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Abstract. This paper gives an explanation for the
experimentally observed onset latencies of the inhibi-
tory responses that vary from a few milliseconds to
hundreds of milliseconds in systems where the conduc-
tion delays are only several milliseconds in the feedback
pathways. To do this we use a simple mathematical
model. The model consists of two delay differential
equations (DDE) where the nonlinear relation between
the postsynaptic potential and the firing frequency
of the neuron population arises from the stoichiometry
of the transmitter-receptor kinetics. The parameters of
the model refer to the hippocampal feedback system,
and the modeling results are compared with corre-
sponding experiments.

1 Introduction

The process in neural circuits in which the activity of a
neuron population excites a second population that in
turn inhibits the first one is called recurrent inhibition.
Recurrent inhibition is ubiquitous in the nervous
system, occurring in insects through humans at levels
from the spinal cord to the cortex, and is observed, for
example, in the hippocampus (Andersen et al. 1964a,b;
MacVicar and Dudek 1982) and incorporated in
mathematical models, for example, by Wilson and
Cowan (1972, 1973). Many investigators and research
groups have contributed to the investigation of the
functional role of recurrent inhibition, but its function
remains obscure.

Time delays are a crucial element in recurrent inhi-
bition and seem to play a major role in the control of the
nervous systems. They are introduced by the synaptic
time delays, conduction (propagational) delays (an der
Heiden 1980; Marcus and Westervelt 1989; Destexhe

Correspondence to: C. Hauptmann
(e-mail: chauptma@cnd.mcgill.ca)

and Babloyantz 1991; Liljenstrom 1991; Destexhe and
Babloyantz 1992), and, as we investigate in this study, by
the dynamical properties of the systems involved. Time
delays may give rise to complex behavior (an der Heiden
1980; Mackey and an der Heiden 1984; Marcus and
Westervelt 1989; Giannakopoulos et al. 2001a,b) and
have strong effects on the timing of synchronized signals
and thereby on the process of signal transmission (Traub
and Miles 1991b; Hauptmann 2000; Giannakopoulos
et al. 2001a). While time delays arise from the inter-
connection and communication of neuron populations,
it is important to investigate the effects and sources of
time delays starting with spatially localized neural pop-
ulations.

In this paper, a simple model of recurrent inhibition
and excitation is investigated. A variable and stimulus-
dependent onset latency is observed in the model
dynamics, and the results are compared with previous
experimental observations.

The paper is structured as follows. The model is
presented and developed in Sect. 3.2. For a specific
example — the CA3 region of the hippocampus — the
model parameters are estimated in Sect. 3.1. In Sects. 3.2
and 3.3, the dynamical behavior, and especially the
stimulus amplitude-dependent onset latency of the
inhibitory response, is investigated. The duration and
amplitude of the inhibition induced by stimulation of a
neuron population out of a neuronal network are
investigated in Sect. 3.4. The results are discussed in
Sect. 3.4.

The intention of the paper is to show that the
dynamical properties of the interconnected neuron
populations may be responsible for the stimulus-
dependent onset latency of the recurrent inhibitory re-
sponse. Experimental results from intracellular and
extracellular recordings from hippocampal slice prepa-
rations (Andersen et al. 1964a) are used to test whether
the simulation results agree with the experimental data.
The effect of latencies induced by the dynamical prop-
erties of the system is a general one, and it is assumed
that the results in this paper also hold for other brain
areas with similar connectivities and receptor kinetics.
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2 The mathematical model

Numerous studies have developed mathematical models
for recurrent inhibition (Milton 1996). In these models,
one can find highly simplified models resulting from
sophisticated assumptions and other models including
innumerable physiological details.

The model used in this study is a modification of the
model studied by Mackey and an der Heiden (1984).
The model equations describe the dynamical behavior
of spatially localized neural populations as considered
by Wilson and Cowan (1972). In this model, the
membrane potential of a postsynaptic neural popula-
tion is controlled by the excitatory and inhibitory
inputs, while the inhibitory inputs are a consequence of
a recurrent inhibition pathway. The spiking behavior of
the neurons is modeled by a membrane-potential-
dependent firing-frequency function. It is assumed that
the firing frequency of the inhibitory neuron population
is proportional to the (time-delayed) firing frequency of
the excitatory neuron population. This assumption
permits the use of only one differential equation. The
nonlinear interaction between the neuron populations
considers the stoichiometry of the GABA receptor
interaction.

