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Abstract

We study the dynamics of a model of white-blood-cell (WBC) production. The model consists of two compart
differential equations with two discrete delays. We show that from normal to pathological parameter values, the
undergoes supercritical Hopf bifurcations and saddle-nodebifurcations of limit cycles. We characterize the steady states
the system and perform a bifurcation analysis. Our results indicate that an increase in apoptosis rate of either hem
stem cells or WBC precursors induces a Hopf bifurcation and anoscillatory regime takes place. These oscillations are see
some hematological diseases.To cite this article: S. Bernard et al., C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Bifurcations dans un modèle de production de globules blancs. On étudie la dynamique d’un modèle de production
globules blancs (GB). Le modèle, de nature compartimentale, prend la forme de deux équations différentielles avec d
discrets. On montre que la transition de valeurs normales de paramètres à des valeurs pathologiques mène à des
de Hopf surcritiques ainsi que des bifurcations col–nœud de cycles limites. On caractérise les points fixes du sy
on procède à l’analyse des bifurcations. Nos résultats indiquent qu’une augmentation du taux d’apoptose, soit de
hématopoïétiques, soit des précurseursdes GB, induit une bifurcation de Hopf etqu’un régime oscillatoire apparaît. C
oscillations sont observées dans certains désordres hématologiques.Pour citer cet article : S. Bernard et al., C. R. Biologies
327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Hematopoiesis is the term used to describe the
duction of blood cells. All blood cells come from
unique source, the hematopoietic stem cells (HS
but mechanisms regulating this production are
completely understood. Particularly, the regulation
leucopoiesis (production of white blood cells) is n
well understood and the local HSC regulation mec
nisms are even less clear [1–8]. Because of their
namical character, cyclical neutropenia and other
riodic hematological disorders offer us opportunitie
to better comprehend the nature of these regula
processes [9].

Cyclical neutropenia (CN) is a rare hematologi
disorder characterized by oscillations in the circulat
white blood cell (WBC) count. Levels of neutrophils
a type of white blood cell, fall from normal to bare
detectable levels with a period of 19 to 21 days in
mans [4,10,11] and around 14 days in gray collies
These oscillations in the WBC count about a subn
mal level are generally accompanied by oscillatio
around normal levels in other blood cell lineages s
as platelets, lymphocytes and reticulocytes [4,7].

The goal of this paper is to study a simple mode
WBC production. We look for mechanisms leading
oscillations in the WBC count and relate these me
anisms to physiological features of the hematopoi
system. We use cyclical neutropenia data from a
nine model, the gray collie, which is born with th
hematological disorder [12].

The paper is organized as follow. In Section 2,
present the model, which is a simple two-compartm
production system. In Section 3, we analyze the mo
using a combination of analytical and numerical con
tinuation methods. It is shown that the positive stea
state can be destabilized by a supercritical Hopf bi
cation and that saddle-node bifurcations of limit cyc
exist. In Section 4, we discuss the implications for
physiological systemof such instabilities.

2. Model

Fig. 1 illustrates the two cell types of this mod
represented in the two compartments outlined in b
the hematopoietic stem cells (HSC) and the matu
WBCs. The HSCs are self-renewing and pluripoten
Fig. 1. Model of WBC production. The variableS represents the
number of hematopoietic stem cells in the resting(G0) phase. Cells
in the resting phase can either enter the proliferative phase at a
K(S) or differentiate at a rateF(M) to ultimately give rise to mature
WBCsM , the second variable. Cells in the HSC proliferative ph
undergo apoptosis at a rateγS and the cell cycle duration isτS. Cells
in the differentiation pathway are amplified by successive divisi
by a factor,A, which is also used to account for cell loss d
to apoptosis. After a timeτM, differentiated cells become matu
WBCsM and are released into the blood. It is assumed that ma
WBCs die at a fixed rateα. Two feedback loops control the enti
process through the proliferation rateK(S) and the differentiation
rateF(M).

(can differentiate into any blood cell type), and t
rate at which they differentiate into the WBC line
assumed to be determined by the level of circulat
WBCs. As these WBC precursors differentiate, th
numbers are amplified by successive divisions. A
a certain maturation timeτM, they become matur
WBCs and are released into the blood.

As shown in Fig. 1, there are two feedback loo
The first loop is between the mature WBC compa
ment and the rateF(M) of HSC differentiation into
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the WBC line.F(M) operates with a delayτM that
accounts for the time required for WBC division a
maturation, so the flux of cells from the resting pha
of the HSC compartment isSτM F(MτM ). Here, as else
where, the notationxτ meansx(t − τ ).

