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Dynamics and bistability in a reduced model of the lac operon
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Michael C. Mackeyd)

Departments of Physiology, Physics & Mathematics, Centre for Nonlinear Dynamics, McGill University,
Montreal, Quebec H3G 1Y6, Canada

~Received 13 March 2003; accepted 4 February 2004; published online 11 May 2004!

It is known that thelac operon regulatory pathway is capable of showing bistable behavior. This is
an important complex feature, arising from the nonlinearity of the involved mechanisms, which is
essential to understand the dynamic behavior of this molecular regulatory system. To find which of
the mechanisms involved in the regulation of thelac operon is the origin of bistability, we take a
previously published model which accounts for the dynamics of mRNA, lactose, allolactose,
permease andb-galactosidase involvement and simplify it by ignoring permease dynamics
~assuming a constant permease concentration!. To test the behavior of the reduced model, three
existing sets of data onb-galactosidase levels as a function of time are simulated and we obtain a
reasonable agreement between the data and the model predictions. The steady states of the reduced
model were numerically and analytically analyzed and it was shown that it may indeed display
bistability, depending on the extracellular lactose concentration and growth rate. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1689451#
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The field of gene regulation has been profoundly influ-
enced by the development of the operon concept. In the
40 years since this notion was put forward, experimental-
ists have intensively studied regulation in many different
systems. However, despite the extensive knowledge of th
biology of many of these systems„like the tryptophan and
lactose operons… and the wealth of experimental data
available about their dynamics, there have been few at-
tempts to integrate this knowledge into coherent math-
ematical models. In this paper we review previous math-
ematical treatments of the lactose operon, and then
consider a reduced version of the most recent effort by
Yildirim and Mackey. By means of a local stability analy-
sis and numerical inspection we show that this reduced
model displays bistable behavior. From this, we conclude
that of all the lac operon regulatory mechanisms, that
involving b-galactosidase is directly responsible for bista-
bility in this molecular system. A careful estimation of the
parameters in the model allows us to accurately predict
experimental data from three different experimental situ-
ations in which the temporal evolution of a critical com-
ponent of the lactose operon was monitored following a
perturbation. This last result supports the conclusion that
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the b-galactosidase regulatory pathway is, perhaps, the
most essential of the regulatory mechanisms in thelac
operon.

I. INTRODUCTION

It is almost universally accepted that the concept
operon,1 introduced by Jacobet al.,2 has had a profound an
probably lasting effect on the face of the biological a
medical sciences that is still unfolding. The most extensiv
studied operons are the tryptophan and the lactose ope
which have been acknowledged as the paradigms of repr
ible and inducible operons, respectively. Although not rec
nized as such at the time, the lactose operon was one o
first molecular systems experimentally demonstrated to
play bistable behavior.3 Among the various patterns of be
havior emerging from regulation associated with nonline
kinetics, bistability is extremely interesting. Bistability a
lows a true discontinuous switching~with hysteresis! be-
tween alternate steady states that can convert graded in
into switch-like responses. This permits a discontinuous e
lution of the system along different possible pathways, wh
can be either reversible or irreversible, and may provide
system with an epigenetic~nongenetic, hereditary! memory.
The evolutionary significance of bistability, as well as
possible role in explaining some basic processes of life,
cell differentiation or the maintenance of phenotypic diffe
ences in the absence of genetic and environmental di
ences, has recently been discussed elsewhere.4–6

A number of mathematical models of the lactose ope
have been developed with different goals.4,7–20 However, to
our knowledge, only two of these4,20 deal with the issue of
bistability in the lactose operon. Laurent and Kellershoh4

introduced a simple model of the lactose operon that, wit

ate

Sir
-

© 2004 American Institute of Physics

icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp



ho

th
nt
la
on

e
t
n

y-
e
r
T

ch
d
sm
nt

on
se
t
le
a
-
a-
. B
o
ly

a
ity
la

e
.
e

ha
ri

d
s o
a

at
a
a
h
in
r

e

e
m
e

cs

tor

or

-

lac-
the

rator
und
c-

gh
he
on-

i-

e
ide
gu-

l-
or

tra-
se,

so

and

r

be

the

280 Chaos, Vol. 14, No. 2, 2004 Yildirim et al.

D

proper choice of the parameter values, was able to s
bistable behavior. More recently, Yildirim and Mackey20 de-
veloped a more detailed mathematical model in which
parameters were all estimated from reported experime
data, and showed that, indeed, there is bistability in the
tose operon dynamics for realistic extracellular lactose c
centration values.

The model of Yildirim and Mackey includes the tim
delays due to transcription and translation, as well as mos
the lactose operon regulatory mechanisms. It considers
ther inducer exclusion nor catabolite repression~two
external-glucose dependent mechanisms!. Despite this omis-
sion, the Yildirim and Mackey model is capable of displa
ing bistablility, indicating that bistability does not rely on th
presence of glucose in the extracellular medium. These
sults suggest two different pathways for future research:
investigate the influence of the glucose dependent me
nisms on the bistable behavior of the lactose operon, an
find out whether there exists a subset of the mechani
considered in the Yildirim and Mackey capable of accou
ing for bistability.

Of the three genes comprised by the lactose operon,
two encode for proteins involved in its regulation. The
proteins areb-galactosidase and lactose permease and
two of them participate in positive feedback loops capab
in principle, of generating bistability. In the present work
simplification of the Yildirim and Mackey model, that con
siders only the role ofb-galactosidase in the operon regul
tion and ignores that of lactose permease, is introduced
numerically solving the time-delay differential equations
the reduced model and by performing a local stability ana
sis we show that it reproduces dynamic experimental dat
well as the complete model and that it displays bistabil
From this, we conclude that of all the lactose operon regu
tory mechanisms, that involvingb-galactosidase is the on
directly responsible for bistability in this molecular system

The outline of the paper is as follows. In Sec. II w
describe the Yildirim–Mackey model for thelac operon. In
Sec. III we consider a reduced version of this model t
allows more detailed mathematical analysis, and summa
the results of our parameter estimation that are detaile
Appendix A. Then in Sec. IV we examine the steady state
the system and show that depending on the growth rate
lactose levels there may be one, two, or three steady st
We have determined the ranges over which these ste
states may exist based on our parameter estimation, and
shown that when a single steady state exists it is stable w
when three of them exist, two are locally stable and the
termediate one is unstable. In Sec. V we have used the
duced model to predict the response to three different exp
mental conditions and compared the model response
previously published experimental data, finding good agr
ment. The paper concludes with Sec. VI in which we su
marize our findings, and briefly discuss other operon mod
ing efforts.
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II. THE YILDIRIM AND MACKEY MODEL

In describing the Yildirim and Mackey model20 for regu-
lation of thelac operon, we must first consider the dynami
of mRNA induction. To this end, it will be helpful in the
following discussion to refer to Fig. 1.

