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Abstract

We study the dynamics of a model of white-blood-cell (WBC) production. The model consists of two compartmental
differential equations with two discrete delays. We show that from normal to pathological parameter values, the system
undergoes supercritical Hopf biftations and saddle-nodsfurcations of limit cycles. We ltaracterize the steady states of
the system and perform a bifurcation analysis. Our results indicate that an increase in apoptosis rate of either hematopoietic
stem cells or WBC precursors induces a Hopf bifurcation andsaiilatory regime takes place. These oscillations are seen in
some hematological diseas@s.citethisarticle: S. Bernard et al., C. R. Biologies 327 (2004).
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Résumé

Bifurcations dans un modéle de production de globules blancs. On étudie la dynamique d’'un modeéle de production de
globules blancs (GB). Le modéele, de nature compartimentale, prend la forme de deux équations différentielles avec deux délai
discrets. On montre que la transition de valeurs normales de paramétres a des valeurs pathologiques méne a des bifurcatio
de Hopf surcritiqgues ainsi que des bifurcations col-nceud de cycles limites. On caractérise les points fixes du systeme e
on procéde a I'analyse des bifurcations. Nos résultats indiquent qu'une augmentation du taux d'apoptose, soit des cellules
hématopoiétiques, soit des précursedes GB, induit une bifurcation de Hopf gu’un régime oscillatoire apparait. Ces
oscillations sont observées dans certains désordres hématolod?quesiter cet article: S. Bernard et al., C. R. Biologies
327 (2004).
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1. Introduction

Hematopoiesis is the term used to describe the pro-
duction of blood cells. All blood cells come from a
unique source, the hematopoietic stem cells (HSC),
but mechanisms regulating this production are not
completely understood. Particularly, the regulation of
leucopoiesis (production of white blood cells) is not
well understood and the local HSC regulation mecha-
nisms are even less clear [1-8]. Because of their dy-
namical character, cyclical neutropenia and other pe-
riodic hematologial disorders offer us opportunities
to better comprehend the nature of these regulatory
processes [9].

Cyclical neutropenia (CN) is a rare hematological
disorder characterized by oscillations in the circulating
white blood cell (WBC) ount. Levels of neutrophils,

a type of white blood cell, fall from normal to barely
detectable levels with a period of 19 to 21 days in hu-
mans [4,10,11] and around 14 days in gray collies [4].
These oscillations in the WBC count about a subnor-
mal level are generally accompanied by oscillations
around normal levels in other blood cell lineages such
as platelets, lymphocytes and reticulocytes [4,7].

The goal of this paper is to study a simple model of
WBC production. We look for mechanisms leading to
oscillations in the WBC count and relate these mech-
anisms to physiological features of the hematopoietic
system. We use cyclical neutropenia data from a ca-
nine model, the gray collie, which is born with this
hematological disorder [12].

The paper is organized as follow. In Section 2, we
present the model, which is a simple two-compartment
production system. In Section 3, we analyze the model
using a combination of ahgical and numerical con-
tinuation methods. It is shown that the positive steady
state can be destabilized by a supercritical Hopf bifur-
cation and that saddle-node bifurcations of limit cycles
exist. In Section 4, we discuss the implications for the
physiological systerof such instabilities.

2. Moddl

Fig. 1 illustrates the two cell types of this model
represented in the two compartments outlined in bold:
the hematopoietic stem cells (HSC) and the maturing
WBCs. The HSCs are self-renewing and pluripotential
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Fig. 1. Model of WBC production. The variablg represents the
number of hematopoietic stem cells in the resiiGg) phase. Cells

in the resting phase can either enter the proliferative phase at a rate
K (S) or differentiate at a rat& (M) to ultimately give rise to mature
WBCs M, the second variable. Cells in the HSC proliferative phase
undergo apoptosis at a ratg and the cell cycle duration igs. Cells

in the differentiation pathway are amplified by successive divisions
by a factor, A, which is also used to account for cell loss due
to apoptosis. After a timey,, differentiated cells become mature
WBCs M and are released into the blood. It is assumed that mature
WBCs die at a fixed rate. Two feedback loops control the entire
process through the proliferation rak&(S) and the differentiation
rate F(M).

(can differentiate into any blood cell type), and the
rate at which they differentiate into the WBC line is
assumed to be determined by the level of circulating
WBCs. As these WBC precursors differentiate, their
numbers are amplified by successive divisions. After
a certain maturation timey, they become mature
WBCs and are released into thebdl.

