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It is known that thdac operon regulatory pathway is capable of showing bistable behavior. This is
an important complex feature, arising from the nonlinearity of the involved mechanisms, which is
essential to understand the dynamic behavior of this molecular regulatory system. To find which of
the mechanisms involved in the regulation of tae operon is the origin of bistability, we take a
previously published model which accounts for the dynamics of mRNA, lactose, allolactose,
permease ang3-galactosidase involvement and simplify it by ignoring permease dynamics
(assuming a constant permease concentratibm test the behavior of the reduced model, three
existing sets of data of-galactosidase levels as a function of time are simulated and we obtain a
reasonable agreement between the data and the model predictions. The steady states of the reduced
model were numerically and analytically analyzed and it was shown that it may indeed display
bistability, depending on the extracellular lactose concentration and growth rat200®American

Institute of Physics.[DOI: 10.1063/1.1689451

The field of gene regulation has been profoundly influ-
enced by the development of the operon concept. In the
40 years since this notion was put forward, experimental-
ists have intensively studied regulation in many different
systems. However, despite the extensive knowledge of the
biology of many of these system@ike the tryptophan and
lactose operony and the wealth of experimental data
available about their dynamics, there have been few at-
tempts to integrate this knowledge into coherent math-
ematical models. In this paper we review previous math-
ematical treatments of the lactose operon, and then
consider a reduced version of the most recent effort by
Yildirim and Mackey. By means of a local stability analy-
sis and numerical inspection we show that this reduced
model displays bistable behavior. From this, we conclude
that of all the lac operon regulatory mechanisms, that
involving B-galactosidase is directly responsible for bista-
bility in this molecular system. A careful estimation of the
parameters in the model allows us to accurately predict
experimental data from three different experimental situ-
ations in which the temporal evolution of a critical com-
ponent of the lactose operon was monitored following a
perturbation. This last result supports the conclusion that
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the B-galactosidase regulatory pathway is, perhaps, the
most essential of the regulatory mechanisms in théac
operon.

I. INTRODUCTION

It is almost universally accepted that the concept of
operont introduced by Jacobt al.? has had a profound and
probably lasting effect on the face of the biological and
medical sciences that is still unfolding. The most extensively
studied operons are the tryptophan and the lactose operons,
which have been acknowledged as the paradigms of repress-
ible and inducible operons, respectively. Although not recog-
nized as such at the time, the lactose operon was one of the
first molecular systems experimentally demonstrated to dis-
play bistable behavictAmong the various patterns of be-
havior emerging from regulation associated with nonlinear
kinetics, bistability is extremely interesting. Bistability al-
lows a true discontinuous switchingvith hysteresis be-
tween alternate steady states that can convert graded inputs
into switch-like responses. This permits a discontinuous evo-
lution of the system along different possible pathways, which
can be either reversible or irreversible, and may provide the
system with an epigeneti®ongenetic, hereditarymemory.

The evolutionary significance of bistability, as well as its
possible role in explaining some basic processes of life, like
cell differentiation or the maintenance of phenotypic differ-
ences in the absence of genetic and environmental differ-
ences, has recently been discussed elsewhére.
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have been developed with different go&ls2° However, to

Blr knowledge, only two of the&é® deal with the issue of

bistability in the lactose operon. Laurent and Kellersohn
introduced a simple model of the lactose operon that, with a
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proper choice of the parameter values, was able to shov , lal = Promoter O | leZ  lacY lacA
bistable behavior. More recently, Yildirim and Mackeye- ' ' ' ' ' ' DII\IA
veloped a more detailed mathematical model in which the Transcription

parameters were all estimated from reported experimenta

data, and showed that, indeed, there is bistability in the lacra"<r l l l E[nTl:nNsﬁtion

tose operon dynamics for realistic extracellular lactose con-

centration values.
The model of Yildirim and Mackey includes the time FIG. 1. A diagrammatic representation of theec operon.R is the lac

delays due to transcription and translation, as well as most gfP'essor produced by the regulatory opetaal, O the operator region,
! andlacZ, lacY, andlacA are the three structural genes that make up the

the lactose operon regulatory mechanisms. It considers néjperons stands for3 galactosidase? for permeasea for allolactose, and
ther inducer exclusion nor catabolite repressigiwo LT for thiogalactoside transacetylase.

external-glucose dependent mechanisBgspite this omis-

sion, the Yildirim and Mackey model is capable of display-

ing bistablility, indicating that bistability does not rely on the

presence of glucose in the extracellular medium. These rat. THE YILDIRIM AND MACKEY MODEL

sults suggest two different pathways for future research: To

investigate the influence of the glucose dependent mecha- In describing the Yildirim and Mackey mod8ffor regu-
nisms on the bistable behavior of the lactose operon, and t@tion of thelac operon, we must first consider the dynamics
find out whether there exists a subset of the mechanism@f MRNA induction. To this end, it will be helpful in the
considered in the Yildirim and Mackey capable of account-lloWing discussion to refer to Fig. 1.

ing for bistability. The lac operon consists of a small promoter—operator

. region and three larger structural gedesZ, lacY, and
Of the three genes comprised by the lactose operon, onl . .

L L ) acA. Preceding theéac operon is a regulatory operdacl
two encode for proteins involved in its regulation. These

i , denoted by R) that is responsible for producing a repressor
proteins areB-galactosidase and lactose permease and thﬁQ) protein. In the absence of allolactos®)(the repressoR

two of them participate in positive feedback loops capableyings to the operator regio® and prevents the RNA poly-

in principle, of generating bistability. In the present work a merasgwhich binds to the promoter regipfrom transcrib-
simplification of the Yildirim and Mackey model, that con- ing the structural genes. However, in the presence of allolac-
siders only the role oB-galactosidase in the operon regula-tose, a complex is formed between allolactose and the
tion and ignores that of lactose permease, is introduced. Bsepressor that makes binding of the repressor to the operator
numerically solving the time-delay differential equations of region impossible. In that case, the RNA polymerase bound
the reduced model and by performing a local stability analyt0 the promoter is able to initiate transcription of the struc-
sis we show that it reproduces dynamic experimental data d&'ral genes to produce mRNA.

well as the complete model and that it displays bistability,.  ©Once the production of mMRNA has been started through