The lac operon consists of a small promoter–opera
region and three larger structural geneslacZ, lacY, and
lacA. Preceding thelac operon is a regulatory operonlacI
denoted by (R) that is responsible for producing a repress
(R) protein. In the absence of allolactose (A) the repressorR
binds to the operator regionO and prevents the RNA poly
merase~which binds to the promoter region! from transcrib-
ing the structural genes. However, in the presence of allo
tose, a complex is formed between allolactose and
repressor that makes binding of the repressor to the ope
region impossible. In that case, the RNA polymerase bo
to the promoter is able to initiate transcription of the stru
tural genes to produce mRNA.

Once the production of mRNA has been started throu
DNA transcription, the process of translation is initiated. T
lacZ gene encodes the portion of the mRNA that is resp
sible for the production ofb-galactosidase (B) and transcrip-
tion of the lacY gene produces the section of mRNA ult
mately responsible for the production of a permease (P).
The final portion mRNA produced by transcription of th
lacA gene encodes for the production of thiogalactos
transacetylase which is thought to not play a role in the re
lation of the lac operon21 and which will not be further
considered here.

In words, the way this control system works is the fo
lowing ~cf. Fig. 2!. In the absence of glucose available f
cellular metabolism, but in the presence of lactose (L), lac-
tose is transported into the cell by the permease. This in
cellular lactose is then broken down into glucose, galacto
and allolactose byb-galactosidase. The allolactose is al
converted to glucose and galactose byb-galactosidase. The
allolactose feeds back to bind with the lactose repressor
enable the transcription process.

Let R be the repressor andO the operator. The effecto
allolactose binds with the active formR of the repressor and
Yagil and Yagil22 have shown that data on the fractionF of
free operator sites as a function of allolactose levels can
accurately fit by

FIG. 1. A diagrammatic representation of thelac operon.R is the lac
repressor produced by the regulatory operonlacI, O the operator region,
and lacZ, lacY, and lacA are the three structural genes that make up
operon.B stands forb galactosidase,P for permease,A for allolactose, and
LT for thiogalactoside transacetylase.
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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F~A!5
11K1An

K1K1An , ~1!

where n, K, and K1 are positive constants. There will b
maximal repression whenA50 but that at this point there
will still be a basal level of mRNA production proportiona
to K21.

Having a relation between the fraction of operators f
to synthesize mRNA and the level of the effectorA, we are
now in a position to describe the model forlac operon regu-
lation. In what follows, continued reference to Fig. 2 will b
useful. We letM be themRNAconcentration,B the b ga-
lactosidase concentration,A the concentration of allolactos
~the effector in thelac operon!, L the lactose concentration
Le the external lactose concentration, andP the concentra-
tion of permease. The bacterial growth rate is given bym.

The dynamics of mRNA production are given in Eq.~2!,

dM

dt
5aM

11K1~e2mtMAtM
!n

K1K1~e2mtMAtM
!n 2g̃MM ,

AtM
[A~ t2tM !, ~2!

and can be understood as follows. First we note that
production of mRNA from DNA via transcription is not a
instantaneous process but in fact requires a period of timetM

for RNA polymerase to transcribe the first ribosome bind
site. The rate of change ofM is made up of a balance be
tween a production termaMF and a loss termg̃MM . The
argument ofF in the production term ise2mtMAtM

where
AtM

[A(t2tM). The exponential prefactore2mtM accounts
for the dilution of the allolactose through growth during t
transcriptional period.23 The loss term in Eq.~2!, g̃MM
[(gM1m)M , is made up of an mRNA degradation term
gMM , and an effective loss due to dilution,mM .

Turning now to the dynamics ofb-galactosidase as cap
tured in Eq.~3!,

dB

dt
5aBe2mtBM tB

2g̃BB, M tB
[M ~ t2tB!, ~3!

FIG. 2. A diagrammatic representation of thelac operon feedback contro
loop. M is themRNAconcentration,B theb galactosidase concentration,A
the concentration of allolactose,L is the intracellular lactose concentratio
Le the external lactose concentration, andP is the concentration of per-
mease. Although we have indicated that only allolactose is converte
glucose~and galactose! by b-galactosidase, there is also a conversion pa
way from lactose to glucose and galactose that is not indicated but whi
accounted for in the full model. For every speciesi , the parameterg i indi-
cates the corresponding degradation rate.
ownloaded 17 May 2004 to 132.216.11.188. Redistribution subject to AIP l
e

e

we observe that the production ofb-galactosidase through
translation of the mRNA is also not an instantaneous proc
but requires a timetB . Then we simply assume that the ra
of production ofB is directly proportional to the concentra
tion of M a time tB ago (aBe2mtBM tB

), where again the
exponential factor takes into account the dilution of mRN
due to cell growth. The rate of loss ofB is given by g̃BB,
where as beforeg̃B5(gB1m).

For lactose, things become somewhat more complica
since the dynamics are given by

dL

dt
5aLP

Le

KLe
1Le

2bL1
P

L

KL1
1L

2bL2
B

L

KL2
1L

2g̃LL. ~4!

The first term on the right-hand side of Eq.~4! has to do with
gain of intracellular lactoseL because of the permease faci
tated transport ofLe , and the proportionality constantaL is
a decreasing function of extracellular glucose.24 The second
term expresses the loss of intracellular lactose to the ex
cellular fluid due to the reversible nature of the perme
mediated transport.24–27The coefficientbL1

is not dependent
on the external glucose levels. The third term accounts
the b-galactosidase (B) mediated conversion of lactose t
allolactose as well as the hydrolysis of lactose to glucose
galactose~not indicated in Fig. 2!, while the fourth and final
term again accounts for the decrease in internal lactose
centration due to degradation and dilution (g̃L5gL1m).

For the allolactose dynamics we have

dA

dt
5aAB

L

KL1L
2bAB

A

KA1A
2g̃AA. ~5!

The first term on the right-hand side of Eq.~5! gives the gain
in allolactose due to the conversion of lactose mediated
b-galactosidase. The second term denotes the loss of allo
tose due to its conversion to glucose and galactose~again
mediated byb-galactosidase!, and the last term accounts fo
the degradation and dilution of allolactose.

Finally, to describe the permease dynamics we have

dP

dt
5aPe2mtPM tP

2g̃PP. ~6!

