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ABSTRACT We consider an age-maturity structured model arising from a blood cell proliferation problem. This model is
‘‘hybrid’’, i.e., continuous in time and age but the maturity variable is discrete. This is due to the fact that we include the cell
division marker carboxyfluorescein diacetate succinimidyl ester. We use our mathematical analysis in conjunction with
experimental data taken from the division analysis of primitive murine bone marrow cells to characterize the maturation/
proliferation process. Cell cycle parameters such as proliferative rate b, cell cycle duration t, apoptosis rate g, and loss rate m

can be evaluated from CarboxyFluorescein diacetate Succinimidyl Ester 1 cell tracking experiments. Our results indicate that
after three days in vitro, primitive murine bone marrow cells have parameters b ¼ 2.2 day �1, t ¼ 0.3 day, g ¼ 0.3 day�1, and
m ¼ 0.05 day�1.

INTRODUCTION

The problem of trying to determine the connection between

cellular proliferation and maturation in vitro and in vivo has

intrigued cell biologists for decades. An obvious method

of dealing with this is to use a biological marker that is

incorporated into the cell and partitioned between daughter

cells on division. Thus, one of the most common post-World

War II techniques for studying cell division in vitro and in

vivo was to use tritiated thymidine (3H-Tdr) that is incor-

porated in the DNA of dividing cells. Mathematical analyses

of data from 3H-Tdr labeling have been carried out by

Takahashi (1966) and Lebowitz and Rubinow (1969). Un-

fortunately, this approach cannot easily give an indication of

the total amount of the division history of individual cells.

Furthermore, it is known that 3H-Tdr can induce apoptosis

(Yanokur et al., 2000), and thus the use of this marker may

significantly perturb the experimental preparation.

Similarly, the diMethylthiaxol (MTT) reduction assay is

able to quantify proliferation at a gross level, but has the

complication of being sensitive to the activation state of cells

(Mosmann, 1983). Bromodeoxyuridine (BrdU or BrdUrd)

has been extensively used to quantify in vitro and in vivo cell

division, (Bertuzzi et al., 2002; Forster et al., 1989; Gratzner,

1982; Houck and Loken, 1985; Bonhoeffer et al., 2000).

However, this method is generally unable to distinguish the

progeny of cells that have undergone several divisions from

those that have undergone a single division.

Recently a new marker, the Carboxyfluorescein diacetate

Succinimidyl Ester (CFSE), has made its appearance as an

intracellular fluorescent label for lymphocytes. CFSE labels

both resting and proliferating cells and divides equally

between daughter cells upon cytokinesis in vitro as well as in

vivo (Hodgkin et al., 1996; Lyons and Parish, 1994). CFSE

shows remarkable fidelity in the distribution of label between

daughter cells during division (Fazekas de St. Groth et al.,

1999; Fulcher and Wong, 1999; Hasbold et al., 1998, 1999;

Hasbold and Hodgkin, 2000; Lyons and Parish, 1994;

Lyons, 1999; Mintern et al., 1999; Nordon et al., 1999;

Parish, 1999; Sheehy et al., 2001;Warren, 1999). Moreover,

changes in cell surface phenotype associated with differen-

tiation are unaffected by CFSE labeling indicating that the

relationship between cell division cycle number and

differentiation can be determined. The main problem with

using CFSE to track cellular division is that its fluorescence

can only be detected up to and through seven or eight

divisions due to label dilution (Oostendorp et al., 2000).

Despite this defect, CFSE is of great interest as a tool for

tracking cell proliferation and differentiation.

In this article we develop techniques to analyze CFSE 1

cell tracking data to obtain information about cell kinetics.

We do this within the context of an extension of the G0

model of the cell cycle originally developed by Burns and

Tannock (1970), which is equivalent to the model of Smith

and Martin (1973). The cells in the population we consider

are capable of both simultaneous proliferation and matura-

tion (Mackey and Dörmer, 1982) where the cell maturity is

related to the level of CFSE fluorescence. As illustrated in

Fig. 1, these cells can be located in two different functional

states. The cells can either be actively proliferating or in

a resting G0 phase. Consequently, our model is structured

with respect to both cellular age and maturity. The main

difference between this and previous time-age-maturity

models (Adimy and Pujo-Menjouet, 2001; Dyson et al.,

1996; Mackey and Dörmer, 1982; Mackey and Rudnicki,

1994, 1999; Pujo-Menjouet and Rudnicki, 2000) and Dyson

and co-workers (unpublished results, 2003) is that our model
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is hybrid in the sense that the age variable is continuous but

the maturity variable represented by the number of cell

divisions tracked through the CFSE fluorescence level is

discrete.