As shown in Fig. 1, there are two feedback loops.
The first loop is between the mature WBC compart-
ment and the raté (M) of HSC differentiation into
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the WBC line. F(M) operates with a delayy that
accounts for the time required for WBC division and
maturation, so the flux of cells from the resting phase
of the HSC compartmentis,, F (M-, ). Here, as else-
where, the notatiom, meansx(r — 7).

The second feedback loop regulates the ra{s)
at which HSCs re-enter thggroliferative cycle from @
state, and it operates with a delaythat accounts for

the length of time required to produce two daughter *

HSCs from one mother cellK(S) is a monotone
decreasing function ofS and therefore acts as a
negative feedback. The flux of cells out of the resting
phase of the HSC compartment is given $¥ (S).

K (S) regulates the level of hematopoietic stem cells
(S), while F (M) controls the number of WBCs.

The main agents controlling the peripheral WBC
regulatory system throughi(M) are the colony stimu-
lating factors (CSFs) such as granulocyte CSF (G-CSF)
or granulocyte—monocyte CSF (GM-CSF). The main
effect of CSF is stimulating the production WfBCs.

As WBCs are a factor in the clearance of CSF, the
type of regulation meditated by these cytokines is a
negative feedback. An increase of WBC count is fol-
lowed by a decrease in CSBrcentration, leading to

a decrease in WBC count, which in turn leads to an
increase in CSF concentration, stimulating WBC pro-
duction.

From Fig. 1 we can write down by inspection the
model equations:

dm

E :—(XM+ASrMF(MfM) (1)
and

ds —VSTS

5 = SFM) = SK($) + 2€7758 K (Ss)  (2)

The model parameters are the circulating WBC
death ratex, the WBC pathway amplificatiod, the
maturation delay of WBC precursots,, the HSC
proliferative phase duratiors and the apoptotic rate
of proliferating HSC,ys. The feedback function&
andK are taken as Hill functions:

F(M)—f091+M 3

and

K(S)=ko o (4)
65+ S
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Table 1
List of parameters used in the model
Parameter Unit Value References
A 100 20 [8,17]
fo day! 0.8 [71
01 108 cellkg~?! 0.36 model
7o day! 8.0 model
6 108 cellkg~?! 0.095 model
; 2~3 [18-20]
™ day 3.5 [14,21,22]
TS day 2.8 [8,23]
s day?! 0.07 [8]
day1 2.4 [24]
S« 10° cell kg™t 1.1 [8,25]
M, 108 cellkg™?! 6.9 [7.8]
Fy day 1 0.04 [8]
day_l 0.06 [8]

All parameters describe physiological quantities
and are de facto assumed to be positive. Table 1 shows
the parameter values used in this study. Some of them
can be evaluated from experimental data found in the
literature, and references are indicated in Table 1.
However, the values of parameters suchSas v
and parameters inside the feedback loops are less
clear. A recent study [13]ndicates that the absolute
stem cell population would be conserved in mammals.
This implies that the frequenc§, would be much
lower in dogs (our model) than in mice (where the
data come from). Moreover, many parameters depends
on S, such asA and ty. Nevertheless, numerical
simulations have shown that changing the valué,of
(along with A andty) does not change the dynamics
gualitatively, and not much quantitatively. For these
reasons, we will take the steady state stem cell count
S, found in mice.

In normal condition, the duration of WBC transit
time from the most primitive precursor cells to fully
mature cells has been evaluated to approximately
12 days [14], the post-mitotic maturation phase to
about 3.0 days in dogs [7]. Some authors even report
a transit time of 42 days or more [15]. However,
clinical data show that the transit time is shortened
in CN patients or after granulocyte colony stimulating
factor (G-CSF) administration. Considering that the
hematopoietic regulatory system acts thorough the
maturation cell line, we will take the feedback delay
v = 3.5 days (in arecent study [16], primitive murine
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blood cells have been shown to divide up to 8 times in positive steady state of Eq. (2) allows us to understand
a 3-day in vitro culture). Numerical simulations show the nature of this bifurcation. Let= S — S, so the
that large changes ity (up to 42 days) do not affect  linearized equation from Eq. (2) is

significantly the behavior of the solution, although

the solution may become apparently quasi-periodic in y=—A+y = Biys (8)
some ranges ofy values. where the parameters, and B, are defined by

F  F?
3. Analysis A+:F+[(1_S)7+SW} ®

. : . and
In this section, we analyze the stability of steady )

states and their bifurcations. As the parameter space F F
. By =— DA-5)—+5s—5 1
is vast, we have to choose the most relevant parame-~ " r+ )[( ) r +sk0r2 (10)
ters to be examined. A key feature in the onset of - : ; ; .