In Eq. ~6! the first term reflects the assumption that the p
mease production is directly proportional~proportionality
constantaP) to the mRNA concentration a time (tP) in the
past, wheretP is the translation time between mRNA an
permease. The exponential prefactor again accounts for d
tion of mRNA concentration due to cell growth. The seco
term merely accounts for the degradation and dilution
permease.

The regulatory aspects of this control system are num
ous, the most prominent being the nonlinear dependenc
the fraction of free operator sites on the allolactose levels
Eq. ~2!. However, the nonlinearities in Eqs.~4! and ~5! also
play a role.
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III. A REDUCED MODEL

The full model of the previous section, consisting
Eqs. ~2!–~6!, has been studied numerically by Yildirim an
Mackey,20 but is too complicated for a complete analys
Moreover, we are interested in determining whether
b-galactosidase regulatory pathway can account for thelac
operon bistable behavior by itself. Thus we have reduced
complexity of the model through a single assumption.
assume that there is a constant permease concentration
lactose is in a quasisteady state across the membrane
that, therefore, there is a one-to-one relationship between
external and internal lactose. With these assumptions we
take internal lactose to be a parameter and eliminate Eq~4!
from the model.28 Since we do not consider lactose dynam
there is no need to deal with the permease dynamics as
bodied in Eq.~6!. The consequence of these assumption
that our system of five differential delay equations can
reduced to a three dimensional system:

dM

dt
5aM

11K1~e2mtMAtM
!n

K1K1~e2mtMAtM
!n 2g̃MM , ~7!

dB

dt
5aBe2mtBM tB

2g̃BB, ~8!

and

dA

dt
5aAB

L

KL1L
2bAB

A

KA1A
2g̃AA. ~9!

We have estimated the parameters for the reduced mod
Appendix A, and the results of that procedure are summ
rized in Table I. The growth ratem of E. coli can be highly
variable and ranges between 0 and a maximal value
mmax53.4731022 min21. To study our model numerically
and test its predictions against experimental data we h
estimated a single growth ratem̄ from the data of Knorre.29

This estimation, which is detailed in Appendix A, yielde
m̄53.0331022 min21 which is the value we have consis
tently used throughout for our numerical computations.

TABLE I. The estimated parameters for the reduced model. See Append
for the details of their determination.

Parameter Value

mmax 3.4731022 min21

m̄ 3.0331022 min21

aM 997 nM-min21

aB 1.6631022 min21

aA 1.763104 min21

gM 0.411 min21

gB 8.3331024 min21

gA 1.3531022 min21

n 2
K 7200
K1 2.5231022(m M) 22

KL 0.97 mM
KA 1.95 mM
bA 2.153104 min21

tM 0.10 min
tB 2.00 min
ownloaded 17 May 2004 to 132.216.11.188. Redistribution subject to AIP l
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IV. STEADY STATES AND THEIR STABILITY

Scaling the variables in Eqs.~7!–~9! to a dimensionless
form by defining new variables

t5tM1tB , a5An K1A,

t̂5
t

t
, b5An K1B,

t̂M5
tM

t
, m5An K1M ,

t̂B5
tB

t
, l 5An K1L,

m̂5mt,

allows us to write Eqs.~7!–~9! in the dimensionless repre
sentation

dm

dt̂
5âM f ~at̂M

!2ĝMm, ~10!

db

d t̂
5âBe2m̂t̂Bmt̂B

2ĝBb, ~11!

and

da

d t̂
5âAh~ l !b2b̂Ag~a!b2ĝAa. ~12!

In this representation,

f ~at̂M
!5

11Ãat̂M

n

K1Ãat̂M

n , where Ã5e2nm̂t̂M, ~13!

h~ l !5
l

An K1KL1 l
, ~14!

and

g~a!5
a

k1a
, ~15!

and the dimensionless parameters are defined by

âM5tAn K1aM , ĝM5tg̃M , âB5taB ,

ĝB5tg̃B , k5An K1KA , âA5taA ,

ĝA5tg̃A , b̂A5tbA .

Let (m* ,a* ,b* ) be a steady state of the system. From E
~10! and ~12!, we have

m* 5
âM

ĝM
f ~a* ! ~16!

and

b* 5
ĝAa*

âAh~ l !2b̂Ag~a* !
. ~17!

A
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For a biologically meaningful~non-negative! steady state
value of b* , the denominator of Eq.~17! must be non-
negative. Further, from Eq.~11!

m* 5
ĝBem̂t̂B

âB
b* . ~18!

Substituting Eqs.~16! and ~17! into Eq. ~18!, we obtain the
equation

f ~a* !5Q
a*

h~ l !2
b̂A

âA

g~a* !

, ~19!

defining the steady states results, where the constantQ is
given by

Q5
ĝAĝBĝMem̂t̂B

âBâMâA
. ~20!

An examination of Eq.~19! whenK.1 reveals that the lef
hand side is a monotone increasing function ofa* with a
minimal value off (0)5 1/K at a* 50 and a maximal value
of 1 for large values of the steady state allolactose lev
The right hand side is also a monotone increasing functio
a* that is zero ata* 50. A simple graphical argument show
that with n52 as we have estimated there may be one, t
or three steady states depending on the values of the gr
rate m or lactose concentrationL as shown in Fig. 3. We
denote these dimensionless steady states bya

*
i , i 51,2,3,

wherein 0,a
*
1 <a

*
2 <a

*
3 . ~The corresponding actual stead

states are denoted byA
*
i , i 51,2,3.) Analytical conditions

for the existence of these steady states are given in Appe

FIG. 3. A diagrammatic representation showing how one, two or th
steady states may arise in the simplifiedlac operon model whose stead
states are defined by Eq.~19!. The right ~left! hand sides of Eq.~19! are
denoted by RHS~LHS!, and the intersection of the two curves gives t
location of a steady state.
ownloaded 17 May 2004 to 132.216.11.188. Redistribution subject to AIP l
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B. For the parameter values given in Table I, the range
internal lactose concentrations over which three steady st
exist is computed to be~39.10,55.43! mM.

In Appendix C we have determined the linear stability
the steady states of this model. The results of that relativ
tedious analysis show that the steady statesa

*
1 and a

*
3 are

always locally stable and the steady statea
*
2 is always un-

stable. This is illustrated in Fig. 4. In Appendix D, we exam
ine the intersection points between the steady state c
A* (L) and the stability boundary when there is the possib
ity of three coexisting steady states.