From this, we conclude that of all the lactose operon regulapNA transcription, the process of translation is initiated. The

tory mechanisms, that involving-galactosidase is the one lacZ gene encodes the portion of the mRNA that is respon-

directl ible for bistability in thi lecul ¢ sible for the production oB-galactosidaseR) and transcrip-
rectly resp9n5| € for bista '_' y Inthis molecutar SyStem. i, of the lacy gene produces the section of mRNA ulti-
The outline of the paper is as follows. In Sec. Il we

mately responsible for the production of a permeaBé. (
describe the Yildirim—Mackey model for tHac operon. In  The final portion mRNA produced by transcription of the
Sec. Ill we consider a reduced version of this model thajacA gene encodes for the production of thiogalactoside
allows more detailed mathematical analysis, and summarizgansacetylase which is thought to not play a role in the regu-
the results of our parameter estimation that are detailed itation of the lac operoff* and which will not be further
Appendix A. Then in Sec. IV we examine the steady states otonsidered here.

the system and show that depending on the growth rate and In words, the way this control system works is the fol-
lactose levels there may be one, two, or three steady statdgwing (cf. Fig. 2. In the absence of glucose available for
We have determined the ranges over which these steadif!lular metabolism, but in the presence of lactosg (ac-
states may exist based on our parameter estimation, and al{&>€ IS transported into the cell by the permease. This intra-
shown that when a single steady state exists it is stable Wh"gellular lactose is then broken down into glucose, galactose,

when three of them exist, two are locally stable and the in_and allolactose bys-galactosidase. The allolactose is also

. . converted to glucose and galactose fgalactosidase. The
termediate one is unstable. In Sec. V we have used the r 9 9 /oy

. , Sllolactose feeds back to bind with the lactose repressor and
duced model to predict the response to three different expersnable the transcription process

mental conditions and compared the model response t0 | gt R pe the repressor ard the operator. The effector
previously published experimental data, finding good agreeyjplactose binds with the active forR of the repressor and
ment. The paper concludes with Sec. VI in which we sum-yagil and Yagif? have shown that data on the fractibnof
marize our findings, and briefly discuss other operon modelfree operator sites as a function of allolactose levels can be
ing efforts. accurately fit by

B P LT
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l+ we observe that the production gfgalactosidase through
vMM translation of the mRNA is also not an instantaneous process
but requires a timeg. Then we simply assume that the rate
of production ofB is directly proportional to the concentra-
tion of M a time 73 ago (ege” “"8M ), where again the
Glucose exponential factor takes into account the dilution of mMRNA
§o8 TaA due to cell growth. The rate of loss & is given by7ygB,
where as befor@g=(yg+ w).
For lactose, things become somewhat more complicated
FIG. 2. A diagrammatic representation of treec operon feedback control  gince the dynamics are given by
loop. M is themRNAconcentrationB the 8 galactosidase concentratioh,
the concentration of allolactosk,is the intracellular lactose concentration,
L. the external lactose concentration, aRdis the concentration of per- dL _ Le
mease. Although we have indicated that only allolactose is converted to gt — a P K +L _BLlp K +_L_'8LZB—K L
glucose(and galactogeby B-galactosidase, there is also a conversion path- Le € Ly L2
way from lactose to glucose and galactose that is not indicated but which is %L 4
accounted for in the full model. For every specigshe paramete; indi- Yk 4
cates the corresponding degradation rate.

jLﬂ:l\'
YeP

P
.
———

The first term on the right-hand side of Eg) has to do with

gain of intracellular lactosk because of the permease facili-

tated transport of ., and the proportionality constany, is
1+ KA (1) @ decreasing function of extracellular glucééd@he second
K+K;A" term expresses the loss of intracellular lactose to the extra-
cellular fluid due to the reversible nature of the permease
mediated transpoff.*' The coefficient3, _is not dependent
S : . on the external glucose levels. The third term accounts for
will still be a basal level of mMRNA production proportional the B-galactosidase ) mediated conversion of lactose to

to K™% allolactose as well as the hydrolysis of lactose to glucose and
Having a relation between the fraction of operators free yaroly 9

to synthesize MRNA and the level of the effectarwe are galactose_(not indicated in Fig. 2 while t_he_ fourth and final
) ” . term again accounts for the decrease in internal lactose con-
now in a position to describe the model farc operon regu-

lation. In what follows, continued reference to Fig. 2 will be centration due to degradation and dilutici €y, + ).

useful. We letM be themRNA concentrationB the 8 ga- For the allolactose dynamics we have
lactosidase concentratioA, the concentration of allolactose
(the effector in thdac operon, L the lactose concentration,
L. the external lactose concentration, aAdhe concentra-
tion of permease. The bacterial growth rate is giveruby
The dynamics of mMRNA production are given in E@),  The first term on the right-hand side of E§) gives the gain
in allolactose due to the conversion of lactose mediated by

F(A)=

wheren, K, andK; are positive constants. There will be
maximal repression wheA=0 but that at this point there

dA— B - B A YaA 5
dt ~ B L PRB A T ©

dMm 1+Ky(e #mA )" B-galactosidase. The second term denotes the loss of allolac-
dt 4™ K+Ky (e “™mMA,_ )" ~ M, tose due to its conversion to glucose and galacteg@in

M mediated byB-galactosidage and the last term accounts for
A, =A(t—7y), (2)  the degradation and dilution of allolactose.

Finally, to describe the permease dynamics we have

and can be understood as follows. First we note that the
production of mRNA from DNA via transcription is not an dP_ . _
instantaneous process but in fact requires a period of tyne arare M= 7eP. ©)

for RNA polymerase to transcribe the first ribosome binding

site. The rate of change dfl is made up of a balance be- |, Eq. (6) the first term reflects the assumption that the per-
tween a production termyyF and a loss ternyyM. The  mease production is directly proportiongbroportionality
argument ofF in the production term ig"#"™™A, where  constantap) to the mMRNA concentration a timerg) in the
A;,=A(t—7y). The exponential prefacta “"™ accounts past, whererp is the translation time between mRNA and
for the dilution of the allolactose through growth during the permease. The exponential prefactor again accounts for dilu-
transcriptional period® The loss term in Eq.(2), yyM tion of mMRNA concentration due to cell growth. The second
=(yu+ u)M, is made up of an mRNA degradation term, term merely accounts for the degradation and dilution of

yuM, and an effective loss due to dilutiopM. permease.
Turning now to the dynamics g8-galactosidase as cap- The regulatory aspects of this control system are numer-
tured in Eq.(3), ous, the most prominent being the nonlinear dependence of
the fraction of free operator sites on the allolactose levels in
dB Eqg. (2). However, the nonlinearities in Eggt) and(5) also
—— =age “BM, —7gB, M, =M(t— d-12). ’ q
T 788 M =M(t=7p), ® play a role.
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TABLE I. The estimated parameters for the reduced model. See Appendix A/, STEADY STATES AND THEIR STABILITY
for the details of their determination.