Here, as a modification of the model (Mackey and
an der Heiden 1984), an excitatory feedback pathway is
added and the dynamics of the inhibitory neuron pop-
ulation are represented by a separate differential equa-
tion. We show that the onset latency is influenced by the
dynamical properties of the inhibitory neuron popula-
tion. The excitatory feedback pathway reflects excitatory
self-coupling as well as excitatory connections to the
other neuron populations, as shown schematically in
Fig. 1.

2.1 The neuron model
The model consists of two equations, one for the

excitatory population and one for the inhibitory
population.

presynaptic

Fig. 1. Schematic picture of the modified model with recurrent
inhibition and excitation. The excitatory (inhibitory) neuron popula-
tion is indicated by the shaded (white) square. The additional
excitatory feedback loop is drawn as a self-excitation (dashed line) and
also represents the excitatory influences from neighboring neural
populations. Both excitatory feedback loops branch off the outgoing
fiber (thick line) of the excitatory neuron
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where Vi/en[/g(l*:}/e) denotes the excitatory/inhibitory
feedback induced by the excitatory/inhibitory synaptic
coupling, ¥, () denotes the membrane potential at time
¢ for the excitatory/inhibitory neuron population, 7/, is
the inverse of the characteristic time constant of the
synaptic interaction, E is a constant excitatory activation
potential, and n;/.(F.) is a frequency-dependent inter-
action coefficient given by
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where A;/, is the magnitude of postsynaptic potential
induced by the activation of one excitatory/inhibitory
receptor, R, is the total number of excitatory receptors
on a pyramidal cell in the hippocampal CA3 region, R; is
the corresponding number of receptors for the interneu-
ron, and m;), is a proportionality constant. For more
details see below.

The frequency of action potentials generated in the
excitatory and inhibitory neuron population is given by

F;/E(Vz/e) = Ki/e(Vi/e(t - ‘Ci/e) - ®i/e) .
H(Vl/e(t - T[/e) - G)i/e) 5

where H(x) is the Heavyside function, @,/ is the
activation threshold for firing, and 7;/, is the time delay
on the feedback pathway. For more details on the
modeling of the inhibitory feedback see Mackey and
an der Heiden (1984) and the corresponding modeling of
the excitatory feedback below.

The parameters v;/, are the inverse of the onset and
decay-time constants of the synaptic action and are
assumed to be equal to y;/,, hence vi/e = 7;/e-

The frequency-dependent interaction coefficient
N(F;/e) relates the firing frequency to the amplitude of
the induced excitatory postsynaptic potential and re-
flects the transmitter-receptor interaction and thus the
effect of activation of excitatory receptors at the post-
synaptic membrane. In the following, we discuss the
transmitter-receptor reaction for the excitatory gluta-
mate receptors. Through the function 7, the stoichiom-
etry and the nonlinearity of the AMPA (z-Amino-3-hy
droxyl-5-methyl-4-isoazolepropiomic acid) and NMDA
(N-methyl-D-aspartate) receptor-mediated excitatory
feedback enters the problem (Colquhoun et al. 1992).
The transmitter interacting with the receptors is gluta-
mate. The transmitter-receptor interaction is described
by the chemical reaction equation

M, +n.C, =L, , (4)

(3)

where 7, is the number of transmitter molecules required
to activate one excitatory receptor, M, is the number of



the receptors available for activation, C, is the number
of neurotransmitter (glutamate) molecules, and L, is the
number of activated receptors. Three assumptions allow
us to calculate the fraction of active receptors:

— the transmitter-receptor reaction is rapid,

— there is a conservation of receptors so R, = L, + M.,
and

— there is no depletion of glutamate molecules.