An examination of the dependence of the criteria for t
existence of steady statesa* ~or A* ) on (m,L) in Appendix
E reveals that the number of steady states depend on
growth ratem and lactose levelL. According to our compu-
tations, the system can only show bistable behavior
growth rates equal to or larger thanm051.5231022 min21

which corresponds to a doubling time of (ln 2)/(1.5
31022) min545.6 min. This bifurcation in the model in
(m, L) space or plane is depicted in Fig. 5. As illustrated
the figure, for values of the growth ratemP@0,m0) there is a
unique steady state level of allolactoseA* for any given
value of lactose levelsL. However, asm becomes larger,m
P@m0 ,mmax#, the system may have multiple steady sta
values ofA* at a given lactose levelL. ~See Appendix E for
details of determination of the value ofm0 demarcating the
boundary between single and multiple steady states.! The
interesting aspect of this bifurcation and the attendant p
dicted bistability of allolactose and mRNA levels is that

e

FIG. 4. Numerical depiction of the stable and unstable regions of
lactose–allolactose space and the steady states as a function of lactose
for the reduced model when all parameters are held at their estimated v
in Table I whenm̄53.0331022 min21. For a given value of lactose con
centrationL, the corresponding allolactose-concentration steady state va
(A* ) are determined by the intersection of the solid-line curve and a vert
L5constant straight line~not shown!. The stability properties of a given
steady state depend on the region it falls in. The lactose level correspon
to the right most point marked by the ‘‘o’’ corresponds to the minimum lev
required for induction of thelac operon, and our numerical computation
predict this value to be 55.43mM. The analysis of Appendix C shows that
the delays are neglected~set identically to zero!, then the induction point is
shifted to 52.10mM.
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should be possible to demonstrate experimentally if
model has any biological validity.

V. NUMERICAL SIMULATIONS

The analytical results of the stability analysis of the
duced model given in Appendix C were tested by nume
cally integrating the system of three differential delay eq
tions, and the results are reported in this section. We u
MATLAB’S DDE23 routine30 for the numerical solution of the
delayed system withL550 mM for the internal lactose con
centration. At this value, the system has the following th
steady states:

SS1:~A* , B* , M* !5~4.27 mM, 0.23 nM, 0.46 nM!,

SS2:~A* , B* , M* !5~11.73 mM, 0.70 nM, 1.39 nM!,

SS3:~A* , B* , M* !

5~64.68 mM, 16.42 nM, 32.71 nM!.

We found numerically that the system converged to
steady state values corresponding to either the lower or u
branches of the S-shaped curve in Fig. 4 for various ini
values. For the simulations shown in Fig. 6, the concen
tion units are in nM and time is in minutes. The initial valu
of both allolactose and mRNA concentrations were kept c
stant at their steady state values on the lower branch of
S-shaped curve whenL550 mM, and six initial values of
the b-galactosidase concentration were taken equally spa
between 0.6 and 1.6 nM.

For initial values of theb-galactosidase concentratio
less than 1.2 nM, theb galactosidase levels converged
0.23 nM which is the steady state value ofb galactosidase
corresponding to the lower branch of S-shaped curve in
4. However, for the three initial values ofb galactosidase

FIG. 5. Bifurcations in (m,L) space for the reduced model when all para
eters exceptm are held at their estimated values listed in Table I. As deta
in Appendix E, for values ofm,m0.1.5231022 min21 there is a single
steady state, and formP(m0 ,mmax), wheremmax.3.4731022 min21, there
are two co-existing locally stable steady states.
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equal to or greater than 1.2 nM, theb galactosidase concen
tration converged to 16.42 nM, which is the steady st
value ofb galactosidase on the upper branch of the curve
Fig. 4. These plus other simulations~not shown! suggest that
the local stability results of Appendix C apply over a wid
range of initial conditions.

We have studied the reduced model both analytically a
numerically and found that it is capable of displaying bis
bility for a realistic range ofm and L values. These result
are in agreement with those obtained by Yildirim a
Mackey20 with a more detailed model. To further test th
accuracy of the reduced model we studied the ability of
model to predict three different experimental data sets ta
from the published literature. The first data set is fro
Knorre.29 In that paper, changes of the specificb galactosi-
dase activity after a step change from glucose to lact
growth forE. coli ML 30 were measured experimentally. Th
second data set, from Pestkaet al.,31 was obtained in a study
of the specific inhibition of translation of single mRNA mo
ecules and gave the specific activity ofb galactosidase ver
sus time forE. coli 294 in the presence of IPTG. These tw
sets of data and the simulated curve produced by the m
using MATLAB’S DDE23 routine30 are shown in Fig. 7. The
initial conditions were taken as the steady state values w
L550 mM on the lower branch. The curve was produc
running the simulation for the lactose value ofL5600 mM
which corresponds a steady state value on the upper br
of the S-shaped curve. As seen from Fig. 7, there is relativ
good agreement between the experimental data and
model predicted curve forb galactosidase concentration
~Note that in this and the next figure, we have scaled the d
since there is no correspondence available betweenb galac-
tosidase concentration and activity.!

d

FIG. 6. Bistability arising in the numerical simulation ofb-galactosidase
concentration versus time~min! with the parameters of Table I, exceptm̄
53.0331022 min21, for various starting values ofb-galactosidase when
L550 mM, which is in the range of lactose concentration for existence
three steady states. The selection of the six initial conditions is describe
the text. Note that theb-galactosidase scale is logarithmic.
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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As a third test, a data set from Goodwin32 was used. In
this paper, the dynamic behavior ofb galactosidase wa
studied in chemostat cultures ofE. coli synchronized with
respect to cell division by periodic phosphate feeding a
periodT equal to the bacterial doubling time. Stable oscil
tions in b galactosidase concentration were observed wit
period equal to the feeding period.

To imitate periodic phosphate feeding in our simulatio
we assumed that the bacterial growth rate varies as a func
of time in the form given by

m~ t !5m̄2a mod~ t, T!. ~21!

Here, T is the period of the feeding anda is a positive pa-
rameter with dimension min22. mod(t,T) is a function that
gives the remainder on division oft by T. Selection of this
type of function is motivated by the observation that grow
rates decrease as nutrient levels fall and sharply incre
upon the addition of nutrient.m(t) is a bounded and positiv
definite function and takes its maximal value ofm̄ when time
is t5T3k, (k51,2,3,. . . ) which corresponds to the time
that phosphate was added.

If y(t) is the population density, then between one fe
ing and the next the population numbers are governed b

1

y

dy

dt
5m̄2at,

so ln 25m̄T2aT2/2 under the assumption thatT is also the
doubling time. From this we have immediately that

a5
2m̄

T
2

2 ln 2

T2 .

With a feeding period ofT5100 minutes andm̄53.03
31022 min21, a.4.6731024 min22. In Fig. 8, we com-
pare the data onb galactosidase activity during period
feeding as a function of time with the model predictions.