Scaling the variables in Eq$7)—(9) to a dimensionless

Parameter value form by defining new variables
Mmax 3.47<10 2 min~?t N
m 3.03x10 2 min~t r=my+718, a=VKjA,
ay 997 nM-min* .
ag 1.66x10 2 min~! st _n
ap 1.76x10* min~t t g b=VK;B,
Y™ 0.411 minm?
78 8.33x10 * min ! i ™
YA 1.35x 1072 min~?* TM:T' m:”,/KlM'
n 2
K 7200 .
o 2.52¢107%(u M) 2 =2, 1=TK,L,
KL 0.97 mM T
Ka 1.95 mM A
Ba 2.15<10" min~* L=puT,
™ 0.10 min _ _ _ _
T 2.00 min allows us to write Eqs(7)—(9) in the dimensionless repre-
B ) B
sentation
(a5 (10
— —aml(@z )—ymm,
I1l. A REDUCED MODEL di ™

The full model of the previous section, consisting of db -
Egs. (2)—(6), has been studied numerically by Yildirim and — =&ge “Bm;_— ¥gb, (11
Mackey?° but is too complicated for a complete analysis.  dt °
Moreover, we are interested in determining whether the
B-galactosidase regulatory pathway can account forl dlce and
operon bistable behavior by itself. Thus we have reduced the 5 R
complexity of the model through a single assumption. We  —=axh(l)b—B,9(a)b—ya. (12
assume that there is a constant permease concentration, that dt
lactose is in a quasisteady state across the membrane, afﬁdthis representation
that, therefore, there is a one-to-one relationship between the ’

external and internal lactose. With these assumptions we can 1+ waQM .
take internal lactose to be a parameter and eliminatg4q. f(a;M)= Kioal ' where w=ge "™, (13
from the modef® Since we do not consider lactose dynamics =,
there is no need to deal with the permease dynamics as em-
bodied in Eqg.(6). The consequence of these assumptions is h(l)= | (14)
that our system of five differential delay equations can be '{/K_IKLH '
reduced to a three dimensional system: and
dM LEKg(eTHmA
el —3 a
dt ~ MK Koo FA, gt M D ga= a5
= age M, —7gB, ) and the dimensionless parameters are defined by
aM:TQ/K_la'Mi YM=TIM ag=rTag,
and
dA 5 L 5 A _— (9) A’}/B:T’:}’,B1 K:rl/K—lKAi &A: TAp,
Q. . - A . A
dt  "ATK +L Pa KatA A YA=TVn, Ba=7Ba.

We have estimated the parameters for the reduced model et (m, ,a, ,b, ) be a steady state of the system. From Egs.
Appendix A, and the results of that procedure are summag10) and(12), we have

rized in Table I. The growth ratg of E. coli can be highly R

variable and ranges between O and a maximal value of =a—Mf(a ) (16)
Mmax=3.47<10"2 min~*. To study our model numerically * vy *

and test its predictions against experimental data we have d
estimated a single growth rafe from the data of Knorr&® 2"

This estimation, which is detailed in Appendix A, yielded
72=3.03x10 2 min~! which is the value we have consis- b, =

tently used throughout for our numerical computations. aah(1)—Bag(a,)

'A)’Aa*

17
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FIG. 4. Numerical depiction of the stable and unstable regions of the
a & lactose—allolactose space and the steady states as a function of lactose levels

for the reduced model when all parameters are held at their estimated values
FIG. 3. A diagrammatic representation showing how one, two or thregn Taple | whenz=3.03x 1072 min~!. For a given value of lactose con-
steady states may arise in the simplifiecc operon model whose steady centrationL, the corresponding allolactose-concentration steady state values
states are defined by E(L9). The right(left) hand sides of Eq(19) are (A ) are determined by the intersection of the solid-line curve and a vertical
denoted by RHSLHS), and the intersection of the two curves gives the | — constant straight lindénot shown. The stability properties of a given
location of a steady state. steady state depend on the region it falls in. The lactose level corresponding
to the right most point marked by the “0” corresponds to the minimum level
required for induction of théac operon, and our numerical computations
predict this value to be 55.48M. The analysis of Appendix C shows that if

For a biologically meaningfulnon-negative steady state the delays are neglectéset identically to zerp then the induction point is
value of b, , the denominator of Eq(17) must be non- Shifted o 52.1QuM.
negative. Further, from Edq11)

m. = b, . (18) B. For the parameter values given in Table |, the range of
aB internal lactose concentrations over which three steady states
- . . exist is computed to bé39.10,55.43 uM.
S:S;[il(t)t:]tmg Egs(16) and(17) into Eq. (18), we obtain the In Appendix C we have determined the linear stability of
the steady states of this model. The results of that relatively
a tedious analysis show that the steady staipsanda’ are
f(a,)=0 —————, (190  always locally stable and the steady stafeis always un-
A stable. This is illustrated in Fig. 4. In Appendix D, we exam-
h(I)—&—g(a*) ine the intersection points between the steady state curve
A A, (L) and the stability boundary when there is the possibil-

defining the steady states results, where the congdaist ity of three coexisting steady states.

given by An examination of the dependence of the criteria for the
- existence of steady statag (or A,) on (u,L) in Appendix
YaYeYMmE ® E reveals that the number of steady states depend on the