The last assumption indicates that the synaptic pool of
excitatory transmitter molecules is large. From Eq. 4 we
get a differential equation for the change in the number
of active receptors:

drL,
dt
where k; and k; are the reaction constants for Eq. 4. The

steady-state solution gives the fraction of activated
receptors:

= -k (Le) + kzMeCZe , (5)

Le [Ce]ne

Ge(Le) - Re - Ke + [Ce]ne ) (6)
where K, =k /k; and [C,] is the concentration of
excitatory transmitter. The relation between the released
transmitter concentration [C,] and the firing frequency
F(V) at the synaptic terminals of the neuron is assumed
to be given by [C,] = m.F(V), where m, is a propor-
tionality constant. For G,(F) we obtain

= (mF (Vo))"
GelFe) = Ke + (meFe(Ve))™ g

The frequency-dependent interaction coefficient #, is
then given by

Ne = ReAeGe(ﬁe) (8)

where R, is the total number of excitatory receptors on a
pyramidal cell in the hippocampal CA3 region and A, is
the magnitude of postsynaptic potential induced by the
activation of one excitatory receptor.

Hence, for the modeling of the activation of receptors
by the neurotransmitters released by action potentials
we use the fraction of activated receptors

SNCY1(A)
) K ) Y

for the excitatory glutamate receptors and

~ F (V)"
Gi(F) = M (10)
Ki + (mF (Vi)™
for the inhibitory GABA receptors.
Next we need to estimate the following parameters
for the excitatory feedback pathway:

— 7i/e: the delay time for the monosynaptic excitatory
and inhibitory connections

— R,: the average number of excitatory receptors per
excitatory cell
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— A, magnitude [mV] of the excitatory postsynaptic
potential resulting from the activation of one receptor

— n.: number of neurotransmitter molecules required for
activation of one receptor

— m,: proportionality constant, gives the concentration
of transmitter molecules released per action potential

— K,: the equilibrium binding constant between excit-
atory transmitter molecules and excitatory cell recep-
tors

With these parameters and the parameters estimated in
Eurich et al. (2002) for the inhibitory feedback pathway
and for the other model parameters all parameters of the
model equations are determined.

As an example and to compare the simulation re-
sults with experimental studies, we will tailor the
parameter estimation for the CA3 region of the hip-
pocampus. The model is very simple compared to other
models describing hippocampal dynamics; for example,
see the complex models for hippocampal activity used
by Traub and Miles (1991a,b). Since we discuss possi-
ble mechanisms for the origin of the onset latency of
the inhibitory response induced by excitatory stimula-
tion, it seems to be reasonable to us to use a simple
model.

3 A specific example — the CA3 region of the hippocampus

3.1 Parameter estimation for the two-equation model
of recurrent excitation and inhibition

The time delay © The time delay 7, is assumed to be
equal for all three synaptic couplings, 7;, = 1. The
feedback pathways are modeled as if they are monosyn-
aptic. In a first experimental study of recurrent excita-
tion between pyramidal cells in the CA3 region of the
hippocampus, evidence was found for the existence of
excitatory feedback, whereas the onset latency was
found to be 24 ms (Lebovitz et al. 1971). These
experiments were carried out using extracellular stimu-
lation and recording, and spike latencies were studied
relative to the onset of the antidromic field potential. A
more recent study using simultaneous intracellular
stimulation and recording of two neighboring pyramidal
cells in the CA3 region of the rat hippocampus indicates
that there is a nonzero probability of monosynaptic
recurrent excitatory pathways between pyramidal cells.
The observed latency may be as short as 0.5 ms
(MacVicar and Dudek 1982; see also the experimental
study of Miles and Wong 1986) (latency ~ 1.0 ms).
Where populations of neurons are concerned we take

1=2.0 ms (11)

for all three synaptic connections. This value takes into
account the time delay due to the synaptic transmission
(= 1.0 ms) and a short propagation time (= 1.0 ms)
(Andersen et al. 1964a; Finch et al. 1988) that corre-
sponds to a distance between the excitatory and
inhibitory neuron population and a length of the self-
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excitation pathway of ~ 500 um and an action potential
propagation speed of 0.5 m/s. Note that in the
experiments described in Andersen et al. (1964a), even
for a very strong stimulation of local afferent fibers a
minimal latency of 4.0 ms was observed, which corre-
sponds to twice the conduction and synaptical delay
of 7 =2.0 ms.