L The characteristic equation associated with Eq. (8) is:
hematopoietic disorders such as CN and PCML seems g a- (8)
to be the apoptosis rate of blood cell precursors. Inthe ) + A, + B, exp(—i1s) =0 (11)
present model, two parameters control this apoptotic
rate, the HSC apoptosis rate and the precursor am-
plification A, which can be expressed as:

Let us recall a well-known theorem [26,27] on
linear-delay differential equations. The steady state
leading to the characteristic equation (11) is locally
A =27 exp(—ypT) (5) stable if and only if:

The parameter is composed of an absolute am- |, | < 4, (12)
plification term 2 representingg successive divi-
sions, and of a term representing the surviving fraction Of

from apoptosis, exp-ypT), whereyp is the precursor arcco$—A+/By)
apoptosis rate andl the time during which the apop- B+ > 14+] andzs < — (13)
tosis occurs. Therefore, our two main bifurcation pa- ' By — A%
rameters arg's andA. Ot'her parameters are fixed as WhenF = kor, the only steady state is zero. If the
in Table 1 unless otherwise noted. apoptosis ratgss is decreased by a small amount, we

can assume that, for smalt- 0,
3.1. Linear stability. Quasi-steady-state assumption

Ll =1-¢ (14)

In this section, we consider a simpler model by as- kor
suming the functiorF to be constant. This uncouples In that case, we can show that
Egs. (1) and (2) and allows a complete stability analy- F
sis of the stem cell compartment. Inthat case, itiseasy |B, | = —(1 — s¢) + F(1 — s¢)
to show that a single positive steady state exists for the r
system if F < kor, wherer = 2expg—ysts) — 1. The < E(l —se)+F=A, (15)
following relation defines the nonzero steady states, r
kor and thus the positive steady state is locally stable when
S = 95[? - 1} (6) itis close to zero.
Now, if we linearize around the trivial steady state,
When the apoptosis rate is increased to we find a linearized equation (with= S)
ys = 1 |n[i} @) 2 =—Aoz — Bozsg (16)
TS F/ko+1

with
the positive steady state reaches, and collapses with,
the null steady state. The linearization around the Ag= F + kg andBg = —(r + 1)ko a7
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Two cases have to be considered. FirstFit: kor, 3.2.1. Existence and uniqueness of the positive
then steady state

The full model described by Egs. (1) and (2)
Ao > kor + ko = | Bo| (18) cannot be easily analyzed. However, by restricting the

parameter space, we can give a condition for a single

implying that the null steady state is stable. In the other positive steady state to exist. In particular, we take:

case,F < kor, then

1
Ao < kor + ko= —Bo (19) fo< (1_ ;)rko
and the trivial steady state is unstable. _ (1 _ _) (2 exp(—ysTs) — 1)k0 (20)
We have thus shown that whes takes the value s

given by Eq. (7), the unique positive steady state 5,4 show that there exists a single positive steady state
collapses with the trivial steady state, leading to a for Egs. (1), (2), denotetM., S.) through the rest of
bifurcation point. In order to distinguish between the the paper. In this section, we present a proof for the
different possible bifurcations, we have to look at the gyistence and uniqueness of the positive steady state
value of the exponent in the feedback functiork . under condition (20). First write the equation for the

If s is even, then the-root in Eq. (6) is not real steady state oM. From Eq. (1) we haves, defined
when F > kor, so only the trivial steady state exists. by:

Whenys decreases, leading to an increase,d pair

of nonzero steady states appears around zero, givinguw M, = AS, F (M,.) (21)
a pitchfork bifurcation. Ifs is odd, then thes-root _

always exists. Wherys decreases, the steady state FrOM EQ. (21) and the steady state equatiors§o(6),
S, goes from negative to positive, and there is an W€ €an eliminates,, and obtain:

exchange of stability at zero: this is a transcritical

bifurcation. M= 22 (204 pou, (22)
o F(M,)
3.1.1. Oscillation around the positive steady state Let the right-hand side of Eq. (22) be denoted

There exists a range ofs for which the positive G (a,). Then the derivative o6& with respect toM,,
steady staté, is unstable. Fig. 2 shows the bifurcation jg:

diagram ofS with respect to/s.
Many authors have speculated about the conse- G'(M,) = Abo | ( rko )
L) = _

quences of such oscillations. There might be a causal o F(M,)

link between oscillation in the HSC compartment and 1

oscillations seen in hematological disorders such as X F’(M*)[s - _1} (23)

periodic chronic myelogenous leukemia or cyclical 1- F(M)(rko)

neutropenia. If we can prove thaiG'(M,) is always negative,
then by using the fixed-point theorem, it is easy to