DESCRIPTION OF THE MODEL

We consider a population of cells that can both divide and

mature and we follow a cell cohort during successive

divisions. Our model is then naturally described by an age-

maturity structured model not too dissimilar from those

considered by others (Crabb et al., 1996a,b; Dyson et al.,

1998, 2000a,b; Henry, 1976; Keyfitz, 1968; Mackey and

Dörmer, 1982; Pujo-Menjouet, 2001). The novel part of the

model presented here is related to the fact that the cellular

population is continuously structured with respect to age, but

the maturity variable (represented by the CFSE fluorescence)

is discrete. A word of caution is in order here concerning the

relation between division number and maturity. We suppose

that at each division, cells reach a certain level of maturity

where the maturity represents the concentration of what com-

poses a cell such as proteins or other elements one can

measure experimentally like the phenotypic under morpho-

typic or biochemical processes. A given cell population

labeled at time t¼ 0might initially contain cells with different

maturity levels, and therefore the number of divisions that

a cell underwent cannot be related to any particular maturity

traits. Nevertheless, the term ‘‘maturity’’ is used to denote the

number of divisions to keep the mathematical modeling

carried out here within a general age-maturity structured

model framework.

The proliferating phase cells are those in the cycle that are

committed to DNA replication and cytokinesis (cell division)

with the production of two daughter cells. The position of

a cell in the proliferating phase is given by an age a which is

assumed to range from a ¼ 0 (the point of commitment

through entry into the G0 phase) to a ¼ t (the point of

cytokinesis). The cells in this phase may also be lost ran-

domly due to apoptosis at a constant rate g $ 0. Immediately

after cytokinesis, both daughter cells are assumed to enter the

resting G0 phase. The age in this population ranges from a ¼
0, when cells enter, to a ¼ 1‘. We consider two sources of

loss in this G0 phase:

1. The first loss is random at a rate m $ 0;

2. The second loss is the reintroduction of the cell into the

proliferating phase with a rate b $ 0.

Let pk(t,a) be the density of the proliferating phase cell

population and nk(t,a) be the density of the resting (G0)

phase cells, where t is time, a is cellular age, and k represents
the kth generation of a cell (after k divisions). Note that k is
directly related to the average CFSE fluorescence per cell.

Indeed, if we denoteM the initial average CFSE fluorescence

per cell,M/2 is the average fluorescence of the daughter cells

after the first division and M/2k the fluorescence after kth

divisions. The equations describing the model are, then,

@pkðt; aÞ
@t

1
@pkðt; aÞ

@a
¼ �gpkðt; aÞ; (1)

@nkðt; aÞ
@t

1
@nkðt; aÞ

@a
¼ �ðm1bÞnkðt; aÞ: (2)

Each of these equations is a conservation equation stating

that the total rate of change of either the proliferative or

resting phase cells at a given maturation level k is equal to the
rate of cellular loss from the respective compartment.

To reflect the biology of cellular division we take the

boundary conditions to be

pkðt; 0Þ ¼ b
Ð1‘

0
nkðt; aÞda ¼ bNkðtÞ;

nkðt; 0Þ ¼ 2pk�1ðt; tÞ:

(
(3)

The first of these boundary conditions simply says that the

flux of cells into the proliferative phase at age a¼ 0 in the kth

generation is equal to the flux out of the resting phase due

to the reentry rate b in the same generation. The second

condition says that the flux of cells into the resting phase of

the cell cycle at the kth generation is twice the flux of cells of
the previous ((k�1)th, the mother cell) generation out of the

proliferative phase and into cytokinesis (at age a ¼ t).

Finally, we will consider as initial conditions a mixture of

cells in the resting and proliferating phases. These initial

conditions represent the distribution of age a of the cells at

time t ¼ 0, the moment where the CFSE 1 cells are isolated

after having been CFSE-labeled (see Oostendorp et al., 2000,

their Fig. 1). We need to give the initial distribution of cells

in the proliferative and the resting phase, i.e., p0(0,a) and
n0(0,a). From the formulation of the problem, the solution of

FIGURE 1 A schematic representation of the G0 stem cell model.

Proliferating phase cells include those cells in G1 (the first gap), S (DNA

synthesis), G2 (the second gap), and M (mitosis) while the resting phase cells

are in the G0 phase. m is the loss rate of resting phase (G0 cells due to death

or differentiation, while g represents a loss of proliferating phase cells due to

apoptosis. b is the rate of cell reentry from G0 into the proliferative phase,

and t is the duration of the proliferative phase (see Burns and Tannock,

1970; Mackey, 1978, 1979a,b, 1997, for further details).

Analysis of Cell Division Kinetics 3415

Biophysical Journal 84(5) 3414–3424



the model defined by Eqs. 1 and 2 does not depend explicitly

on n0(0,a) because only the total quantity of resting cells is

required in the boundary conditions (Eq. 3). Note that

the total resting cell number Nk(t) can be described by an

ordinary differential equation, and the age structure is not

strictly necessary as long as b and m are age-independent.

We can therefore take any arbitrary initial distribution for the

resting G0 phase.