The magnitude of the postsynaptic potential A, In the
literature, a large number of investigations deal with the
magnitude of unitary synaptic events at hippocampal
synapses induced by the stimulation of a single afferent
fiber. The excitatory connections between CA3-CA3 are
discussed and investigated in detail in the book by Traub
and Miles (1991b). These connections reflect our model
situation the best, and the values of the unitary events
vary between 0.2 and 2.3 mV. The average magnitude of
the EPSP is 1.3 mV, and we take this value for our
simulations:

A, =13mV . (12)
Note that this value for the magnitude of a unitary event
is the magnitude of an event caused by a single afferent
stimulation, so a large number of receptors are involved
in one of these events and not just one. We must keep
this in mind for the estimation of the other parameters,
especially for the number R, of excitatory receptors on
one excitatory cell.

The number of excitatory receptors on one excitatory cell
R, In Megias et al. (2001), the number of excitatory and
inhibitory inputs to a single pyramidal cell is given.
These numbers are different from the number of
excitatory receptors R, we must estimate. Hence we
denote these new parameters as R;/,. The numbers R;/,
are given for the CA1 region of the hippocampus, and
we assume they are also valid as an upper bound for the
CA3 region. The number of inhibitory synapses
R, = 1700 given in Megias et al. (2001) was also used
in previous modeling studies dealing with a parameter
set related to the CA3 region (Mackey and an der
Heiden 1984; Finch et al. 1988). The maximal number of
excitatory synapses per cell is given by

R. = 30.000 (13)
and is used for our simulations as an upper bound for
R.. ) i
Both A, (as estimated above) and R, are synapse-re-
lated values and not receptor-related values, as noted in
Sect. 2. The following argument shows that we can use
these values for our model. If we knew the number j of
receptors per synapse, this number could be used to
calculate the number of receptors on an excitatory cell
from the number of synapses on these cells by
R, = j X R,. For the magnitude of a receptor event re-
lated to the magnitude of a synaptic event we can take
A, = A./j. Here we assume that an afferent stimulus
affects one synapse only. Hence the product
AR, = AR, is independent of the number of receptors

at one synapse, and the synaptic values A, and R, can be
used. Thus we obtain

A, =13mV and R, =30.000 . (14)

While we take into account only a subset of all the
connections among neurons, the value R, gives us an
upper bound for the number of synapses involved.

The number of neurotransmitter molecules required for
activation of one receptor n, Receptors in the family of
ligand-activated channels, which include ACh, GABAg3,
glycine, and glutamate receptors, consist of two or more
different subunits and are called oligomers (see Nicholls
1992, Chapt. 9, p. 301).

The fast-reacting AMPA receptor, a glutamate
receptor, is a tetramer, having four binding sites. The
degree of openness of the channel depends on the
number of bound molecules. The receptor is activated
completely if four transmitter molecules are bound to its
binding sites, so

n. =4 (15)

For more details see Rosenmund (1998).

The equilibrium binding constant K, The binding
between the excitatory transmitter molecules and the
excitatory receptors is characterized by a binding
(affinity) constant K,. Experimentally this value is
determined by measuring the inhibition induced by an
application of a given concentration of glutamate in the
synaptic gap. The response to a 1-ms pulse of 1 mM
glutamate is desensitized by a previously applied condi-
tioning concentration of glutamate. The concentration
of previously applied glutamate, where the response to
the added glutamate pulse is half as strong as without
previously applied glutamate, is denoted as the equilib-
rium binding constant K, or half occupancy (K5p). From
experiments using slice preparations from the CA3
hippocampal region using AMPA/KA-type glutamate
receptor channels we obtain

K. = (9.6 uM)™ (16)

For more details see Colquhoun et al. (1992, Fig. 15 and
Table 1).

The proportionality constant m, This constant gives the
concentration of transmitter molecules released per
action potential. From Traub and Miles (1991b) we
have one action potential activating three quanta of
transmitter-release sites, whereas one transmitter-release
site contains 5000 molecules of glutamate. This means
that 15,000 molecules are released by one action
potential. From Edwards (1995) we have more infor-
mation about the geometry of excitatory synapses. The
terminal area is 0.181 um? and the width of the synaptic
cleft 0.02 pum and thus similar to the values used in
Eurich et al. (2002) for inhibitory synapses. These values
give a synaptic volume of 0.00362 pm?. Now we can
calculate the value of m,.
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Table 1. Parameters estimated

Hippocampus value

Reference

for the modified model of two ~ Parameter Units
neuron populations with re- ] 1
current inhibition and excita- V e msil
tion. For the inhibitory Vi ms
feedback loop this parameter E mV
estimation follows the modeling A; mV
study done by Eurich et al. IAQ" mV
(2002) R, -

K; (nM)™

K, (LM

m; pM-sec

m, pM-sec

n; -

e -

K; (mV s)~!