The second feedback loop regulates the rateK(S)

at which HSCs re-enter theproliferative cycle from G0
state, and it operates with a delayτS that accounts fo
the length of time required to produce two daugh
HSCs from one mother cell.K(S) is a monotone
decreasing function ofS and therefore acts as
negative feedback. The flux of cells out of the rest
phase of the HSC compartment is given bySK(S).
K(S) regulates the level of hematopoietic stem ce
(S), while F(M) controls the number of WBCs.

The main agents controlling the peripheral WB
regulatory system throughF(M) are the colony stimu
lating factors (CSFs) such as granulocyte CSF (G-C
or granulocyte–monocyte CSF (GM-CSF). The m
effect of CSF is stimulating the production ofWBCs.
As WBCs are a factor in the clearance of CSF,
type of regulation meditated by these cytokines i
negative feedback. An increase of WBC count is f
lowed by a decrease in CSF concentration, leading to
a decrease in WBC count, which in turn leads to
increase in CSF concentration, stimulating WBC p
duction.

From Fig. 1 we can write down by inspection t
model equations:

(1)
dM

dt
= −αM + ASτM F(MτM )

and

(2)
dS

dt
= −SF(M) − SK(S) + 2 e−γSτSSτSK(SτS)

The model parameters are the circulating W
death rateα, the WBC pathway amplificationA, the
maturation delay of WBC precursorsτM, the HSC
proliferative phase durationτS and the apoptotic rat
of proliferating HSC,γS. The feedback functionsF
andK are taken as Hill functions:

(3)F(M) = f0
θ1

θ1 + M

and

(4)K(S) = k0
θs

2

θs
2 + Ss
Table 1
List of parameters used in the model

Parameter Unit Value Reference

A 100 20 [8,17]
f0 day−1 0.8 [7]
θ1 106 cell kg−1 0.36 model
f0 day−1 8.0 model
θ2 106 cell kg−1 0.095 model
s 2∼3 [18–20]

τM day 3.5 [14,21,22]
τS day 2.8 [8,23]
γS day−1 0.07 [8]
α day−1 2.4 [24]

S∗ 106 cell kg−1 1.1 [8,25]
M∗ 106 cell kg−1 6.9 [7,8]
F∗ day−1 0.04 [8]
K∗ day−1 0.06 [8]

All parameters describe physiological quantit
and are de facto assumed to be positive. Table 1 sh
the parameter values used in this study. Some of t
can be evaluated from experimental data found in
literature, and references are indicated in Table
However, the values of parameters such asS∗, τM
and parameters inside the feedback loops are
clear. A recent study [13] indicates that the absolu
stem cell population would be conserved in mamm
This implies that the frequencyS∗ would be much
lower in dogs (our model) than in mice (where t
data come from). Moreover, many parameters depe
on S∗ such asA and τM. Nevertheless, numerica
simulations have shown that changing the value oS∗
(along withA andτM) does not change the dynami
qualitatively, and not much quantitatively. For the
reasons, we will take the steady state stem cell co
S∗ found in mice.

In normal condition, the duration of WBC trans
time from the most primitive precursor cells to ful
mature cells has been evaluated to approxima
12 days [14], the post-mitotic maturation phase
about 3.0 days in dogs [7]. Some authors even re
a transit time of 42 days or more [15]. Howev
clinical data show that the transit time is shorten
in CN patients or after granulocyte colony stimulati
factor (G-CSF) administration. Considering that
hematopoietic regulatory system acts thorough
maturation cell line, we will take the feedback del
τM = 3.5 days (in a recent study [16], primitive murin
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blood cells have been shown to divide up to 8 times
a 3-day in vitro culture). Numerical simulations sho
that large changes inτM (up to 42 days) do not affec
significantly the behavior of the solution, althou
the solution may become apparently quasi-periodi
some ranges ofτM values.

3. Analysis

In this section, we analyze the stability of stea
states and their bifurcations. As the parameter sp
is vast, we have to choose the most relevant para
ters to be examined. A key feature in the onset
hematopoietic disorders such as CN and PCML se
to be the apoptosis rate of blood cell precursors. In
present model, two parameters control this apopt
rate, the HSC apoptosis rateγS and the precursor am
plificationA, which can be expressed as:

(5)A = 2q exp(−γpT)

The parameterA is composed of an absolute am
plification term 2q representingq successive divi-
sions, and of a term representing the surviving fract
from apoptosis, exp(−γPT ), whereγP is the precurso
apoptosis rate andT the time during which the apop
tosis occurs. Therefore, our two main bifurcation p
rameters areγS andA. Other parameters are fixed
in Table 1 unless otherwise noted.