FIG. 7. b-galactosidase concentration vs time. The experimental data
taken from Knorre~Ref. 29! for E. coli ML30 ~* ! and from Petskaet al.
~Ref. 31! for E. coli 294 ~L! as well as the model simulation~solid line!
using the parameters of Table I, withm̄53.0331022 min21, are both
shown. The selection of initial conditions and internal lactose concentra
are described in the text.
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VI. CONCLUSIONS AND DISCUSSION

Yildirim and Mackey20 recently published a model of th
lactose operon in which the independent variables are
mease,b-galactosidase and lactose concentrations and c
siders bacterial growth, positive feedback regulation
mRNA production by allolactose, positive feedback lacto
intake by permease, and the time delays due to DNA tr
scription and mRNA translation. In this model, the total o
erator and repressor concentrations are assumed constan
it is assumed that the amount of repressor bound to the
erator region is small compared to the total repressor con
tration. Other features were ignored~such as negative feed
back due to catabolite repression!.

In this paper, we simplified the Yildirim and Macke
model by ignoring the positive feedback loop involving pe
mease, and therefore, assuming equilibration of intra-
extra-cellular lactose. The rationale for this simplification
to figure out whether the positive feedback regulation
mRNA production by allolactose is sufficient to account f
important dynamic features of the lactose operon, like bis
bility. The reduced model consists of a system of three d
ferential delay equations with two delays. Special attent
was given to the estimation of the system parameters f
data in the literature. The results are clear. Namely, this re
latory pathway is sufficient to account for bistability
physiologically realistic extracellular lactose values. Furth
more, the predicted bistability occurs for lactose values
significantly different from those of the full Yildirim and
Mackey model.

The steady states of the reduced model were analy
both numerically and analytically. We have shown that t
model can display bistability for realistic range values of t
bacterial growth rate as well as the internal lactose conc

ts

n

FIG. 8. Oscillation inb-galactosidase concentration in response to perio
phosphate feeding with periodT5100 minutes, which is equal to the cu
ture doubling time. The experimental data~* ! together with the model simu-
lation ~solid line! using the parameters of Table I with a growth ratem(t)
given by Eq.~21! andm̄53.0331022 min21 are presented. The experimen
tal data are taken from Goodwin~Ref. 32!. The simulation was calculated b
numerically solving the system of delay differential equations given by E
~7!–~9!. The initial conditions were taken to be the steady state values on
upper branch of S shape curve whenL5600 mM.
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tration. We have given necessary and sufficient analytic c
ditions for the existence of multiple steady states. Using
timated values of the parameters, we have numeric
computed the range of the internal lactose concentration
growth rate for the existence of multiple steady states. Fr
this, we conclude that the positive feedback loop involvi
permease is not necessary for the system to display bist
ity. Despite this conclusion, the permease regulatory path
and other regulatory mechanisms~like inducer exclusion and
catabolite repression! not considered in this study may pla
an important role in fine tuning the system bistable behav
and this must be addressed in future studies.

A local stability analysis of the model steady state sho
that the steady states corresponding to both the lower
upper branches of the steady stateA* versusL curve are
locally stable while the steady state on the middle branc
always unstable. Time delays due to transcription and tra
lation have no effect on stability of the system in the se
that there is no evidence for a Hopf bifurcation although
was reported in a recent model developed for the regula
of lac operon by Mahaffy and Simeonov.16

The analysis of our reduced model gives no grounds
expect a Hopf bifurcation and the attendant oscillations t
would ensue. The differences between the model of Mah
and Simeonov,16 where a Hopf bifurcation was found, an
the current one are easily identified. In the Mahaffy and S
eonov model, the reaction between internal lactose
allolactose, which is catalyzed byb galactosidase, was ig
nored together with the individual degradation terms for
proteins. The latter leads to equal degradation rates bec
degradation is only due to the bacterial growth rate. Furt
in Mahaffy and Simeonov16 they considered the lactos
transport by permease into the cell as a fourth variable in
model. Consequently the local stability analysis of the mo
produced a characteristic equation similar to Eq.~C5!, but in
this caseP(l) is a fourth order polynomial andQ(l) is a
linear function ofl and this is the origin of the Hopf bifur
cation. However, as in our results, Mahaffy and Simeono16

concluded that the experimentally observed oscillations
the b galactosidase concentration reported by Knorre29 were
not caused by the induction process.

The accuracy of our model was tested against three
ferent experimental data sets. The model is in reason
agreement with the experimental data although the ag
ment is not perfect. The discrepancies between the exp
mental data and the simulations may originate from the
ferences in the experimental conditions and/or
simplifications in the model. One of the most interesting p
dictions of our model is the minimal intracellular lacto
level for full induction of the system. The reduced model
also in good agreement with data reported in a recent s
using an artificial inducer of thelac operon, Isopropyl-
thiogalactoside~IPTG!.33 There it was found that 50–10
mM IPTG is sufficient as a lower bound to achieve full i
duction. Our reduced model predicts that the value should
55.43mM, which corresponds to the first ‘‘knee’’ in theA*
versusL curve in Fig. 4.

The analytical and numerical results obtained in this
duced model for thelac operon support and illuminate th
ownloaded 17 May 2004 to 132.216.11.188. Redistribution subject to AIP l
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results reported in Yildirim and Mackey,20 differing only in
quantitative detail. For example, the full induction point
the reduced model was found to be 55.43mM, whereas
Yildirim and Mackey20 found numerically that the induction
point was 62.0mM in the full model. Thus the reduced
model seems to capture all of the essential properties of
full model investigated in Yildirim and Mackey.20

Though the present reduced model is not accurate in
details, the results of the comparison with published and
dependent experimental data are sufficiently encouragin
prompt us to seek further sources of data for comparison
find better estimates for the parameters, and to complete
analysis of the full model. One of the most robust predictio
of the model is the existence of locally stable coexisti
steady states depending on lactose levels and growth
This prediction is qualitatively confirmed by the observatio
of Novick and Wiener34 and Cohn and Horibata,35 and
should be quantitatively testable.

The modeling carried out here, as in all of the oth
models cited earlier, is strictly deterministic in nature a
based on the writing of chemical reaction equations. T
approach is appropriate for the examination of the beha
of large numbers of the system in question, e.g., looking
the behavior of a large number of copies of thelac operon.
It is worth noting, however, that if one were interested in t
details of the dynamics at the level of a single bacterium
much different approach would have to be taken since
number of participating molecules may number in the tens
hundreds. In such a circumstance a stochastic modeling
proach must be employed. Gillespie36,37 has considered in
detail how simulationsof such situations could be carrie
out, and variations of his scheme have been employed b
variety of authors to look at specific problems, e.g., Ark
et al.38 examining phage-l development, Morton-Firth and
Bray39 looking at dynamics of a flagellar motor, and Carri
and Keasling40 investigating thelac operon. Other investi-
gators are starting to put these simulation efforts on a fi
theoretical footing, e.g., Paulssonet al.,41 Kepler and
Elston42 and Swainet al.43
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APPENDIX A: PARAMETER ESTIMATION FOR THE
REDUCED MODEL

In this appendix we detail how we have estimated
parameters in the reduced model described by Eqs.~7!–~9!.