On the other hand, the solution of Eqs. 1 and 2 does depend

on the initial distribution of the proliferating cells, because

older cells are obviously more advanced in the cell cycle and

will reenter the resting phase sooner than the younger ones.

However, to be able to compute the model solutions ex-

plicitly, we have decided, with some loss of generality, to take

the initial distribution in both compartments as shown below.

This simplification will be of course more visible within the

first few generations. In the Appendix, a generalization for

any arbitrary initial condition is shown, but then the solution is

not as tractable.

For clarity, we will divide the initial conditions into two

parts: initial condition I (ICI) and initial condition II (ICII).

ICI is the initial condition when all the cells at time 0 are in

proliferative phase and ICII is the initial condition when all

cells are in resting phase. As solutions with either IC are

particular solutions of Eqs. 1 and 2, we can take any linear

combination of these solutions to get a solution of the full

model for any arbitrary initial condition.

The initial condition ICI is

IC
I p0ð0; aÞ ¼ C0dðaÞ; for 0# a# t;

n0ð0; aÞ ¼ 0; for all a$ 0;

�
(4)

The initial condition ICII is

IC
II p0ð0; aÞ ¼ 0; for 0# a# t;

n0ð0; aÞ ¼ C0dðaÞ; for all a$ 0;

�
(5)

In the initial conditions (Eqs. 4 and 5), C0 represents the

initial number of cells. The function d(a) is the standard

Dirac delta function which represents the fact that all cells

have initially an age a ¼ 0, and is defined by the following

properties:

dðaÞ ¼ 0; for a 6¼ 0;

ð‘

�‘

dðaÞda ¼ 1: (6)

It should be noted that the unit of pk and nk is cells per day.
The model developed here is focused on fitting experimental

data, and as the CFSE fluorescence profile figures usually do

not give much information about absolute number of cells,

the real value of C0 is irrelevant for the study. Therefore, we

will use C0 ¼ 1 as the initial CFSE 1 cell number. This will

give a relative cell count with respect to the initial number of

CFSE 1 cells in simulations.

As we have derived in the Appendix, under the section

called Computation of pk(t,a) and nk(t,a), the solution for the

maturation-age problem defined by Eqs. 1 and 2 at the kth

division of a cell cohort with ICI (Eq. 4) is

pkðt; aÞ ¼
ðt � a� ktÞk�1

ðk � 1Þ! 2
k
e
�kgt

b
k
e
�ðm1bÞðt�a�ktÞ

e
�ga

; (7)

for k $ 1 and t�a $ kt,

nkðt; aÞ ¼
ðt � a� ktÞk�2

ðk � 2Þ! 2
k
e
�kgt

b
k�1

e
�ðm1bÞðt�ktÞ

; (8)

for k $ 2 and t � a $ kt. For k ¼ 0 and 1, we have

p0ðt; aÞ ¼ dða� tÞ e�ga
; for a# t# t; (9)

and

n1ðt; aÞ ¼ 2dða� t1 tÞ e�gt
e
�ðm1bÞa

; for 0# a# t � t:

(10)

Solution with Initial Conditions I (ICI) in the Appendix gives

the derivation of this result, and Solution with Initial Con-

ditions II (ICII) in the Appendix gives the solution of the

model with ICII.

Note that for a given age a, the densities p and n have

the functional form of a shifted gamma distribution (up to

a multiplicative factor). The gamma distribution has been

widely used in the population dynamics literature and is

often related to a distribution of maturation times (Haurie

et al., 1998; Hearn et al., 1998; Bernard et al., 2001).

Therefore, the time required for a single cell to perform

a fixed number of divisions follows a g-distribution. Not

only is this distribution easy to handle mathematically, but

it also offers a good fit to experimental data. The model

presented here gives an analytical explanation, based on

physiologically relevant features, for the occurrence of the

g-distribution seen in many cell labeling experiments

(Guerry et al., 1973; Deubelbeiss et al., 1975; Price et al.,

1996; Basu et al., 2002).

Numerical illustrations

A quantitative analysis of lymphocyte proliferation using

CFSE has been carried out by Hasbold and co-workers

(Hasbold et al., 1999). The authors approximate the dis-

tribution of cell cycle durations by Gaussian distributions to

fit the experimental data, assuming that the distribution of

time until first division is Gaussian. They consider neither

the resting G0 compartment, nor apoptosis. This model is

simple and the results are consistent with the data. However,

this method does not give any further information such as

the proportion of proliferating and resting cells, the loss

rate (due to death or differentiation) in each compartment,

the reentry rate from the resting phase to the proliferating

one, or the time t required for each cell to divide. Another

model by Zhang and co-workers uses discrete time steps
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to model the proportion of apoptotic, dividing, and quies-

cent cells in a hematopoietic cell population (Zhang et al.,

2001). However, this model does not allow evaluation of

kinetic parameters such as the reentry rate into proli-

ferative phase.