0 (20 growth rateu and lactose level. According to our compu-

tations, the system can only show bistable behavior for
An examination of Eq(19) whenK>1 reveals that the left growth rates equal to or larger thap=1.52<10"2? min~!
hand side is a monotone increasing functionaQf with a  which corresponds to a doubling time of (In2)/(1.52
minimal value off (0)= 1/K ata, =0 and a maximal value x10 2) min=45.6 min. This bifurcation in the model in
of 1 for large values of the steady state allolactose levels(u, L) space or plane is depicted in Fig. 5. As illustrated in
The right hand side is also a monotone increasing function othe figure, for values of the growth rates [O,u) there is a
a, thatis zero ah, =0. A simple graphical argument shows unique steady state level of allolactosg for any given
that withn=2 as we have estimated there may be one, twoyalue of lactose levels. However, asu becomes largef
or three steady states depending on the values of the growt[ ug, umax, the system may have multiple steady states
rate u or lactose concentratioh as shown in Fig. 3. We values ofA, at a given lactose levél. (See Appendix E for
denote these dimensionless steady statespyi=1,2,3, details of determination of the value gf, demarcating the
wherein 0<a}<a? safq . (The corresponding actual steady boundary between single and multiple steady stptEke
states are denoted b4, , i=1,2,3.) Analytical conditions interesting aspect of this bifurcation and the attendant pre-
for the existence of these steady states are given in Appendiicted bistability of allolactose and mRNA levels is that it

aply ap

Downloaded 17 May 2004 to 132.216.11.188. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



284 Chaos, Vol. 14, No. 2, 2004

L(uM) (3.47x107, 70.78)

Induced monostable

(152x10°, 20.26)

Uninduced monostable

W (min")

FIG. 5. Bifurcations in g,L) space for the reduced model when all param-
eters excepi are held at their estimated values listed in Table I. As detailed
in Appendix E, for values ofu<jo=1.52<10 2 min~! there is a single
steady state, and fQr e (g, ma), Wheremwma=3.47<10"2 min~1, there

are two co-existing locally stable steady states.

Yildirim et al.

10

B(t) (nM)

500 600

time (min)

0 100 200 300 400 700 800 900 1000

FIG. 6. Bistability arising in the numerical simulation gfgalactosidase
concentration versus tim@nin) with the parameters of Table |, except
=3.03x10 2 min"1, for various starting values g8-galactosidase when
L=50 uM, which is in the range of lactose concentration for existence of
three steady states. The selection of the six initial conditions is described in
the text. Note that thg-galactosidase scale is logarithmic.

should be possible to demonstrate experimentally if oudual to or greater than 1.2 nM, tigegalactosidase concen-

model has any biological validity.

V. NUMERICAL SIMULATIONS

The analytical results of the stability analysis of the re-

duced model given in Appendix C were tested by numeri-
cally integrating the system of three differential delay equa-
tions, and the results are reported in this section. We use,

MATLAB'S DDE23 routin€®® for the numerical solution of the
delayed system with =50 M for the internal lactose con-
centration. At this value, the system has the following thre
steady states:

SSI(A,, B,, M,)=(4.27 uM, 0.23 nM, 0.46 nM,
SS2(A,, B,, M,)=(11.73 uM, 0.70 nM, 1.39 nM,
SS3(A,, B,, M,)

—(64.68 uM, 16.42 nM, 32.71 nM.

tration converged to 16.42 nM, which is the steady state
value of 8 galactosidase on the upper branch of the curve in
Fig. 4. These plus other simulatiofreot shown suggest that
the local stability results of Appendix C apply over a wide
range of initial conditions.

We have studied the reduced model both analytically and
gumerically and found that it is capable of displaying bista-
ility for a realistic range ofu andL values. These results
are in agreement with those obtained by Yildirim and

e|\/Iacke)?° with a more detailed model. To further test the

accuracy of the reduced model we studied the ability of our
model to predict three different experimental data sets taken
from the published literature. The first data set is from
Knorre?® In that paper, changes of the specifigalactosi-
dase activity after a step change from glucose to lactose
growth forE. coli ML 30 were measured experimentally. The
second data set, from Pestigal,! was obtained in a study

of the specific inhibition of translation of single mMRNA mol-

We found numerically that the system converged 10 the,qje5 and gave the specific activity fgalactosidase ver-
steady state values corresponding to either the lower or UPP&{,q time forE. coli 294 in the presence of IPTG. These two

branches of the S-shaped curve in Fig. 4 for various initial
values. For the simulations shown in Fig. 6, the concentra

tion units are in nM and time is in minutes. The initial values

of both allolactose and mRNA concentrations were kept con
stant at their steady state values on the lower branch of th

S-shaped curve whebh=50 uM, and six initial values of

S

ets of data and the simulated curve produced by the model
using MATLAB'S DDE23 routin€® are shown in Fig. 7. The
initial conditions were taken as the steady state values when

Ie:50 uM on the lower branch. The curve was produced
running the simulation for the lactose value lof600 uM

the -galactosidase concentration were taken equally spaceflich corresponds a steady state value on the upper branch

between 0.6 and 1.6 nM.

For initial values of theB-galactosidase concentration
less than 1.2 nM, thed galactosidase levels converged to
0.23 nM which is the steady state value @fgalactosidase

of the S-shaped curve. As seen from Fig. 7, there is relatively
good agreement between the experimental data and the
model predicted curve foB galactosidase concentration.

(Note that in this and the next figure, we have scaled the data

corresponding to the lower branch of S-shaped curve in Figsince there is no correspondence available betwigalac-

4. However, for the three initial values @ galactosidase

tosidase concentration and activity.
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FIG. 7. p-galactosidase concentration vs time. The experimental data sefs/G- 8. Oscillation ins-galactosidase concentration in response to periodic
taken from Knorre(Ref. 29 for E. coli ML30 (*) and from Petskat al. phosphate feeding with periofi=100 minutes, which is equal to the cul-

(Ref. 3)) for E. coli 294 (¢) as well as the model simulaticsolid ling) ture doubling time. The experimental d4ta together with the model simu-

using the parameters of Table I, wifa=3.03x10 2 min~, are both lation (solid line) using the parameters of Table | with a growth ratét)

shown. The selection of initial conditions and internal lactose concentratiordiven by Eq.(21) andu=3.03< 10" min™* are presented. The experimen-

are described in the text. tal data are taken from GoodwiRef. 32. The simulation was calculated by
numerically solving the system of delay differential equations given by Egs.
(7)—(9). The initial conditions were taken to be the steady state values on the
upper branch of S shape curve wher 600 M.

