. The experimenta
data (∗) together with the model simulation (solid line) using t
parameters of Table 2 are presented. The experimental data are take
from [37]. In the numerical simulation, periodic phosphate feed
was imitated by choosing a periodic function given by Eq. (1
The simulation was calculated by numerically solving the sys
of delay differential equations given by Eqs. (12)–(16). For details
see [24].

4. Discussion and conclusions

Given the virtual flood of information that i
emerging from the current initiatives in molecul
biology, we feel that mathematical modeling of t
dynamics of molecular control systems will assume
essential role in the coming years. The reasons for
are threefold:

1. Mathematical modeling offers a concise summ
of many biological facts and insights in an eas
manipulable language.

2. The consequences of analyzing these models
reveal potentially new dynamical behaviors th
can be then searched for experimentally.

3. Failures ofrealistic mathematical models to ex
plain experimentally observed behavior oft
point to the existence of unknown biological d
tails and/or pathways, and thereby can act a
guide to experimentalists in their search for b
logical reality.

These mathematical models will, however, only be
use to biologists if they are made biologically real
tic, and if every effort is made to identify the valu
of parameters appearing in the models from publis
data or from experiments explicitly designed to m
sure these parameters.

The paucity ofdynamicdata (as opposed to stead
state data) with which we were able to compare
predictions of our models for the tryptophan and l
tose operons highlights a serious problem in the
teraction between experimentalists and mathema
modelers. Namely, we feel that there must be a c
and cooperative relationship between these two gro
if maximal use is to be made of the experimental d
that is being so laboriously collected and if the mat
matical models constructed to explain these data.

The last area that we want to touch on is the
ture of the mathematical models that are construc
Those that we have discussed in this paper are all w
ten with the explicit assumption that one is deal
with large numbers cells (and hence of large numb
of molecules) so that the law of large numbers is op
ative. However, the situation is quite different if one
interested in the dynamics of small numbers (or sing
prokaryotic or eukaryotic cells, for then the numb
of molecules are small. Adequate means to ana
cally treat such problems do not exist in a satisfact
form as of now [38], and one is often reduced to mos
numerical studies [39–41]. The situation is analog
to examining the interactions between small numb
of interacting particles (where the laws of mecha
ics or electrodynamics hold), and then deriving fro
these formulations the behavior of large numbers
identical units as is done (notcompletely successfull
even at this point) in statistical mechanics. We vi
this connection between the ‘micro’ and ‘macro’ lev-
els as one of the major mathematical challenges fa
those interested in the understanding of gene con
networks.
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