Our model is more complicated, but the numerical fit of

the model solutions to data allows us to give estimates of

these parameters. The objective of this section is to present

different aspects of our results. The section is divided into

three subsections. In the subsection Comparison with Ex-

perimental Data, we compare our theoretical results with

some existing experimental data on hematopoietic stem

cell division in vitro. In the subsection Relation between

Proliferating Cells and Resting Cells, we compare the

predicted proportion of proliferating and resting cells and

their evolution with respect to the total population. The

subsection Asynchronous Evolution of Divided and Un-

divided Cells is focused on the description of the temporal

dynamics of the cell population during a period of time (8 h–

72 h).

It is important to note that, in the model presented in

Description of the Model, we assume that the proliferating

cells that are labeled by CFSE are only labeled at age a ¼
0 (ICI, Eq. 4), which is not the case in reality. Indeed, CFSE

molecules are incorporated by all proliferating cells

(Hodgkin et al., 1996; Lyons and Parish, 1994). In Solution

with a General Initial Density Distribution, found in the

Appendix, we present a generalization to take into account

an arbitrary initial condition. Thus, for the numerical sim-

ulations done here, we will use a combination of ICI and

ICII as an initial condition to make the computations as clear

as possible so that the role of each parameter can be

understood in a better way. The program used to make these

numerical simulations is written with the software Matlab. It

is publicly available and can be downloaded from http//

www.cnd.mcgill.ca/;sberna/cfse/cfse.html.

Comparison with experimental data

The data to which we have compared our results come from

the work of Oostendorp and co-workers (Oostendorp et al.,

2000; see Figs. 1 and 2 therein). Data were obtained from

primitive murine bone marrow cells. The cells were cultured

in vitro with a combination of growth factors: steel factor,

fetal liver tyrosine kinase ligand 3, and interleukin-11 or

hyper-interleukin-6. Cells were first labeled with CFSE and

then incubated overnight before isolating CFSE 1 cells.

Cells were then cultured for two or three days more (three or

four days in total). Data were obtained by digitizing CFSE

profiles from the original figures using the software

CurveUnscan (SquarePoint Software, Gentilly, France).

The parameters were estimated by fitting the model visually

to experimental data.

The results in Fig. 2 show a consistent approximation of

the experimental data by our solutions with the parameters: b

¼ 2.24 day�1, t ¼ 0.307 day, g ¼ 0.30 day�1, and m ¼ 0.05

day�1. Cells have been sorted according to their CFSE

fluorescence profile after three days of culture (two days after

isolating CFSE 1 cells). Parameters g and m both represent

cell loss, and their individual values cannot be based solely

on CFSE tracking experiments. For this reason, we assumed

that the loss rate m in the resting phase is very small (order of

0.05 day�1) and took g as the parameter to be fitted. The

reentry rate b is similar to the estimations given in Mackey

(1978, 1997). It is interesting to observe that after two days,

some cells have reached the sixth division as shown in the

experimental data on Fig. 2.

This example of a fit of the data with the model is

relatively successful. However, there is a gap between the

model predicted result and the experimental data for the cells

of generation 0 (at the left-hand side of Fig. 2). We believe

that this difference is primarily due to the fact that in our

model, we assumed that the reentry rate b is a constant

independent of any factors such as time, generation k or

heterogeneity in cell population. In Fig. 3, we have plotted

two populations of cells predicted by the model with the

same parameters: t ¼ 0.25 day, g ¼ 0.90 day�1, and m ¼
0.05 day�1, but a different reentry rate b. In the top panel, b

¼ 0.08 day�1 which corresponds to a slowly cycling

population and in the bottom panel, b ¼ 2.30 day�1 which

corresponds to a rapidly cycling one. It is clear that the data

from the first generations are best represented by a slowly

cycling population and the later generations with a faster

cycling one.

If we sum the two subpopulations of Fig. 3 with

a proportion of 0.40 for the slow cycling population and

0.60 for the fast cycling, the result presented in Fig. 4 is

a very good approximation to the experimental data.

Relation between proliferating cells and
resting cells

In all the figures representing the simulations, our grayscale

coding shows both the proliferating and resting cells for each

generation. It is clear from these figures that a change of

the proportion of cells in each phase occurs with time. It is

interesting not only to compute numerically the proportion of

cells in the resting and proliferating phases with respect to

cell generation at a fixed time (Fig. 5), but also to simulate

the evolution of these proportions over time for all gen-

erations together (Fig. 6).

In Fig. 5, we observe an increase in the fraction of cells

in the resting cell population and a decrease of the proli-

ferating fraction with respect to division number. The propor-

tion of resting phase cells after several generations becomes

larger than the proliferating cells. This would imply that in

our model the resting phase plays a role of a cellular

reservoir.