As a third test, a data set from Goodwiwas used. In
this paper, the dynamic behavior @f galactosidase was
studied in chemostat cultures & coli synchronized with V1. CONCLUSIONS AND DISCUSSION

respect to cell division by periodic phosphate feeding at a vildirim and Mackey” recently published a model of the
periOdT equal to the bacterial dOUinng time. Stable OSCi"a'|actose operon in which the independent variables are per-
tions |nB galaCtOSidase concentration were observed with c’[ineaseﬁ-ga|actosidase and lactose concentrations and con-
period equal to the feeding period. siders bacterial growth, positive feedback regulation of
To imitate periodic phosphate feeding in our simulation,mRNA production by allolactose, positive feedback lactose
we assumed that the bacterial grOWth rate varies as a fUnCtqutake by permease, and the time de]ays due to DNA tran-
of time in the form given by scription and mRNA translation. In this model, the total op-
w()=g—a modt, T). (22) erator and repressor concentrations are assumed constant and
] ] _ ) » it is assumed that the amount of repressor bound to the op-
Here, T is the period of the feeding adis a positive pa-  erator region is small compared to the total repressor concen-

rameter with dimension mirf. mod(,T) is a function that  tration. Other features were ignoréstich as negative feed-
gives the remainder on division ofby T. Selection of this  pack due to catabolite repressjon

type of function is motivated by the observation that growth | this paper, we simplified the Yildirim and Mackey
rates decrease as nutrient levels fall and sharply increasgogel by ignoring the positive feedback loop involving per-
upon the addition of nutrienj(t) is a bounded and positive mease, and therefore, assuming equilibration of intra- and
definite function and takes its maximal valueiovhen time  extra-cellular lactose. The rationale for this simplification is
is t=TxKk, (k=1,2,3,...) which corresponds to the times g figure out whether the positive feedback regulation of
that phosphate was added. mRNA production by allolactose is sufficient to account for
It y(t) is the population density, then between one feedimportant dynamic features of the lactose operon, like bista-
ing and the next the population numbers are governed by pjjity. The reduced model consists of a system of three dif-
1dy _ ferential delay equations with two delays. Special attention
——=u—at, was given to the estimation of the system parameters from
data in the literature. The results are clear. Namely, this regu-

S0 In 2= T—aT%2 under the assumption thaitis also the latory pathway is sufficient to account for bistability at

doubling time. From this we have immediately that physiologically realistic extracellular lactose values. Further-
2% 2In2 more, the predicted bistability occurs for lactose values not
a=—— significantly different from those of the full Yildirim and

2
T T Mackey model.
With a feeding period ofT=100 minutes andu=3.03 The steady states of the reduced model were analyzed
X102 min~!, a=4.67x10 % min"2. In Fig. 8, we com- both numerically and analytically. We have shown that the
pare the data orB galactosidase activity during periodic model can display bistability for realistic range values of the
feeding as a function of time with the model predictions. bacterial growth rate as well as the internal lactose concen-
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tration. We have given necessary and sufficient analytic conresults reported in Yildirim and Macké¥,differing only in
ditions for the existence of multiple steady states. Using esguantitative detail. For example, the full induction point in
timated values of the parameters, we have numericallfhe reduced model was found to be 55.481, whereas
computed the range of the internal lactose concentration andildirim and Mackey° found numerically that the induction
growth rate for the existence of multiple steady states. Fronpoint was 62.0uM in the full model. Thus the reduced
this, we conclude that the positive feedback loop involvingmodel seems to capture all of the essential properties of the
permease is not necessary for the system to display bistabilall model investigated in Yildirim and Macke.
ity. Despite this conclusion, the permease regulatory pathway Though the present reduced model is not accurate in all
and other regulatory mechanisittike inducer exclusion and details, the results of the comparison with published and in-
catabolite repressiomot considered in this study may play dependent experimental data are sufficiently encouraging to
an important role in fine tuning the system bistable behavioprompt us to seek further sources of data for comparison, to
and this must be addressed in future studies. find better estimates for the parameters, and to complete the
A local stability analysis of the model steady state showsanalysis of the full model. One of the most robust predictions
that the steady states corresponding to both the lower anaf the model is the existence of locally stable coexisting
upper branches of the steady stéte versusL curve are steady states depending on lactose levels and growth rate.
locally stable while the steady state on the middle branch i his prediction is qualitatively confirmed by the observations
always unstable. Time delays due to transcription and tran®f Novick and Wienet* and Cohn and Horibat®, and
lation have no effect on stability of the system in the senseshould be quantitatively testable.
that there is no evidence for a Hopf bifurcation although it ~ The modeling carried out here, as in all of the other
was reported in a recent model developed for the regulatiomodels cited earlier, is strictly deterministic in nature and
of lac operon by Mahaffy and Simeond¥. based on the writing of chemical reaction equations. This
The analysis of our reduced model gives no grounds t@pproach is appropriate for the examination of the behavior
expect a Hopf bifurcation and the attendant oscillations thaof large numbers of the system in question, e.g., looking at
would ensue. The differences between the model of Mahaffyhe behavior of a large number of copies of tae operon.
and Simeonov? where a Hopf bifurcation was found, and It is worth noting, however, that if one were interested in the
the current one are easily identified. In the Mahaffy and Sim-details of the dynamics at the level of a single bacterium a
eonov model, the reaction between internal lactose anchuch different approach would have to be taken since the
allolactose, which is catalyzed h§ galactosidase, was ig- number of participating molecules may number in the tens to
nored together with the individual degradation terms for thehundreds. In such a circumstance a stochastic modeling ap-
proteins. The latter leads to equal degradation rates becaupeoach must be employed. Gillesfié’ has considered in
degradation is only due to the bacterial growth rate. Furtherletail how simulationsof such situations could be carried
in Mahaffy and Simeond¥ they considered the lactose out, and variations of his scheme have been employed by a
transport by permease into the cell as a fourth variable in thgariety of authors to look at specific problems, e.g., Arkin
model. Consequently the local stability analysis of the modekt al*® examining phage- development, Morton-Firth and
produced a characteristic equation similar to &f), butin ~ Bray®*® looking at dynamics of a flagellar motor, and Carrier
this caseP()\) is a fourth order polynomial an@(\) is a and Keasling’ investigating theac operon. Other investi-
linear function of\ and this is the origin of the Hopf bifur- gators are starting to put these simulation efforts on a firm
cation. However, as in our results, Mahaffy and Simedfiov theoretical footing, e.g., Paulssost al,** Kepler and
concluded that the experimentally observed oscillations irElstorf? and Swainet al*3
the 8 galactosidase concentration reported by Kridrweere
not caused by the induction process.
The accuracy of our model was tested against three dif-
ferent experimental data sets. The model is in reasonable
agreement with the experimental data although the agreeA\CKNOWLEDGMENTS
ment is not perfect. The discrepancies between the experi-
mental data and the simulations may originate from the dif- We thank Dr. Photini Pitsakis for her initial suggestion
ferences in the experimental conditions and/or theof this problem, and Professsor Claire Cupples for her advice
simplifications in the model. One of the most interesting pre-on parameter estimation and general comments. We also
dictions of our model is the minimal intracellular lactose thank two anonymous referees for their comments and sug-
level for full induction of the system. The reduced model isgestions which measurably improved this paper. This work
also in good agreement with data reported in a recent studyas supported by the Scientific and Technical Research
using an artificial inducer of théac operon, Isopropyl- Council of Turkey (TUBITAK), MITACS (Canadg the
thiogalactoside(IPTG).2® There it was found that 50-100 Natural Sciences and Engineering Research Council
uM IPTG is sufficient as a lower bound to achieve full in- (NSERC Grant No. OGP-0036920, Cangdhe Alexander
duction. Our reduced model predicts that the value should beon Humboldt Stiftung, Le Fonds pour la Formation de
55.43 uM, which corresponds to the first “knee” in th&, Chercheurs et I'Aide da Recherche(FCAR Grant No.
versusL curve in Fig. 4. 98ER1057, Queeq, the Leverhulme TrustU.K.) and AIEJ
The analytical and numerical results obtained in this reShort-Term Exchange Promotion Prograi©utbound
duced model for théac operon support and illuminate the ScholarshipJapan.
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APPENDIX A: PARAMETER ESTIMATION FOR THE
REDUCED MODEL