3.1. Linear stability. Quasi-steady-state assumption

In this section, we consider a simpler model by
suming the functionF to be constant. This uncouple
Eqs. (1) and (2) and allows a complete stability ana
sis of the stem cell compartment. In that case, it is e
to show that a single positive steady state exists for
system ifF < k0r, wherer = 2 exp(−γSτS) − 1. The
following relation defines the nonzero steady state

(6)Ss∗ = θs
2

[
k0r

F
− 1

]
When the apoptosis rate is increased to

(7)γS = 1

τS
ln

[
2

F/k0 + 1

]
the positive steady state reaches, and collapses
the null steady state. The linearization around
,

positive steady state of Eq. (2) allows us to underst
the nature of this bifurcation. Lety = S − S∗, so the
linearized equation from Eq. (2) is

(8)ẏ = −A+y − B+yτS

where the parametersA+ andB+ are defined by

(9)A+ = F +
[
(1− s)

F

r
+ s

F 2

k0r2

]

and

(10)B+ = −(r + 1)

[
(1− s)

F

r
+ s

F 2

k0r2

]

The characteristic equation associated with Eq. (8)

(11)λ + A+ + B+ exp(−λτS) = 0

Let us recall a well-known theorem [26,27] o
linear-delay differential equations. The steady st
leading to the characteristic equation (11) is loca
stable if and only if:

(12)|B+| < A+
or

(13)B+ > |A+| andτS <
arccos(−A+/B+)√

B2+ − A2+
WhenF = k0r, the only steady state is zero. If th

apoptosis rateγS is decreased by a small amount, w
can assume that, for smallε > 0,

(14)
F

k0r
= 1− ε

In that case, we can show that

|B+| = F

r
(1− sε) + F(1− sε)

(15)<
F

r
(1− sε) + F = A+

and thus the positive steady state is locally stable w
it is close to zero.

Now, if we linearize around the trivial steady sta
we find a linearized equation (withz = S)

(16)ż = −A0z − B0zτS

with

(17)A0 = F + k0 andB0 = −(r + 1)k0
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Two cases have to be considered. First, ifF � k0r,
then

(18)A0 � k0r + k0 = |B0|
implying that the null steady state is stable. In the ot
case,F < k0r, then

(19)A0 < k0r + k0 = −B0

and the trivial steady state is unstable.
We have thus shown that whenγS takes the value

given by Eq. (7), the unique positive steady st
collapses with the trivial steady state, leading to
bifurcation point. In order to distinguish between t
different possible bifurcations, we have to look at t
value of the exponents in the feedback functionK.
If s is even, then thes-root in Eq. (6) is not rea
whenF > k0r, so only the trivial steady state exis
WhenγS decreases, leading to an increase ofr, a pair
of nonzero steady states appears around zero, g
a pitchfork bifurcation. Ifs is odd, then thes-root
always exists. WhenγS decreases, the steady sta
S∗ goes from negative to positive, and there is
exchange of stability at zero: this is a transcriti
bifurcation.

3.1.1. Oscillation around the positive steady state
There exists a range ofγS for which the positive

steady stateS∗ is unstable. Fig. 2 shows the bifurcatio
diagram ofS with respect toγS.

Many authors have speculated about the con
quences of such oscillations. There might be a ca
link between oscillation in the HSC compartment a
oscillations seen in hematological disorders such
periodic chronic myelogenous leukemia or cyclic
neutropenia.

3.2. Analysis of the full model

In this section, we focus on the behavior of t
solution of the full model as the parameterA is
varied. It is shown that a supercritical Hopf bifurcati
destabilizes the positive fixed point and that for
interval of values ofA, there is bistability. WhenA
approaches 0, the steady state valueM∗ approaches 0
while S∗ stays positive, and a limit cycle coexists wi
the steady state.
3.2.1. Existence and uniqueness of the positive
steady state

The full model described by Eqs. (1) and (
cannot be easily analyzed. However, by restricting
parameter space, we can give a condition for a sin
positive steady state to exist. In particular, we take

f0 <

(
1− 1

s

)
rk0

(20)=
(

1− 1

s

)(
2 exp(−γSτS) − 1

)
k0

and show that there exists a single positive steady s
for Eqs. (1), (2), denoted(M∗, S∗) through the rest o
the paper. In this section, we present a proof for
existence and uniqueness of the positive steady
under condition (20). First write the equation for t
steady state ofM. From Eq. (1) we haveM∗ defined
by:

(21)αM∗ = AS∗F(M∗)