• m: The maximal value of the dilution ratem can be esti-
mated from the shortest interdivision time ofE. coli which
is about 20 minutes.44 Given this mmax5(ln 2)/20 min21

53.4731022 min21. We estimated a value for the growt
rate m̄ to be used in our numerical simulations togeth
with the value ofgA by least square fitting of the exper
mental b-galactosidase concentration data given
Knorre29 using theFMINSEARCH and DDE2330 routines in
MATLAB . We foundm̄.3.0331022 min21 indicating that
these cultures were growing at close to their maximal ra
The results of estimation were tested for several ini
starting points form andgA , and the estimation procedur
always converged to the same values for bothm̄ andgA .

• gA : The value of gA was estimated as 1.3
31022 min21 together with the value ofm̄ by using least
square fitting of the experimentalb-galactosidase activity
data given in Knorre29 as above.

• gM : Leive and Kollin45 found that the t1/2 of
b-galactosidase m-RNA was 2 minutes to give a value
gM. ln 2/250.347 min21. In a comparable experimen
Blundell and Kennell46 found t 1

2
51.47 min to givegM

.0.475 min21. We have taken the average of these t
figures to givegM.0.411 min21.

• gB : The rate of breakdown ofb-galactosidase was mea
sured by Mandelstam47 and found to be 531022 per hour
corresponding to 8.3331024 min21. Rotman and
Spiegelman48 reported that the maximal rate of breakdow
of b-galactoside is 5.031023 min21 and noted that it is
possibly much smaller than this value. We have taken
Mandelstam value.

• K: Yagil and Yagil22 analyzed a number of previously pub
lished data sets, and from their calculations we find that
average value isK.7200.

• n: Again from Yagil and Yagil22 we have that the averag
of the Hill coefficient is 2.09. We have takenn52.

• K1 : The average dissociation constant of effecto
repressor complex was determined to beK1.2.52
31022 (m M) 22 from the results of Yagil and Yagil.22

• aM : The steady state value oflac mRNA in the absence
of induction is thought to be one molecule per cell. Th
corresponds to a ‘‘concentration’’ of 2.08 nM if we take th
E coli volume to be 8310216 liter. When the cells are
maximally induced, thelac mRNA level is raised a thou
sand times compared to this uninduced steady state v
according to Savageau.49 From Eq.~7! at a steady state,

05g̃MM*2
aM

K
when A* 50, ~A1!

05g̃M1000M* 2aM when A* →`. ~A2!

From Eqs. ~A1! and ~A2!, aM is 9.97
31024 mM–min21.

• aB : At a steady state, from Eq.~8! we have
ownloaded 17 May 2004 to 132.216.11.188. Redistribution subject to AIP l
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aB5
g̃BB*
M*

emtB. ~A3!

Kennell and Reizman50 reported that steady state value
b-galactosidase is about 20 molecules per cell wh
means thatB* /M* 520. Using the value ofgB reported
by Mandelstam,47 we estimateaB.1.6631022 min21.

• aA : Huberet al.51 studied the kinetics ofb-galactosidase
and foundVmax532.6 U/mg of b-galactosidase andKM

50.002 53 M when lactose was the substrate whileVmax

549.6 U/mg of b-galactosidase andKM50.001 20 M
when allolactose is the substrate.@U is defined asmM of
glucose or galactose produced per minute.# Given that the
molecular weight ofb-galactosidase is 540 000 Da an
1 Da51.66310221 mg, one mole ofb-galactosidase is
equivalent to 6.023102335.4310531.6631022155.39
3108 mg of b-galactosidase so 1 mg ofb-galactosidase is
equivalent to 1.8531023 m mol. Therefore,

aA.
32.6 m mol

1.8531023 m mol min
51.763104 min21.

• bA : From the data of Huberet al.51 we havebA.2.7
3104 min21, while Martı́nez-Bilbao et al.52 gives bA

.1.83104 min21. We have taken the average ofbA

.2.153104 min21.
• KL : The volume of oneE. coli is approximately 8.0

310216 liter and its mass is about 1.7310212 gram to
yield a density of 2.13103 gm/liter. The parameterKL in
our model corresponds to the parameterKm,Lac /r in Wong
et al.17 and the values and the units of these two para
eters reported in this paper arer53.03102 grams of dry
cell weight/liter andKm,Lac50.14 mM which means tha
Km,Lac /r 5 (1.431024) /(3.03102) 54.631027 mol/gr.
To obtain an estimate forKL in M, we can multiply this
value by the density of the cell which givesKL

.0.97 mM, in agreement with the value of 1.4 mM es
mated by Martı´nez-Bilbaoet al.52 We will take the former
value.

• KA : This parameter in our model corresponds toKm,Allo /r
in the Wong et al. model,17 and they took Km,Allo

.2.8 mM. Hence, Km,Allo /r5 (2.831024)/(3.03102)
59.331027 mol/gr. Using the same idea followed in th
estimation ofKL , the value ofKA can be calculated a
1.95 mM.

• tM : In this model we are considering the transcription a
translation of two genes,lacZ and lacY. Translation of
lacZ starts shortly after transcription initiation, and for th
translation of lacY to begin, lacZ must be completely
transcribed. Knowing thatlacZ has 1022 amino acids an
that the DNA chain elongation rate is at least 490 nuc
otides per second, which is equivalent to 9800 amino ac
per minute, according to Bremmer and Dennis,53 the time
for lacZ to be completely transcribed is at most

tM.
1022

9800
50.1 min.

This gives an upper bound ontM .
• tB : lacZ is 1022 amino acids long and the mRNA elo

gation rate varies between 12 and 33 amino acids per
ond according to Monaret al.54 and Kennell and
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Reizman.50 Talkadet al.55 also reported the translation ra
changes from 8 to 15 amino acids per second. If we t
the mRNA elongation as 8 amino acids per second to
timate an upper bound value fortB , we obtain

tB.
1022

8360
52.12 min.