In this appendix we detail how we have estimated the

parameters in the reduced model described by Ef)s(9).

e u: The maximal value of the dilution rate can be esti-
mated from the shortest interdivision time©f coli which
is about 20 minute®! Given this uma=(In2)/20 min*
=3.47x10 2 min~ . We estimated a value for the growth
rate u to be used in our numerical simulations together
with the value ofy, by least square fitting of the experi-
mental B-galactosidase concentration data given in
Knorre?® using theFMINSEARCH and bDE23° routines in
MATLAB . We foundz=3.03x 10 2 min~ ! indicating that

these cultures were growing at close to their maximal rate.

The results of estimation were tested for several initial
starting points forw andy,, and the estimation procedure
always converged to the same values for bathnd y, .

* ya: The value of yy, was estimated as 1.35
X 1072 min~* together with the value of by using least
square fitting of the experiment@galactosidase activity
data given in Knorr® as above.

« yu: Leive and Kollif® found

that the ty, of

e ap: Huberet a

e Ba: From the data of Hubeet a

Dynamics of the /ac operon 287

T}"BB*
ag=

s, (A3)

*
Kennell and Reizmaf reported that steady state value of
B-galactosidase is about 20 molecules per cell which
means thaB, /M, =20. Using the value ofyg reported
by Mandelstant’ we estimateng=1.66x 102 min~ .
15! studied the kinetics oB-galactosidase
and foundV,,,=32.6 U/mg of B-galactosidase ani,
=0.00253 M when lactose was the substrate whkilg,
=49.6 U/mg of p-galactosidase and,;=0.00120 M
when allolactose is the substrafél is defined asuM of
glucose or galactose produced per minu@iven that the
molecular weight ofg-galactosidase is 540000 Da and
1 Da=1.66x10 %' mg, one mole ofB-galactosidase is
equivalent to 6.0% 1073 5.4x 10°x 1.66x 10 ?1=5.39
x 108 mg of B-galactosidase so 1 mg gtgalactosidase is
equivalent to 1.8% 10 3 u mol. Therefore,

32.6 wmol

- _ -
%= 185¢10°° pmolmin -7 O<10% min*.

151 we haveB,=2.7

x10* min~%, while Marfnez-Bilbao et al>? gives B
=1.8x10* min"1. We have taken the average g,
=2.15< 10" min~*.

B-galactosidase m-RNA was 2 minutes to give a value ok K, : The volume of oneE. coli is approximately 8.0

ym=In2/2=0.347 min%. In a comparable experiment
Blundell and Kenneff found t1=1.47 min to giveyy
=0.475 min 1. We have taken the average of these two
figures to giveyy=0.411 min L.

e vyg: The rate of breakdown oB-galactosidase was mea-
sured by Mandelstathand found to be % 102 per hour
corresponding to 8.3810 “min~!. Rotman and
Spiegelmaff reported that the maximal rate of breakdown
of B-galactoside is 58102 min~! and noted that it is

x 10" %8 liter and its mass is about 1X710 % gram to
yield a density of 2.X 10° gm/liter. The parametef, in

our model corresponds to the parame<gy, ,./p in Wong

et all” and the values and the units of these two param-
eters reported in this paper ape=3.0x 10° grams of dry
cell weight/liter andK, | 5c=0.14 mM which means that
Kmiac/p = (1.4x10 %) /(3.0x 10P) =4.6x10 ' mol/gr.

To obtain an estimate fdk, in M, we can multiply this
value by the density of the cell which givek,

possibly much smaller than this value. We have taken the =0.97 mM, in agreement with the value of 1.4 mM esti-

Mandelstam value.
« K: Yagil and Yagif? analyzed a number of previously pub-

|52

mated by Marmez-Bilbaoet al>* We will take the former

value.

lished data sets, and from their calculations we find that the Ka: This parameter in our model correspond&{Q i /p

average value i&=7200.

« n: Again from Yagil and Yagf®> we have that the average
of the Hill coefficient is 2.09. We have taken= 2.

* K;: The average dissociation constant of effector—
repressor complex was determined to MIeg=2.52
%1072 (u M) ~2 from the results of Yagil and Yagff

* ) : The steady state value tdic mRNA in the absence
of induction is thought to be one molecule per cell. This
corresponds to a “concentration” of 2.08 nM if we take the
E coli volume to be & 10 '€ liter. When the cells are
maximally induced, théac mRNA level is raised a thou-

sand times compared to this uninduced steady state value

according to Savagedti.From Eq.(7) at a steady state,

(&4

0=3/MM*—?M when A, =0, (A1)
0=94100(M, —ay When A, —o. (A2)
From Egs. (Al) and (A2), ay is 9.97

X104 mM—min 1.
e ag: At a steady state, from E@8) we have

in the Wong etal. model;’ and they took K, ajio
=2.8 mM. Hence, K, aii0/p= (2.8xX10%)/(3.0x 10?)
=9.3x10 7 mol/gr. Using the same idea followed in the
estimation ofK, , the value ofK, can be calculated as
1.95 mM.

e 7y In this model we are considering the transcription and

translation of two genedacZ andlacY. Translation of
lacZ starts shortly after transcription initiation, and for the
translation oflacY to begin,lacZ must be completely
transcribed. Knowing thdei.cZ has 1022 amino acids and
that the DNA chain elongation rate is at least 490 nucle-
otides per second, which is equivalent to 9800 amino acids
per minute, according to Bremmer and DerHishe time
for lacZ to be completely transcribed is at most

1022
™M~ 9800
This gives an upper bound oy, .