From Eq. (21) and the steady state equation forS∗, (6),
we can eliminateS∗, and obtain:

(22)M∗ = Aθ2

α

s

√(
rk0

F(M∗)
− 1

)
F(M∗)

Let the right-hand side of Eq. (22) be denot
G(M∗). Then the derivative ofG with respect toM∗
is:

G′(M∗) = Aθ2

sα

s

√(
rk0

F(M∗)
− 1

)

(23)× F ′(M∗)
[
s − 1

1− F(M∗)(rk0)−1

]

If we can prove thatG′(M∗) is always negative
then by using the fixed-point theorem, it is easy
show that there exists a unique positive steady s
M∗, and from that value the uniqueness of the ste
stateS∗ follows naturally. To show thatG′(M∗) is
negative, we must verify that the factor in the brack
in Eq. (23) is positive since the others factors
negative (from the definition ofF(M) in Eq. (3),
it is obvious thatF ′(M) < 0). So we need to find
conditions for which:

(24)s − 1
−1 > 0
1− F(M∗)(rk0)
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which is equivalent to showing that

(25)F(M∗) <

(
1− 1

s

)
rk0

We know thatF(M∗) < f0, so a sufficient condition
for G′(M∗) to be negative is:

f0 <

(
1− 1

s

)
rk0

(26)=
(

1− 1

s

)(
2 exp(−γSτS) − 1

)
k0

which completes the proof of the existence and uniq
ness of the steady state(M∗, S∗) under condition (20)

3.2.2. Characteristic equation of the model
The linearization of Eqs. (1) and (2) around t

unique positive steady state(M∗, S∗) is performed
along the same lines as above. First define n
variablesx = M − M∗ andy = S − S∗ so thatx = 0
andy = 0 are the coordinates of the fixed point. Th
by linearizing around the steady state(M∗, S∗), we
obtain:

(27)
dx

dt
= A1x + A2xτM + A3xτM

and

(28)
dy = B1x + B2y + B3yτS,
dt
where the linearization coefficients are:

A1 = −α = (−αM)M

A2 = AF ′∗S∗ = (
ASF(M)

)
M

(29)A3 = AF∗ = (
ASF(M)

)
S

B1 = −F ′∗S∗ = (−F(M)S
)
M

B2 = −[F∗ + K ′∗S∗ + K∗]
= (−[

F(M) + K(S)
]
S
)
S

B3 = 2 exp(−γSτS)(K ′∗S∗ + K∗)
= 2 exp(−γSτS)

(
K(S)S

)
S

The subscripts in the equalities denote the pa
derivative with respect to the variable and the s
subscript(∗) means that the function is evaluated
the steady state. The prime stands for the deriva
with respect to the argument. These equations ca
formulated in vector form,

(30)
dX

dt
= LX + RMXτM + RSXτS

where

X =
(

x

y

)
, L =

(
A1 0
B1 B2

)

RM =
(

A2 A3
0 0

)
, RS =

(
0 0
0 B3

)



S. Bernard et al. / C. R. Biologies 327 (2004) 201–210 207

is

c

e
e
re

he

ly
er,
e
u-
-

-

the
ing

.

e

ng

w
ble
e

e 1
ce
11)

n
),
e
le
e
ate

uch
be

in
To

for
re
is

w
-
on
t,
is-

ther
y-
ode
le
m

The characteristic equation of Section 3.2.2
defined as:

(31)
det

[
λI − L − RM exp(−λτM) − RSexp(−λτS)

] = 0

with I the 2× 2 identity matrix. The characteristi
equation can then be explicitly written:

λ2 − (A1 + B2)λ − A2λe−λτM − B3λe−λτS

+ B2A1 + (A2B2 + B1A3)e−λτM

(32)+ A1B3 e−λτS + A2B3 e−λ(τM+τS) = 0

The locations of the roots of Eq. (32) will giv
information about the localstability of the steady stat
(M∗, S∗). In Section 3.2.3, numerical methods a
used to study the location of the roots of Eq. (32).

3.2.3. Bifurcation analysis of the full model
The condition defined by Eq. (20) restricts t

values taken byγS. Indeed, from Eq. (20), we find:

(33)γS <
1

τS
ln

[
2(s − 1)k0

sf0 + (s − 1)k0

]

The right-hand side of this inequality is slight
smaller than the right-hand side of Eq. (7). Moreov
numerical simulations whenγS approaches this valu
show that the behavior of the solution is highly irreg
lar. Therefore, we concentrate our analysis on the be
havior of solutions as the amplification parameterA is
varied and keepγS well below the critical value de
fined by Eq. (33).