If the elongation rate is 33 amino acids per second then
havetB.1022/(33360)50.51 min. Sorensenet al.56 es-
timated an average value fortB of 82 s experimentally
which is 1.37 min. We have taken the upper bound astB

.2.12 min, and usedtB52.0 min.

APPENDIX B: CONDITIONS FOR EXISTENCE OF
ONE, TWO, AND THREE STEADY STATES IN THE
REDUCED MODEL

Equation~19! is equivalent to a fourth order polynomia
in the allolactose concentration. After appropriate rearran
ment, it can be written in the form

Y~a* !5a
*
4 1V3a

*
3 1V2a

*
2 1V1a* 1V050, ~B1!

where the coefficients are given by

V35k2
s1

Q
, ~B2!

V25Ke2m̂t̂M2
h~ l !k

Q
, ~B3!

V15kKe2m̂t̂M2
s1e2m̂t̂M

Q
, ~B4!

V052
h~ l !ke2m̂t̂M

Q
,0, ~B5!

and

s15h~ l !2
b̂A

âA
. ~B6!

Y(a* ) approaches1` as a* goes to6` and Y(0)5V0

,0, so there are several possibilities for the roots of
quartic Eq. ~B1!. We can formalize these for biologicall
meaningful~non-negative steady states! as follows.

Theorem 1: The lac operon model has at least one no
negative steady state.

Proof: Since lima
*

→6`Y(a* )51` and Y(0)5V0

,0, there exists ana* P(0,̀ ) such thatY(a* )50.
Theorem 2: ~Two or three steady states, derivative fro

Ungar57! Let Y(a* ) be given by Eq.~B1! with real coeffi-
cientsV i , i 50,1,2,3,given by Eqs.~B2!–~B5!. Definej2 by

j25V12V0V3 /j1 , where j15V22V1 /V3 , ~B7!

and set

D512V01V2
223V1V3 , ~B8!

L527V0V3
229V1V2V312V2

3272V0V2127V1
2 ,
~B9!

and
ownloaded 17 May 2004 to 132.216.11.188. Redistribution subject to AIP l
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P53V3
228V218RSA3 L1AL224D3

2
D . ~B10!

If there are three sign changes in the sequen
(1,V3 ,j1 ,j2 ,V0), and

~1! If L224D350 andP>0 for all three cubic roots of Eq.
~B10!, then the lac operon model has two steady stat.

~2! If L224D3,0 andP>0 for all three cubic roots of Eq.
~B10!, then the lac operon model has three stea
states.

Proof: The proof of this theorem is a direct consequen
of the application of the Routh–Hurwitz criteria and a res
of Ungar.57

APPENDIX C: LINEAR STABILITY OF THE STEADY
STATES OF THE REDUCED MODEL

Let x5m2m* , y5b2b* andz5a2a* , respectively,
denote the deviations of the dimensionless mRN
b-galactosidase and allolactose levels from their steady s
values. Linearizing Eqs.~10!–~12! in the neighborhood of a
steady state we obtain the following linear system of de
equations:

dx

d t̂
5âM f 8~a* !zt̂M

2ĝMx, ~C1!

dy

d t̂
5ãBxt̂B

2ĝBy, ~C2!

and

dz

d t̂
5ãAy2b̃Az, ~C3!

wherein we have set

ãA5âAh~ l !2b̂Ag~a* !,

b̃A5b̂Ab* g8~a* !1ĝA ,

and

ãB5âBe2m̂t̂B.

Note that in order to have a biologically meaningful stea
state, it is necessary that

ãA.0 ~C4!

must be satisfied because of Eq.~17!.
Assuming that we have solutions to Eqs.~C1!–~C3! of

the form el t̂ it is an easy exercise to show that the char
teristic equation for the eigenvaluesl has the form

P~l!1Q~l!e2lt̂50, ~C5!

in which

P~l!5l31h2l21h1l1h0 , ~C6!

Q~l!5q, ~C7!

where
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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h25~ ĝM1ĝB1b̃A!.0,

h15~ ĝMĝB1b̃AĝB1b̃AĝM !.0,
~C8!

h05ĝMĝBb̃A.0,

q52ãAãBâM f 8~a* !,0,

and f andg are as given by Eqs.~13! and~15!, respectively.

1. Stability when the delays are zero

The characteristic equation of our model reduces t
third order polynomial equation when botht̂M50 and t̂B

50. When the delays are zero, from the Routh–Hurwitz c
teria it is easy to show that a steady state will be loca
stable if and only if the coefficients of Eq.~C5! satisfy the
following conditions:

~1! h2.0,
~2! h01q.0, and
~3! h2h12h02q.0.

Since the polynomials and the coefficients in the charac
istic equation of thelac operon model given in Eqs.~C5!–
~C8! satisfy Conditions 1 and 3 above, Condition 2 det
mines the local stability of a steady statea

*
i .

In this case with the delays all set to zero, one can ob
more global information about the stability of the stea
states. Assume in Eqs.~10! and ~11!, respectively, thatṁ
5ḃ50 so we can write an equation for the rate of change
allolactose in the form

da

d t̂
5C~a!H f ~a!2Q

a

h~ l !2
b̂A

âA

g~a!J , ~C9!

where

C~a!5
âBâMâA

ĝBĝM
Fh~ l !2

b̂A

âA
g~a!G.0 for a>0.

Remember thatf (a) is the function left hand side~LHS!
plotted in Fig. 3, while

Q
a

h~ l !2
b̂A

âA

g~a!

,

is the function right hand side~RHS!.
Now notice from Eq.~C9! that whena50 we haveȧ

.0 while for a→` we haveȧ→2`. A simple argument
~use Fig. 3 to see this! suffices to show that:~a! If there is a
single steady state it is stable;~b! if there are two steady
states then one will be half stable and the other will
stable;~c! if there are three steady states then the lower
upper steady states are stable and the intermediate s
state is unstable. Thus we have the following pattern
stability of the steady states in which ‘‘S’’ denotes stab
‘‘US’’ means unstable, and ‘‘HS’’ stands for half stable:
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~1! a
*
1 : S,

~2! a
*
1 ,a

*
2 [a

*
3 : S,HS,

~3! a
*
1 ,a

*
2 ,a

*
3 : S,US,S,

~4! a
*
1 [a

*
2 ,a

*
3 : HS,S,

~5! a
*
3 : S.

A numerical determination of the stable and unstable regi
of the lactose–allolactose concentration space when de
are both zero gives results qualitatively identical with tho
shown in Fig. 4. However, the induction point is chang
from 55.43mM when the delays are included to 52.10mM
when they are neglected.

2. Stability when the delays are not zero

When t̂MÞ0 and t̂BÞ0, the characteristic equation o
the reduced model becomes a cubic quasi polynomial eq
tion of the form Eq.~C5!.