=0.1 min.

e 75: lacZ is 1022 amino acids long and the mRNA elon-

gation rate varies between 12 and 33 amino acids per sec-
ond according to Monaretal® and Kennell and
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Reizmarr® Talkadet al>® also reported the translation rate
changes from 8 to 15 amino acids per second. If we take
the mRNA elongation as 8 amino acids per second to es-

timate an upper bound value fag, we obtain
1022

= 8><60:2'12 min.

B

1
If the elongation rate is 33 amino acids per second then Wé )

have r5=1022/(33< 60)=0.51 min. Sorenseat al>® es-
timated an average value fa of 82 s experimentally
which is 1.37 min. We have taken the upper boundrgs
=2.12 min, and usedz=2.0 min.

APPENDIX B: CONDITIONS FOR EXISTENCE OF
ONE, TWO, AND THREE STEADY STATES IN THE
REDUCED MODEL

Equation(19) is equivalent to a fourth order polynomial

in the allolactose concentration. After appropriate rearrange-

ment, it can be written in the form

Y(a,)=at+03a2 +Q,a2+Qa, +Qy=0, (B1)
where the coefficients are given by
Q 7 B2
3~ K— 61 ( )
(Hx
— 2uT
Qp=Ke*m——o—, (B3)
o 0'162'&;’\"
Q,=kKe?#™M— , (B4)
(€]
_ h(l)ke?tm o -
0= <0 (85)
and
crl:h(l)—& (B6)
ap

Y (a,) approachesto asa, goes totw~ andY(0)=Q,

Yildirim et al.

3 [A+AZ—4A3
—— | (B0

the sequence

I1=3035-80,+8%

If there are three sign changes in
(10Q3,£1,6,,Q0), and

If A2—4A3=0 andI1=0 for all three cubic roots of Eq.
(B10), then the lac operon model has two steady states
(2) If A>—4A3%<0 andII=0 for all three cubic roots of Eq.
(B10), then the lac operon model has three steady
states

Proof. The proof of this theorem is a direct consequence
of the application of the Routh—Hurwitz criteria and a result
of Ungar®’

APPENDIX C: LINEAR STABILITY OF THE STEADY
STATES OF THE REDUCED MODEL

Letx=m—m, , y=b—b, andz=a—a, , respectively,
denote the deviations of the dimensionless MRNA,
B-galactosidase and allolactose levels from their steady state
values. Linearizing Eq910)—(12) in the neighborhood of a
steady state we obtain the following linear system of delay
equations:

X
—=awf’(a,)z;,— yuX (Cy
dt
dy _ .

— = apXs,~ VaY, (C2
dt

and
dz ~
— =apy— Baz, (Cy
dt

wherein we have set
Ga=aah(1) = Bag(ay),

Ba=Bab,9'(a,)+ Y,

<0, so there are several possibilities for the roots of theand

quartic Eqg.(B1). We can formalize these for biologically

meaningful(non-negative steady stajess follows.

apg= &Be_'“‘TB.

Theorem 1. The lac operon model has at least one non-Note that in order to have a biologically meaningful steady

negative steady state
Proof: Since lim, _..Y(a,)=+%» and Y(0)=Q,
<0, there exists an, e (0,~°) such thatY (a,)=0.

state, it is necessary that

ap>0 (C4)

Theorem 2 (Two or three steady states, derivative from Must be satisfied because of E47).

Ungar’) Let Y(a,) be given by Eq(B1) with real coeffi-
cients(};, i=0,1,2,3,given by Eqs(B2)—(B5). Defineé&, by

&E=01—-Q0p03/&, where £&=0,—0,/Q5, (B7)

and set
A=1204+0Q5-30,Q5, (B8)
A=270093—9919293+2Q§—729092+2792(, )
B9

and

Assuming that we have solutions to E¢€.1)—(C3) of

the forme! it is an easy exercise to show that the charac-
teristic equation for the eigenvaluashas the form

P(N)+Q(N\)e M =0, (CH)
in which

P(N)=N3+ 7N 2+ A+ 779, (C6)

Q(N) =1, (C7)
where
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72=(Ym+¥e+ Ba) >0,

m=Ym¥s+ Ba¥e+ Ba¥m)>0,

I (C8)
70= YmYeBa>0,

U= —EAﬁB&Mf’(a*)<O,

andf andg are as given by Eq$13) and(15), respectively.

1. Stability when the delays are zero

Dynamics of the /ac operon 289

1) a;: s,
(2) al,a?=ad: SHS,
(3) al,aZ,ad: S,US,S,
(4) al=aZ,ad: HS,sS,
(5) a;: S.

W ¥ P X

A numerical determination of the stable and unstable regions
of the lactose—allolactose concentration space when delays
are both zero gives results qualitatively identical with those
shown in Fig. 4. However, the induction point is changed
from 55.43 uM when the delays are included to 52. 101

The characteristic equation of our model reduces to avhen they are neglected.

third order polynomial equation when both,=0 and 7

=0. When the delays are zero, from the Routh—Hurwitz cri-
teria it is easy to show that a steady state will be locally2. Stability when the delays are not zero

stable if and only if the coefficients of EQC5) satisfy the
following conditions:

(1) 7,>0,
(2) o+9>0, and
() mamy— mo— 9>0.

When 7, #0 and 7g# 0, the characteristic equation of
the reduced model becomes a cubic quasi polynomial equa-
tion of the form Eq.(C5).