Ke (mV s)~!

T msec

0, mV

0, mV

Ve ms~!

V; ms~!

0.125 Traub and Miles (1991b)

0.1 Traub and Miles (1991b)

[0,2.0] free parameter

1 Eurich et al. 2002

1.3 Traub and Miles (1991b)

[0, 1700] Megias et al. (2001)

[0, 30000] Megias et al. (2001)

S Eurich et al. (2002)

9.6" Colquhoun et al. (1992)

0.62 Eurich et al. (2002)

6.91 Traub and Miles (1991b); Edwards (1995)
3 Eurich et al. (2002)

4 Rosenmund et al. (1998)

20 Eurich et al. (2002)

20 Eurich et al. (2002)

2.0 Andersen et al. 1964a; Finch et al. (1988)
2 Eurich et al. (2002)

2 Eurich et al. (2002)

0.125 Traub and Miles (1991b)

0.1 Traub and Miles (1991b)

15000 molecules 15 x 10'® molecules

e~ 3
volume pm

= 1
volume litre (17)

If the duration of one action potential is 1 ms, we have
for m,

25%10°
e = 70.00362

Note that this value for the excitatory synapses is
nearly ten times larger than the value for the inhibitory
synapses used in Eurich et al. (2002). We assume that the
thresholds for activation ©;/, in Eq. 3 are the same for
the excitatory and inhibitory feedback.

The parameters used in the simulations are summa-
rized in Table 1.

uMsec = 6.91 pMsec (18)

3.2 Dynamical behavior of the isolated two-population
model

In this section, we investigate the principal dynamical
behavior of the isolated populations of neurons as
described by the model (Eq. 1). We observed three
different parameter regimes where the system displays
different dynamical behavior.

— For E < ®, a stationary solution with V, =FE is
observed.

— Also, after strong perturbations the system returns
back to the stationary solution.

— For ®, < E < ®” (in our case ®" =~ 21.4 mV) the
system shows periodic solutions.

— These periodic solutions represent bursting solutions
in which the system switches periodically between
spiking and quiescence.

—For E > O, the period of the bursting first decreases
with increasing E. If E is increased further, the
bursting period increases again until a new steady
state with ¥V, > O, is reached.

— For E > ®" a stationary solution with ¥V, > ©®, is
observed.

— This superthreshold stationary solution of the
membrane potential corresponds to a spiking
solution in terms of the firing frequency of the
excitatory and inhibitory neuron populations.

These characteristics of the dynamical changes of the
system indicate that a bifurcation has occurred, and,
based on the work of Eurich et al. (2002), it is probably a
Hopf bifurcation. Since we are interested in the onset
latency of the inhibitory response, we will not investigate
the periodic solutions of the system in more detail. The
onset latency can be observed for E < ®,, where the
system shows a stationary solution and an appropriate
stimulation causes ¥, to cross the threshold ®,. After the
onset of the inhibitory response the system returns to its
stationary solution, as shown in Fig. 2. As initial
conditions for the delayed differential equations in the
regime E < O, (all simulations) we use constant initial
functions, namely, the steady states of the system, which
is E for the excitatory neuron population and zero for
the inhibitory one.

3.3 Stimulus-dependent latency in the two-population
model

For different stimulation strengths the two-population
model shows similar time shifts of the inhibitory
response as observed in experimental studies (see, for
example, Andersen et al. 1964a). The time for the onset
of the inhibitory response is calculated from the
difference between the starting time of the stimulation
and the first time the inhibition in Eq. 1 for the
excitatory neuron population is not equal to zero,
vin;(F;) # 0 (see the lower plot of Fig. 2). The stimulus
is applied by changing the parameter £ in Eq. 1.