3.2. Analysis of the full model show that there exists a unique positive steady state

M., and from that value the uniqueness of the steady
In this section, we focus on the behavior of the statesS. follows naturally. To show thaG'(M.,) is
solution of the full model as the parametdr is negative, we must verify that the factor in the brackets
varied. It is shown that a supercritical Hopf bifurcation in EQ. (23) is positive since the others factors are
destabilizes the positive fixed point and that for an hegative (from the definition of"(M) in Eq. (3),

interval of values ofA, there is bistability. Whem it is obvious thatF’(M) < 0). So we need to find
approaches 0, the steady state valfieapproaches 0,  conditions for which:
while S, stays positive, and a limit cycle coexists with 1

the steady state. A 0 (24)
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Fig. 2. Left panel: bifurcatio diagram with apoptosis rates as a parameter. The positive steady state is represented by the thin line and the
envelope of the periodic solution by the thick line. The other parameter valugs-ar@.05, 61 = 1.0, kg = 1.77, 715 = 2.2 ands = 3. In this

case, a transcritical bifurcation occurs at point Il. At point O, a supercritical Hopf bifurcation occurs and a stable limit cycle appears. This limit
cycle eventually disappears through a reverse supercritical Hopf Hifumcat point I. Right panel: profilesf@eriodic solutions for values of

ys between 0.24 and 0.28 (points O and | in the right parféie periodic solutions have been rescaled on a tinse that each solution has a
periodT = 1. For a given value ofs, the vertical axis is the HSC count as a function’adver one period.

which is equivalent to showing that where the linearizatio coefficients are:
1

F(M,) < <1 - —)rko (25) A= —a=(—aM)w
s Ap=AF.S, = (ASF(M)),,

We know thatF (M.) < fo, SO a sufficient condition
for G’(M,) to be negative is:

. 1 . By =—F,S, = (—F(M)S),,
fos{1l=7)rko By = —[F, + K.S, + K,]

Az=AF. = (ASF(M))q (29)

1 =(—|F(M)+ K|S
= <1— —>(2 exp(—ysts) — 1)ko (26) (=[Fan (/)] )s
s B3z =2exp(—ysts) (K, S« + K+)
which completes the proof of the existence and unique-  _ » exﬂ—ysts)(K(S)S)S

ness of the steady stat#/,, S,) under condition (20).
The subscripts in the equalities denote the partial

3.2.2. Characteristic equation of the model derivative with respect to the variable and the star
The linearization of Egs. (1) and (2) around the subscript(x) means that the function is evaluated at
unique positive steady stat@\,, S,) is performed the steady state. The prime stands for the derivative
along the same lines as above. First define new Wwith respect to the argument. These equations can be

variablesx = M — M, andy = S — S, so thatx =0 formulated in vector form,
andy = 0 are the coordinates of the fixed point. Then 4y
by linearizing around the steady stat#,, S.), we o = LX + RmXay + RsXg (30)
obtain:
where
dx
— = A1x + Aoxqy + Azxy, 27) X A 0
; () =)
and y B1 Bz

d A> As 0 O
d—izle+Bzy+B3yrs, (28) RM:(O 0)’ RS:(C Bg)
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The characteristic equation of Section 3.2.2 is
defined as:

de{Al — L — Ry exp(—Atm) — Rsexp(—its)| =0

(31)
with 7 the 2x 2 identity matrix. The characteristic
equation can then be explicitly written:

A2 — (A1+ Bo)h — Aoh e *™ _ Bare 7S
+ BoA1+ (A2B2 + B1Ag) e ™

+ A1B3 e s 4 A2B3 g M mtts) — o (32)

The locations of the roots of Eqg. (32) will give
information about the locaitability of the steady state
(M, Sy). In Section 3.2.3, numerical methods are
used to study the location of the roots of Eq. (32).

3.2.3. Bifurcation analysis of the full model
The condition defined by Eq. (20) restricts the
values taken bys. Indeed, from Eq. (20), we find:

<iln|: 2(s — Dko :|
Y= T Lsfo+ (s — Dko

The right-hand side of this inequality is slightly
smaller than the right-hand side of Eq. (7). Moreover,
numerical simulations wheps approaches this value
show that the behavior of the solution is highly irregu-
lar. Therefore, we concemtie our analysis on the be-
havior of solutions as the amplification parametes
varied and keeps well below the critical value de-
fined by Eq. (33).