Without the structure of generations, the population model

has the property of asynchronous exponential growth, i.e.,
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the cell densities n and p converge to an invariant dis-

tribution in time (after multiplication by an exponential

factor in time; see Webb, 1985; Arino et al., 1997; Sánchez

and Webb, 2001). This property is reflected in Fig. 6, where

it is shown that the proportion of proliferating and resting

phase cells with respect to the total population clearly

stabilizes over time. This behavior is expected because, in

our simulations, the damped oscillations can be compared to

the exchange of two fluids separated into two different

boxes. Cells start proliferating very quickly, but then the

resting compartment acts as a reservoir compartment where

a majority of cells will remain after a certain time. However,

when the model with the structure of generation is consi-

dered, the number of generations with nonzero populations

is increasing over time, thus there is no asynchronous expo-

nential growth with respect to the generation structure as we

can see in Fig. 7.

Asynchronous evolution of divided
and undivided cells

Because our model is able to describe the evolution of

a cohort of cells over time, we simulated this situation in Fig.

7 for time between 8 h and 72 h. The result shows the

standard CFSE profile usually observed in vitro as well as in

vivo (Lyons and Parish, 1994). This profile is sometimes

referred to as the ‘‘asynchronous division shape’’ (Hasbold

et al., 1999; Hodgkin et al., 1996): after several days, some

cells remain undivided whereas some have divided several

times. The term ‘‘asynchronous’’ here has a different

meaning from the one of ‘‘asynchronous exponential

growth’’ in the section Relation between Proliferating Cells

and Resting Cells. This asynchrony is due to the fact that

within a same generation, some cells remain in the resting

phase G0 and some keep on proliferating. The progressive

cell divisions can be tracked during several days (72 h in our

simulation) giving rise to this typical asynchronous CFSE

profile. As time goes on, the division profile takes a slightly

asymmetric, left skewed shape.

CONCLUSION

The model we have developed here to describe the tracking

of cell division using CFSE has two main advantages. First,

our approach is simple and the computations to obtain the

solutions are more technical than highly theoretical. This

allows us to understand the role of each parameter in shap-

ing the results, and gives a biological interpretation to our

results. Secondly, our simulations are quite satisfactory in the

sense that our estimations are consistent with the experi-

mental data. These combine to give an understandable model

that is easy to handle with respect to data analysis and which

yields results consistent to the experimental results.

As noted at the beginning of the section Numerical

Illustrations, this model is not the first attempt in the

literature to describe a quantitative analysis of cell division

using CFSE. Hasbold and co-workers, and Zhang and co-

workers, have proposed simple models showing excellent

agreement with the experimental data (Hasbold et al., 1999;

Zhang et al., 2001). The model we present here gives a more

detailed description of the mechanisms involved in the cell

division such as the G0 resting phase, which is not taken

FIGURE 2 Comparison of CFSE fluorescence between

the experimental data and theoretical results. This figure

represents the CFSE profile after 3 days of culture (two

days after isolating CFSE 1 cells). The first bar (black)
represents the model predicted number of proliferating

cells, the second one (dark) is for the predicted resting

phase cells, the third bar (light) is the total cell population

in the cell compartment and the fourth bar (white) is the

experimental data. For comparison between the data and

the model one should concentrate on the total population.

Parameters: b ¼ 2.24 day�1, t ¼ 0.307 day, g ¼ 0.30

day�1, and m ¼ 0.05 day�1. The initial proportion of cells

in resting phase is 0.65. Experimental data taken from

Oostendorp et al. (2000) (Fig. 1, panel 3).
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in consideration in the study in Hasbold et al. (1999), and

provides more information about the role of several pa-

rameters such as the reentry rate b, which is impossible to

evaluate in Zhang et al. (2001).

Some points remain that could be improved. It is com-

monly believed that b depends on the total population N of

resting cells in vivo (Adimy and Pujo-Menjouet, 2001;

Mackey, 1978, 1997; Mackey and Rudnicki, 1994, 1999;

Pujo-Menjouet and Rudnicki, 2000) and probably on the

division history of the cell as well as the population he-

terogeneity. The usual shape of b is a decreasing function of

the total population in the resting phase (a Hill function most

of the time). Indeed, regarding our simulations, one can

easily notice that the function b should not be considered as

a constant. Our ‘‘hybrid’’ model would then be nonlinear and

the explicit form of the solutions more difficult to obtain

analytically. We believe that b plays a more important role

than the one we gave it in our assumptions. The results of the

parameters estimations in Figs. 3 and 4 have shown that

b depends on characteristics of two subpopulations, charac-

teristics that may depend on division history and/or popula-

tion density. This nonlinear model will be the object of future

investigations.