The shape of the latency curve for weak stimulation
amplitude is induced by the excitatory self-coupling in
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Fig. 2. Dynamical behavior of the stimulated system. Time course of
the membrane potentials V, (thick line) and V; (dotted line) of the
stimulated system. We used a sine-like stimulation (thin line) with
amplitude 3.6 mV and a duration of 1 ms. The dashed line indicates
the threshold @,/ (upper plot). The excitatory response vn,(F,)
(dotted line) and the inhibitory response v, (F;) (thick line) are plotted
in the lower plot. The inhibitory response starts after the membrane
potential ¥; has crossed the threshold ®;. Parameters: £ = 1.8 mV,
Re = ]O, Ri = 40

the equation for ¥, (dashed branch in Fig. 3). Even weak
stimulation can be amplified by this self-excitation while
the inhibition is deactivated. During this amplification
weak oscillations in ¥V, occur first (Fig. 2 upper plot).
These weak oscillations are amplified by the excitatory
self-feedback before these oscillations are able to acti-
vate the inhibitory subpopulation. The period of these
oscillations is approximately 2.5 ms, and they are in-
duced by a time delay of © = 2.0 ms. Without self-exci-
tation a stronger stimulus is needed to result in an
inhibitory response, and the long latency responses
(latency larger then 6.5 ms) disappear (see Fig. 3).

3.4 Inhibitory response in a larger network of excitatory
and inhibitory neuron populations

In this section, the inhibition is investigated in a network
of 900 neuron populations in which nearest-neighbor

127
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Fig. 3. Latency of the onset of the inhibitory response as a function of
the stimulus strength. The stimulation is implemented by a sinusoidal-
like peak with a duration of 1 ms. The dashed branch gives the latency
curve observed for the system with excitatory self-coupling in the first
equation of Eq. 1. Without excitatory self-coupling only the solid
branch with a maximal latency of 6.73 ms is observed. The stimulation
strength is scaled with a stimulation threshold of 3.0 mV. The
experimentally observed data Andersen (1964a) are indicated by the
stars. Parameters: £ = 1.8 mV, R, = 10, R; = 40

Fig. 4. Schematic diagram of the arrangement of the neuronal
elements in the rectangular lattice. Each element gets input from the
four neighboring elements; the coupling is an excitatory coupling. We
use open boundary conditions

connections exist among the excitatory neuron popula-
tions, as shown in Fig. 4.

The general structure of the network used in this
paper follows the network structure developed in Traub
and Miles (1991b). The neuron populations are arranged
in a rectangular array of size n x n. In neuronal net-
works, the probability of connections between neuron
populations decreases with increasing distance between
the populations, which was quantified for the rat visual
cortex by Hellwig (2000) and holds for other neuronal
areas too (Traub and Miles 1991b). In our case, we as-
sume that the probability of finding a connection de-
creases rapidly enough to justify the simplification of
nearest-neighbor connections. In this case, we can as-
sume also that the propagational time delay and the
connection strength are the same for all connections
among the excitatory neuron populations. Hence, each
excitatory neuron population from the neighborhood
contributes % of the total excitatory coupling strength,
and there is no self-coupling of the excitatory neuron
populations. The dynamics of the network are con-
trolled by the following set of delayed differential
equations:
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If an element from the center of the network is
stimulated (stimulation amplitude 4.5 mV and duration
1 ms), the excitatory activity propagates within the
network and is followed by a trailing inhibition front.
The population activity shows a maximal network
inhibition approximately 40 ms after the stimulation is
applied (see Fig. 5). If the delay time for the network
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Fig. 5. Inhibitory response of the network. The stimulus is applied to
one excitatory neuron population from the center of the network at
50 ms (indicated by the star). The long latency inhibitory response
(dashed line) is a result of a simulation with a delay time of 5.0 ms for
the network connections. Parameters: £ = 1.8 mV, R, = 10, R; = 40

Fig. 6. Activity pattern of the network neuron populations. The
different patterns correspond to the network activity 10, 30, 40, 50, 70,
and 90 ms after the stimulation. The gray scale indicates the value of
V., whereas bright gray indicates V, > E (excitation) and darker gray
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connections is increased, the excitation propagates with
a lower velocity to the edges of the network. The largest
number of inhibited neuron populations and the max-
imum of the inhibitory response in the network occur
later than in the case with short delay, as we have shown
in Fig. 5.