Theorem 3 (Unstable RegionThe system whose char-
acteristic equation given by EQC5) has an unstable steady

) ) - ) state in the domain defined by E&4) if
Since the polynomials and the coefficients in the character-

istic equation of théac operon model given in Eq$C5)— 7o+ 9<0 (C10
(C8) satisfy Conditions 1 and 3 above, Condition 2 deter-ng|ds
mines the local stability of a steady statg. .
In this case with the delays all set to zero, one can obtain Proof. SinceP(\) has the form
more global information about the stability of the steady PN =M+ )N+ ¥8) (N + Ba), (C11)

states. Assume in Eq$10) and (11), respectively, thatn

=b=0 so we can write an equation for the rate of change O]and .aII LAARAN gnd Ba are positive real numbers, then as-
allolactose in the form suming inequality (C10 we have P(0)+ = 5o+ 9<O0.

SinceP(\) increases without bound far>0, there is some

da a positive N such thatP(\) +9=0.
—=Ca)| f(a)-0—F7|, (C9) Theorem 4 (Stable RegionThe system whose charac-
dt h(l)— &g(a) teristic equation is given by EGC5) is locally stable in the
ap domain defined by EqC4) if
where 7o+ 9>0 (C12
_dsdydal B o s holds
ca)= Ve (H- &—Ag(a) >0 for a=0. Proof: Let A=u+iv be a root of the characteristic equa-

tion given by Eq.(C5). Then we have
IP(u+iv)[>=[Q(u+iv)|?e~2". (C13
Assume thatu=0. P(\) has the form of Eq(C11) so ng

Remember thaf(a) is the function left hand sid€LHS)
plotted in Fig. 3, while

0 a , <||P(u+iv)||?. Since 7>0, |Q(u+iv)|2e "= 92 2"
Ba <92 and it, therefore, follows thag3— 92<0. However,
h(h———g(a) 2
an 75— 7= (10— 9) (70 + 9). (C19

is the function right hand sidé€RHS). From Eg.(C8), we haverny— 9=0, so if ng+39=0 then

Now notice from Eq.(C9) that whena=0 we havea
>0 while for a—« we havea— —«. A simple argument
(use Fig. 3 to see thisuffices to show thata) If there is a

72—9?=0 and we have a contradiction. Henees0 and
the system is stable far>0 and»y+ 9>0.
The results of Theorems 3 and 4 allow us to assert that

single steady state it is stabléy) if there are two steady the stability results we found in the previous section with the
states then one will be half stable and the other will bedelays equal to zero are maintained in the general case when
stable;(c) if there are three steady states then the lower anthey assume their positive values as detailed in Table I. This
upper steady states are stable and the intermediate steaype of stability is very similar to the concept absolute
state is unstable. Thus we have the following pattern fostability introduced by Braue® In Fig. 4 we show the nu-
stability of the steady states in which “S” denotes stable,merically determined stable and unstable regions for the re-
“US” means unstable, and “HS” stands for half stable: ducedlac operon model and a graph of the steady state
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curve as a function of the external lactose concentration

when all parameters are as in Table | apd=3.03
X102 min~ L,

APPENDIX D: NATURE OF THE SLOPE OF THE
STEADY STATE CURVE AT THE INTERSECTION
POINT WITH THE STABILITY BOUNDARY CURVE

Yildirim et al.
Turning back to Eq(D1), we can write
Oaxa,
ap= , D9
" 9

and substituting Eq.D9) into the equation obtained from the
boundary curve given by E¢D6), we have

Taf’(a,)— Bag’ (8,)f(a,) —&,®=0. (D10)

To prove that the separating point between the middlesubstituting this expression into EGD6) completes the
and lower(uppe) branch is located exactly on the boundary proof. Thus, the tangents drawn to the steady state curve at

between stable and unstable regions, it is enough to showe intersection points with the stability curve have infinite
that the derivativela, /dI of the steady state curve is equal sjope.

to =« at the intersection poifg) of the boundary curve and
the steady statéhysteresis curve. This is equivalent to
dl/da, =0.

From the steady state equation given by Ep), we
have

Faf(a,)—Oaza, =0. (D1)

APPENDIX E: A BIFURCATION DEPENDENT ON
LACTOSE LEVELS AND GROWTH RATE

To estimate the critical value for bacterial growth rate at
which thelac operon model switches from a single steady
state to multiple steady states, we used the following tech-

The boundary curve between stable and unstable regiongique. Changing the bacterial growth rate from 0@y

which is given by Eq(C10), can also be written as

Ym¥eBa—@ndpant’ (a,)=0. (D2)
SubstitutingB, and Eq.(17) into Eq.(D2), we have
Baa, g’ (a .. f'(a
'A)’AA'VB'AYM(—BA *Z? ( *)+1)_aAaA&B&Me_MTB (A +)
A ap
=0. (D3)

Taking the factofvpasagayy e #78 outside of the parenthe-
sis, we obtain

YaY8YMm

Gndpaye P

BAa*Ng%a*) .

an

(D4)

Writing O instead of the expression given by EB0) we can
rewrite this last expression as

Baa,g'(a
@&A(MH —aaf’(a,)=0. (D5)
an
Finally, we obtain
PG ICRHE
(o )ip- ap0— AOPALO ) g (D6)

an
By computing the derivativdl/da, from Eq.(D1), we have

VKK - da,
fla,)| ap———"—"—=— "(a,) ——
( *)<aA(\/K—1KL+|)2 BAg ( *) dl

da,

I . da,
+aAf (a*)W—aAQ@W—O, (D7)

and writingdl/da, explicitly,

i:_aAf’(a*)—BAg’(a*)f(a*)—aA@ ©o8)
da,

VKK

) Rk )

results. The denominator in E¢D8) is always nonzero.

with a certain step sizAu, we determined an interval fqr
giving a range for the lactose concentration for existence of
three steady states using Theorem B. Then dividing this in-
terval into subintervals, we repeated the same procedure and
estimated an interval fop in which the critical valueu
takes place.

Consider the cases @f= uma=3.47X10 2 min~! and
w=0min L. SinceL>0, for all e (0,3.4710 2) min~?!
when all the other parameters are held constant at their esti-
mated values given in Table |, we have

0,<0,
O3>0,
3035-80,>0.

The lac operon model has three steady states if the condi-
tions

§1<0,
§,>0,
A%—4A3<0,
M=o,

are all satisfied simultaneously.
When u=3.47x10 2 min~ !, we can calculate the first
three of these conditions as

£,<0=L>0.40031 uM,
£,>0e0<L<0.40031 uM
or L>0.41277 uM,
A2—4A%<044.636 09 uM<L<70.78300 uM.
Since
1>302%2-80,-8/A=II',
we have
I>11'>0
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