Even with these cautionary comments, the results

presented here allow estimations on the range of the mean

generation time. The mean generation time (MGT) is defined

as the average time required for a cell to perform an entire

cycle, i.e., from the beginning of the resting (G0) phase at a¼
0 to the beginning of the next resting phase after cell

division. In other words, this is the average time required to

go through phases G0, G1, S, G2, and M successively. In term

of our parameters, the MGT is Tg ¼ t 1 1/b. This MGT is

not affected by the loss rates m and g because only cells that

survive through the resting and proliferative phases are taken

into account. The MGT should not be interpreted as the

average time spent by a cell in the resting and proliferat-

ing phases. In this case, the average time spent in the rest-

ing phase is htni ¼ (b 1 m)�1 and the average time in

the proliferative phase is htpi ¼ (1 � gt exp(�gt)[1 �
exp(�gt)]�1)/gt. It is interesting to note that in the example

of two subpopulations (Figs. 3 and 4), the value of b ¼ 0.08

day�1 corresponds to a MGT of Tg ¼ 12.75 days and for the

value b ¼ 2.30 day�1, it is Tg ¼ 0.68 day. The large

difference between these two values suggests that the

primitive murine bone marrow cell population analyzed

here is heterogeneous and consists, after four days of culture,

of a slowly cycling subpopulation and a rapidly cycling one,

or perhaps a continuum between these two extremes. The

existence of several subpopulations could be explained by

the differentiation of some of the primitive cells initially in

the culture. This interpretation is consistent with experimen-

tal data about the quiescence of primitive hematopoietic stem

cells (Bradford et al., 1997) implying that more mature cells

cycle more rapidly than primitive ones (Furukawa, 1998).

One of the main issues regarding the analysis of he-

matopoietic stem cell kinetics is their capability of repop-

ulating a depleted bone marrow and this study provides a new

theoretical framework to identify good candidates for cell

transplant. The MGT is a critical parameter when the

repopulating ability of a cell population is considered. The

FIGURE 3 Representation of two subpopulations with

the same parameters: t ¼ 0.25 day, g ¼ 0.90 day�1, and

m ¼ 0.05 day�1, but a different reentry rate b. (Top) b ¼
0.08 day�1, which corresponds to a slowly cycling

population of cells. (Bottom) b ¼ 2.30 day�1 which

corresponds to a rapidly cycling population. The exper-

imental data come from Oostendorp et al. (2000) (Fig. 2,

bottom). Bars as in Fig. 2.
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model presented here allows the characterization of different

cell populations by estimating their kinetic properties using

CFSE profile analysis.

The kinetics of stem cells is still poorly understood due to

the lack of experimental tools and the apparent heterogeneity

of stem cell populations. CFSE 1 cell tracking experiments

along with a mathematical model of proliferation are a good

example of the fruitful cooperation between experimental

methods and theoretical models to gain insight into the

complex behavior of self-renewing cell populations.

APPENDIX

Computation of pk(t,a) and nk(t,a)

We present here the computation of the solution of Eqs. 1 and 2. First we

solve Eqs. 1 and 2 with initial conditions I. From that solution, we then

FIGURE 5 Model predicted numbers of proliferating

and resting phase cells with respect to division number at

t ¼ 3 days based on the same parameter as in Fig. 2: b ¼
2.24 day�1, t ¼ 0.307 day, g ¼ 0.30 day�1, m ¼ 0.05

day�1, and an initial proportion of resting cells of 0.65. The

CFSE fluorescence profile is shown in the top panel. In the

lower panel, the proportion of cells in the two different

compartments for each generation is given.

FIGURE 4 Approximation of the experimental data after

four days in culture (3 days after isolating CFSE 1 cells)

from Oostendorp et al. (2000) (Fig. 2, bottom). Two

subpopulations are represented in the present figure: one

corresponding to the slowly cycling population (b ¼ 0.08

day�1) and the other one corresponding to the rapidly

cycling population (b ¼ 2.30 day�1) parameters: b ¼ 0.08

and 2.30 day�1, t ¼ 0.25 day, g ¼ 0.90 day�1, and m ¼
0.05 day�1. The initial proportion of cells in resting phase

was 0.90; the slowly cycling population constituting 0.40 of

the total and the rapidly cycling one 0.60 of the total initial

population. This figure represents the weighted sum of

subpanels in Fig. 3. Bars as in Fig. 2.
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derive the solution with initial conditions II. In the following, we will denote

pI and nI as the solution associated with ICI, and pII and nIIas the solution

associated with ICII. Then, from those two particular solutions, we can write

down a general form of solution associated with an arbitrary initial density

distribution at time t ¼ 0.

Solution with initial conditions I (ICI)

Here, we present the computation of results presented in the section called

Description of the Model.