The fixed-point equations are defined by setting the
left-hand sides of Egs. (1), (2) equal to zero. Solving
for the nonzero steady states leads to

(33)

M, = SS*F(M*) (34)
and
ss—gs| KOy (35)

Eqg. (34) can be expressed assatR order polynomial
in M, by replacing S, by its steady-state value.
Generally,

(M2 + 6u01.)’

A SOk
= (Ef09192> (i(91+ M,) — 1)

36
Job1 (36)
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In the particular case where= 2, the steady-state
equation becomes a fourth-order polynomial:

@? M2+ 20201 M3 + 202 M2 — AZ fo0103r koM,
k
- A2f02912922<r—0 - 1) =0
fo

This equation can be solved analytically using
symbolic computation software such Eapl e. At
A =0, Eq. (37) simplifies and it is easy to show
that there exists a double zero root and a double
negative root. ForA > 0, as shown above, only one
root is positive. With parameter values as in Table 1
and A = 0, the system (1), (2) is unstable, since
the characteristic equation (32) reduces to Eq. (11)
and the values of the coefficients ate. = —0.056
and By = 1.41. As B, > |A4|, the condition for
stability of the nonzer steady state whed = 0 is
then, from condition (13)7s < 1.09. This condition
is not satisfied, sinces takes larger values. When
0 < A « 1, by continuity, the stability of system (1),
(2) does not change. A = 0, there is an unstable
steady statéeM, =0, S, > 0) accompanied by a stable
limit cycle in theS variable only and of zero amplitude
in M. WhenA is increased, the unstable steady state
becomes positivéM, > 0, S, > 0) and the amplitude
of the limit cycle becomes nonzero in bath and S.

As A is further increased, the analysis becomes much
more difficult and the bifurcation study cannot be
carried out with symbolic tools only.

At this point, one must use numerical methods in
order to understand the complexity of the system. To
perform the numerical analysis, we used/at | ab
package DDE- Bl FTOOLS [28], which is based on
continuation methods that are in widespread use for
ordinary differential equations through the software
AUTO [29]. This package is well suited for analysis
of delay differential equations.

In Fig. 3 we show bifurcation diagrams of and.S
as well as their periodic solution profiles. If we follow
the evolution of the steady statéf,, S,) as the para-
meterA is decreased, a supercritical Hopf bifurcation
occurs (points O in Fig. 3, left panels). At this point,
a small-amplitude stable limit cycle appears, and dis-
appears in a saddle-node bifurcation (points 1) together
with an unstable limit cycle. This unstable limit cy-
cle had appeared previously in another saddle-node
bifurcation (points Il), with a large amplitude stable
limit cycle. The large amplitude limit cycle exists from

(37)
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Fig. 3. Bifurcation diagram of the full model (Egs. (1) and (2)) as a functior .o®n left panels, the bifurcation diagrams of mature WBC

M, (upper panel) and HSG, (lower panel) are shown. In each panel the thin linenis ¢corresponding steady state and the thick lines are

the envelopes of periodic solutions. Between points O and | is a smalitade stable periodic solutioletween points | and Il, there is an
unstable period solution and from point Il to= 0, there is a large amplitude stable periodicutioh. Right panels: surface representation

of periodic solutions when the amplificatiof is varied. The periodic solutions i are represented in upper right panel and the periodic
solutions inS are represented in lower right panBleriodic solution number O correspondsptints O in left panels, and numbers 108 to

A = 0. To plot this surface, the bifurcation curves in left panels have been ‘unfolded’, so there is only one periodic solution represented at a
time. See the caption of Fig. 2 for more details.

pointllto A = 0. In the right panels of Fig. 3, the limit  been observed in many hematological diseases such
cycle profiles are shown. The time axis in right pan- as cyclical neutropenia (CN) or periodic myelogenous
els of Fig. 3 are rescatl so that the perio@ = 1. It leukemia (PCML) [30]. In both diseases, an alteration
should be noted that when the amplificatidmanges  jp the apoptotic rate of white-blood-cell precursors has
in typical CN values (10 to 30), the period of oscilla-  heen observed. The goal of the present paper was to
tionis b_etween 13_and 17 days, which is in the average establish, using a simple model, if these changes in
for CN'in gray collies. apoptosis rates could exptethe onset of oscillations.
It has been shown in Section 3 that the elevation of the
apoptosis rate is a sufficient condition for the onset of
oscillations in the WBC count. This elevation has been
We have analyzed a simple model of white-blood- observed in neutrophil precursors in CN patients. We
cell production. Oscillatins in blood-cell count have  make the hypothesis that this elevation in neutrophil

4. Discussion
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