The fixed-point equations are defined by setting
left-hand sides of Eqs. (1), (2) equal to zero. Solv
for the nonzero steady states leads to

(34)M∗ = A

α
S∗F(M∗)

and

(35)Ss∗ = θs
2

[
k0r

F (M)
− 1

]

Eq. (34) can be expressed as a 2s-th order polynomial
in M∗ by replacing S∗ by its steady-state value
Generally,(
M2∗ + θ1M∗

)s
(36)=

(
A

α
f0θ1θ2

)s(
k0r

f θ
(θ1 + M∗) − 1

)

0 1
In the particular case wheres = 2, the steady-stat
equation becomes a fourth-order polynomial:

α2M4∗ + 2α2θ1M
3∗ + α2θ2

1M2∗ − A2f0θ1θ
2
2rk0M∗

(37)− A2f 2
0 θ2

1θ2
2

(
rk0

f0
− 1

)
= 0

This equation can be solved analytically usi
symbolic computation software such asMaple. At
A = 0, Eq. (37) simplifies and it is easy to sho
that there exists a double zero root and a dou
negative root. ForA > 0, as shown above, only on
root is positive. With parameter values as in Tabl
and A = 0, the system (1), (2) is unstable, sin
the characteristic equation (32) reduces to Eq. (
and the values of the coefficients areA+ = −0.056
and B+ = 1.41. As B+ > |A+|, the condition for
stability of the nonzero steady state whenA = 0 is
then, from condition (13),τS < 1.09. This condition
is not satisfied, sinceτS takes larger values. Whe
0 < A � 1, by continuity, the stability of system (1
(2) does not change. AtA = 0, there is an unstabl
steady state(M∗ ≡ 0, S∗ > 0) accompanied by a stab
limit cycle in theS variable only and of zero amplitud
in M. WhenA is increased, the unstable steady st
becomes positive(M∗ > 0, S∗ > 0) and the amplitude
of the limit cycle becomes nonzero in bothM andS.
As A is further increased, the analysis becomes m
more difficult and the bifurcation study cannot
carried out with symbolic tools only.

At this point, one must use numerical methods
order to understand the complexity of the system.
perform the numerical analysis, we used aMatlab
package,DDE-BIFTOOLS [28], which is based on
continuation methods that are in widespread use
ordinary differential equations through the softwa
AUTO [29]. This package is well suited for analys
of delay differential equations.

In Fig. 3 we show bifurcation diagrams ofM andS

as well as their periodic solution profiles. If we follo
the evolution of the steady state(M∗, S∗) as the para
meterA is decreased, a supercritical Hopf bifurcati
occurs (points O in Fig. 3, left panels). At this poin
a small-amplitude stable limit cycle appears, and d
appears in a saddle-node bifurcation (points I) toge
with an unstable limit cycle. This unstable limit c
cle had appeared previously in another saddle-n
bifurcation (points II), with a large amplitude stab
limit cycle. The large amplitude limit cycle exists fro
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A = 0. To plot this surface, the bifurcation curves in left panels have been ‘unfolded’, so there is only one periodic solution represe
time. See the caption of Fig. 2 for more details.
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should be noted that when the amplificationA ranges
in typical CN values (10 to 30), the period of oscill
tion is between 13 and 17 days, which is in the aver
for CN in gray collies.

4. Discussion

We have analyzed a simple model of white-bloo
cell production. Oscillations in blood-cell count hav
been observed in many hematological diseases
as cyclical neutropenia (CN) or periodic myelogeno
leukemia (PCML) [30]. In both diseases, an alterat
in the apoptotic rate of white-blood-cell precursors h
been observed. The goal of the present paper wa
establish, using a simple model, if these change
apoptosis rates could explain the onset of oscillations
It has been shown in Section 3 that the elevation of
apoptosis rate is a sufficient condition for the onse
oscillations in the WBC count. This elevation has be
observed in neutrophil precursors in CN patients.
make the hypothesis that this elevation in neutrop
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precursor apoptosis rate is the cause of oscillation s
in CN.

The case of PCML is less clear. This form
leukemia is characterized by oscillations from norm
to high levels of WBC with periods ranging from 3
to 80 days. A relationship exists between CN a
certain forms of leukemia, since some CN patie
eventually develop these leukemias [31–35]. Howe
experimental data show that leukemic cells hav
decreased rate of apoptosis. The model prese
here does not display any oscillatory behavior wh
apoptosis rate is decreased below normal. Fur
investigations will have to be carried out to establ
a link between dynamics seen in CN and PCML.
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