Using the method of characteristics, we can solve Eqs. 1 and 2 to obtain

a general implicit solution for pk and nk.

pkðt; aÞ ¼
pkð0; a� tÞ e�gt

; for 0# a# t;
pkðt � a; 0Þ e�ga

; for a$ t;

�
(11)

and

nkðt; aÞ ¼ nkð0; a� tÞ e�ðm1bÞt
; for 0# t# a;

nkðt � a; 0Þ e�ðm1bÞa
; for a\t:

�
(12)

Including the boundary conditions defined by Eq. 3 and ICI (Eq. 4) into these

solutions, we have

pI

0ðt; aÞ ¼ dða� tÞ e�ga
; for 0# a# t# t; (13)

and

n
I

1ðt; aÞ ¼ 2p
I

0ðt � a; tÞ e�ðm1bÞa
; for 0# a# t; (14)

leading, with Eq. 13, to

n
I

1ðt; aÞ ¼ 2dða� t1 tÞ e�gt
e
�ðm1bÞa

; for 0# a# t � t;

(15)

for the first cohort. All these functions are assumed to take a zero value

outside the region of definition. To simplify reading, we will not write it

explicitly. The function d is the Dirac delta function as defined in Eq. 6.

Define the total number of cells of maturity k at time t[ 0 as

PkðtÞ ¼
ðt

0

pkðt; aÞda;

and

NkðtÞ ¼
ð1‘

0

nkðt; aÞda:

Then, it is easy to show that NI
1ðtÞ ¼ 2 e�gt e�ðm1bÞðt�tÞ; for t $ t, by

integrating Eq. 15. This allows us to compute pI1ðt; aÞ as follows:

P
I

1ðt; aÞ ¼ p
I

1ðt; a; 0Þ e
�ga

;

¼ bN
I

1ðt � a; 0Þ e�ga
;

¼ 2b e
�gt

e
�ðm1bÞðt�a�tÞ

e
�ga

; (16)

for 0 # a # t�t. Using the same argument, we find that

n
I

2ðt; aÞ ¼ 2
2
be

�2gt
e
�ðm1bÞðt�2tÞ

; for 0# a# t � 2t; (17)

Note that nI2ðt; aÞ does not depend on a and Eq. 18 is valid only for a #

t�2t. Integrating with respect to age, we have

N
I

2ðtÞ ¼
ð t�2t

0

n
I

2ðt; aÞda ¼ ðt � 2tÞ22
be

�2gt
e
�ðm1bÞðt�2tÞ

:

(18)

Proceeding the same way as for Eq. 16, we obtain

p
I

2ðt; aÞ ¼ ðt � a� 2tÞ22
e
�2gt

b
2
e
�ga

e
�ðm1bÞðt�a�2tÞ

: (19)

We can inductively generalize this result for any general division number

k. We have shown that Eqs. 16 and 18 are solutions of Eqs. 1 and 2

FIGURE 6 Model predicted total number of proliferat-

ing and resting phase cells as a function of time for the

same parameters as in Fig. 2, b ¼ 2.24 day�1, t ¼ 0.307

day, g ¼ 0.30 day�1, m ¼ 0.05 day�1, and an initial

proportion of resting cells of 1. The evolution curves are

compared to other ones with a smaller reentry rate b ¼ 1.6

day�1. As expected the proportion of resting phase cells

gets larger as b decreases. The transient is due to the fact

that proliferating cells take a time t to divide and reenter in

the resting phase. After time t ¼ t the curves stabilize

rapidly.
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respectively for k ¼ 1 and k ¼ 2. Suppose that Eqs. 7 and 8 are solutions

of Eqs. 1 and 2 for k [ 1 and k [ 2. Let us prove that Eqs. 7 and 8 are

valid for k 1 1. Starting with Eq. 8 we have, using the induction

hypothesis on pk,

This completes the computation for nk11, so Eq. 8 is satisfied. Let us show

now that Eq. 7 holds. From Eqs. 3 and 11, we have

p
I

kðt; aÞ ¼ p
I

kðt � a; 0Þ e�ga ¼ bN
I

kðt � aÞ e�ga
: (21)

Moreover, we know that

N
I

kðtÞ ¼
ð t�kt

0

ðt � a� ktÞk�2

ðk � 2Þ! 2
k
e
�kgt

b
k�1

e
�ðm1bÞðt�ktÞ

da;

¼ 2
k
e
�kgt

b
k�1

e
�ðm1bÞðt�ktÞ

ð t�kt

0

ðaÞk�2

ðk � 2Þ! da;

¼ 2
k
e
�kgt

b
k�1

e
�ðm1bÞðt�ktÞ ðt � ktÞk�1

ðk � 1Þ! : (22)

Replacing NI
kðt � aÞ in Eq. 21, it is clear that Eq. 7 is satisfied and this

completes the computation of pIk and nIk:

Solution with initial conditions II (ICII)

The computation of the solutions pII and nII is carried the same way as for pI

and nI. The ICII is

p
II

k ð0; aÞ ¼ 0; for all k$ 0; (23)

and

n
II

0 ð0; aÞ ¼ C0dðaÞ; for 0# a; (24)

and 0 for k$ 1. As already discussed, without loss of generality, we can set

C0 ¼ 1. Then we have for k ¼ 0,

n
II

0 ðt; aÞ ¼ dða� tÞe�ðb1aÞa
; for 0# a# t: (25)