Theorem 3: ~Unstable Region! The system whose cha
acteristic equation given by Eq.~C5! has an unstable stead
state in the domain defined by Eq.~C4! if

h01q,0 ~C10!

holds.

Proof: SinceP(l) has the form

P~l!5~l1ĝM !~l1ĝB!~l1b̃A!, ~C11!

and all ĝM ,ĝB , and b̃A are positive real numbers, then a
suming inequality ~C10! we have P(0)1q5h01q,0.
SinceP(l) increases without bound forl.0, there is some
positivel such thatP(l)1q50.

Theorem 4: ~Stable Region! The system whose charac
teristic equation is given by Eq.~C5! is locally stable in the
domain defined by Eq.~C4! if

h01q.0 ~C12!

holds.

Proof: Let l5u1 iv be a root of the characteristic equ
tion given by Eq.~C5!. Then we have

iP~u1 iv !i25iQ~u1 iv !i2e22ut. ~C13!

Assume thatu>0. P(l) has the form of Eq.~C11! so h0
2

<iP(u1 iv)i2. Since t.0, iQ(u1 iv)i2e22ut5q2e22ut

,q2 and it, therefore, follows thath0
22q2,0. However,

h0
22q25~h02q!~h01q!. ~C14!

From Eq. ~C8!, we haveh02q>0, so if h01q>0 then
h0

22q2>0 and we have a contradiction. Hence,u,0 and
the system is stable fort.0 andh01q.0.

The results of Theorems 3 and 4 allow us to assert
the stability results we found in the previous section with t
delays equal to zero are maintained in the general case w
they assume their positive values as detailed in Table I. T
type of stability is very similar to the concept ofabsolute
stability introduced by Brauer.58 In Fig. 4 we show the nu-
merically determined stable and unstable regions for the
duced lac operon model and a graph of the steady st
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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curve as a function of the external lactose concentra
when all parameters are as in Table I andm̄53.03
31022 min21.

APPENDIX D: NATURE OF THE SLOPE OF THE
STEADY STATE CURVE AT THE INTERSECTION
POINT WITH THE STABILITY BOUNDARY CURVE

To prove that the separating point between the mid
and lower~upper! branch is located exactly on the bounda
between stable and unstable regions, it is enough to s
that the derivativeda* /dl of the steady state curve is equ
to 6` at the intersection point~s! of the boundary curve and
the steady state~hysteresis! curve. This is equivalent to
dl/da* 50.

From the steady state equation given by Eq.~19!, we
have

ãAf ~a* !2QâAa* 50. ~D1!

The boundary curve between stable and unstable regi
which is given by Eq.~C10!, can also be written as

ĝMĝBb̃A2ãAãBâM f 8~a* !50. ~D2!

Substitutingb̃A and Eq.~17! into Eq. ~D2!, we have

ĝAĝBĝMS b̂Aa* g8~a* !

ãA
11D 2ãAâAâBâMe2m̂t̂B

f 8~a* !

âA

50. ~D3!

Taking the factorãAâAâBâMe2m̂t̂B outside of the parenthe
sis, we obtain

ĝAĝBĝM

âAâBâMe2m̂t̂B
S b̂Aa* g8~a* !

ãA
11D 2ãA

f 8~a* !

âA
50.

~D4!

Writing Q instead of the expression given by Eq.~20! we can
rewrite this last expression as

QâAS b̂Aa* g8~a* !

ãA
11D 2ãAf 8~a* !50. ~D5!

Finally, we obtain

f 8~a* !ãA2âAQ2
âAQb̂Aa* g8~a* !

ãA
50. ~D6!

By computing the derivativedl/da* from Eq.~D1!, we have

f ~a* !S âA

AK1KL

~AK1KL1 l !2
2b̂Ag8~a* !

da*
dl D

1ãAf 8~a* !
da*
dl

2âAQ
da*
dl

50, ~D7!

and writingdl/da* explicitly,

dl

da*
52

ãAf 8~a* !2b̂Ag8~a* ! f ~a* !2âAQ

âAf ~a* !
AK1KL

~AK1KL1 l !2

~D8!

results. The denominator in Eq.~D8! is always nonzero.
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Turning back to Eq.~D1!, we can write

ãA5
QâAa*
f ~a* !

, ~D9!

and substituting Eq.~D9! into the equation obtained from th
boundary curve given by Eq.~D6!, we have

ãAf 8~a* !2b̂Ag8~a* ! f ~a* !2âAQ50. ~D10!

Substituting this expression into Eq.~D6! completes the
proof. Thus, the tangents drawn to the steady state curv
the intersection points with the stability curve have infin
slope.

APPENDIX E: A BIFURCATION DEPENDENT ON
LACTOSE LEVELS AND GROWTH RATE

To estimate the critical value for bacterial growth rate
which the lac operon model switches from a single stea
state to multiple steady states, we used the following te
nique. Changing the bacterial growth rate from 0 tommax

with a certain step sizeDm, we determined an interval form
giving a range for the lactose concentration for existence
three steady states using Theorem B. Then dividing this
terval into subintervals, we repeated the same procedure
estimated an interval form in which the critical valuem0

takes place.
Consider the cases ofm5mmax53.4731022 min21 and

m50 min21. SinceL.0, for all mP(0,3.4731022) min21

when all the other parameters are held constant at their
mated values given in Table I, we have

V0,0,

V3.0,

3V3
228V2.0.

The lac operon model has three steady states if the con
tions

j1,0,

j2.0,

L224D3,0,

P>0,

are all satisfied simultaneously.
Whenm53.4731022 min21, we can calculate the firs

three of these conditions as

j1,0⇔L.0.400 31 mM,

j2.0⇔0,L,0.400 31 mM

or L.0.412 77 mM,

L224D3,0⇔44.636 09 mM,L,70.783 00 mM.

Since

P.3V3
228V228AD[P8,

we have

P.P8.0
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for L in ~44.636 09, 70.783 00! mM. Hence, the relationship
between L and A* shows hysteresis whenm53.47
31022 min21, and there exist three steady states whenL is
between 44.636 09 and 70.783 00mM. On the other hand
whenm50 min21,

j1,0⇔L.2.254 77 nM,

j2.0⇔0,L,2.254 77 nM or L.14.620 79 nM,

but for all L.0,

L224D3.0.

Therefore, the relationship betweenL andA* does not show
hysteresis whenm50 min21.

We found that the critical value ofm0 for the existence
of multiple steady states wasm0P(1.5131022,1.52
31022) min21, and thus for all values ofmP(m0 ,mmax)
bistable behavior is predicted.
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