For k[ 0, notice that,

n
II

k ðt; aÞ ¼
n
I

k11ðt1 t; aÞ
2 expð�gtÞ : (26)

Eq. 26 needs explanation. The solution nIIk ðt; aÞ in Eq. 26 is deduced from the

solution nIkðt; aÞ with ICI in the following way. Let us consider the initial

cohort of proliferating cells pI0ð0; aÞ starting at time t¼ 0 and age a¼ 0. This

cohort will divide at a time t¼ t and will be the initial condition nII0 ð0; aÞ: In
other words, all these cells will be at the beginning of the resting phase

nI1ðt; aÞ: Because nII0 ð0; aÞ and nI1ðt; aÞ are equivalent up to a multiplicative

constant, we can choose this constant so that

n
II

0 ð0; aÞ ¼ p
I

0ð0; aÞ: (27)

Further, since

FIGURE 7 Predicted CFSE fluorescence of labeled cells

between 8 h and 72 h based on our analysis with b ¼
2.24 d�1, t ¼ 0.307 d, g ¼ 0.30 d�1, m ¼ 0.05 d�1, and

initial proportion of resting cells of 0.65. The peaks in each

panel represent the total relative number of cells of each

generation for different times. After two days (48 h) the

CFSE profile corresponds to that of Fig. 2.

nk1 1ðt; aÞ ¼ nk1 1ðt � a; 0Þ e�ðm1bÞa
;

¼ 2pkðt � a; tÞ e�ðm1bÞa
;

¼ ðt � a� ðk1 1ÞtÞk�1

ðk � 1Þ! 2
k11

e
�kgt

b
k
e
�gt

e
�ðm1bÞðt�a�ðk11ÞtÞ

e
�ðm1bÞa

;

¼ ðt � a� ðk1 1ÞtÞk�1

ðk � 1Þ! 2
k11 e�kgt

b
k e�gt e�ðm1bÞðt�ðk11ÞtÞ

: (20)
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n
I

1ðt; aÞ ¼ 2 expð�gtÞpI

0ð0; aÞ; (28)

it follows that,

nII

0 ð0; aÞ ¼
n
I

1ðt; aÞ
2 expð�gtÞ : (29)

Then the general Eq. 26 follows naturally. So,

n
II

k ðt; aÞ ¼
ðt � a� ktÞk�1

ðk � 1Þ! 2
k
b

k
e
�kgt

e
�ðb1mÞðt�ktÞ

; (30)

for k $ 1 and t�a $ kt. If we integrate Eq. 30 with respect to age, we find

N
II

k ðtÞ ¼
ðt � ktÞk

k!
2
k
b

k
e
�kgt

e
�ðb1mÞðt�ktÞ

; (31)

for k $ 0. An equation similar to Eq. 26 holds for pIIk ðt; aÞ;

p
II

k ðt; aÞ ¼
pI

k11ðt1 t; aÞ
2 expð�gtÞ : (32)

Then

pII

k ðt; aÞ ¼
ðt � a� ktÞk

k!
2
k
b

k11 e�kgt e�ðb1mÞðt�a�ktÞ e�ga
;

(33)

for k $ 0 and t�a $ kt.

Solution with a general initial
density distribution

We present here a formula giving the general solution of models 1 and 2

using a linear combination of particular solutions with ICI and ICII. As

previously mentioned, the initial age density distribution of the resting cell

population will not affect the solution after the first division, so we will only

consider an arbitrary function g(a) representing the initial density dis-

tribution of cell in the proliferative phase. That is the density of proliferating

cells at time t ¼ 0 is

p0ð0; aÞ ¼ gðaÞ; for 0# a# t; (34)

where g is an positive integrable function on the interval a2 [0,t]. Without

loss of generality, we can assume that
R t

0
gðaÞda ¼ 1: The density of

proliferating cells with initial distribution g(a) is

p
g

kðt; aÞ ¼
ðt

0

p
I

kðt1 s; aÞegsgðsÞds; (35)

and the density of resting phase cells is

n
g

kðt; aÞ ¼
ðt

0

n
I

kðt1 s; aÞegsgðsÞds: (36)

For a complete description of the initial conditions, we only have to give the

number of cells in the resting phase at time t ¼ 0. Assume that the total

number of cells at time t¼ 0 is 1, then the initial number of proliferating cells

r plus the number of resting phase cells ¼ 1. The complete general solution

pk, nk is then

pkðt; aÞ ¼ rp
g

kðt; aÞ1 ð1� rÞpII

k ðt; aÞ; (37)

and

nkðt; aÞ ¼ rp
g

kðt; aÞ1 ð1� rÞnII

k ðt; aÞ; (38)

for k $ 0. It is worth noting that using different initial distributions g does

not significantly influence the behavior of the solution, even for small times

t. However, the solution is affected by the initial ratio r of proliferating cells.
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