The activity pattern shown in Fig. 6 illustrates the
reason for the dependence of the time of maximal inhi-
bition on the network size. The activity propagates to
the boundaries of the network and disappears due to the
subsequent inhibition. The maximal total inhibition in
the network is observed at the time when the largest
number of neurons is inhibited strongly (see Fig. 6, third
pattern from left).

These results confirm the existence of traveling front
solutions originating from brief local stimulation as
investigated in more detail by Jung and Mayer-Kress
(1995), Wilson (1999), and Pinto and Ermentrout (2001).
The slow local negative feedback results in traveling
pulses. The traveling pulses create the certain shape of
the inhibitory response of the network as seen in Fig-
ure 5.

If the network consists of 100 neuron populations
only, the maximum of inhibition in the network is ob-
served earlier, as shown in Fig. 7. The number of neuron
populations inhibited at a given time is smaller and
inhibited earlier than in the larger network, while the
propagation speed of excitation within the network re-
mains the same. Further simulations with networks of
different sizes showed that the time to peak of the
inhibitory response increases linearly with increasing
numbers of neuron populations # in one row if an n X n
network is simulated (see Fig. 8). The type of boundary
condition does not strongly influence the time of maxi-
mal inhibition. We simulated the network with periodic
boundary conditions and obtained qualitatively the
same results (not illustrated). The network activity is
terminated by the inhibitory activity induced by the
excitatory activity.

4 Discussion

The model we have investigated is an extension of that
of Mackey and an der Heiden (1984), which takes into
account recurrent self-excitation via an additional
variable controlled by a second differential equation.
The modifications were carried out to show that long

‘

indicates
excitatory neuron populations. Here in all feedback pathways we
assume a delay of 2.0 ms. Parameters: £ = 1.8 mV, R, = 10, R; = 40

V, < E (inhibition), where E is the steady-state value of the
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0 50 100 150 200 250
time [msec]

Fig. 7. Inhibitory response of the network with only 100 neuron
populations. The stimulus is applied to one excitatory neuron
population from the center of the network at 50 ms (indicated by
the star). The long latency inhibitory response (dashed line) is a result
of a simulation with a delay time of 5.0 ms for the network
connections. Parameters: £ = 1.8, R, = 10, R; = 40

200 ]

[6)]
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|
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time to peak [msec]
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n

Fig. 8. Time to peak of the inhibitory network response as a function
of the network size. The network size is given by the number of
neuron populations in a row of the rectangular network n (an n x n
network is simulated). The diamonds (squares) give the time to peak
for the network simulations with short (long) connection delay. The
slope of the fitted line is 2.75 (5.72)

latencies for the onset of the inhibitory response after
stimulation of the excitatory neuron population can be
introduced by the dynamical properties of the inhibitory
neuron population.

The dynamical model for the inhibitory neuron
population is similar to that of the excitatory neuron
population. The total postsynaptic potential measured
at the soma is controlled by a one-dimensional delay
differential equation. To keep the model simple, we as-
sumed that the sequence of action potentials could be
mimicked by its firing frequency (see Mackey and an der
Heiden 1984). If a threshold is crossed by the membrane
potential, the neurons start to spike, whereas the firing
frequency increases linearly with increasing membrane
potential. The modeling structure of the excitatory
interaction is the same as for the inhibitory interaction.

Stimulation of the excitatory neuron population re-
sults in an increase of the membrane potential of the
excitatory neuron population, which in turn causes
the onset of excitatory spiking. As a consequence, the
inhibitory neuron population is stimulated and starts to
spike if the activity is strong enough or lasts long en-
ough. A positive inhibitory firing frequency then termi-
nates the activity of the excitatory neuron population.
This simple mechanism of recurrent inhibition includes
the summation of stimulating signals in space and time,
which is a consequence of the inertia of the differential
equation and controlled by the damping constants 7y, ;.
If the stimulation is weak or the damping is strong, the
stimulation must last for a long time to cause an acti-
vation of the neuron population, which results in a
stimulus amplitude dependence of the onset latency of
the inhibitory activity. It is remarkable that connections
formed by gap junctions with an extremely fast trans-
mission time (no time delay) cannot reverse the effect of
delays induced by the dynamical properties of the neu-
ron population.

These results match with the results of the experi-
mental study done by Andersen et al. (1964a), who
showed in great detail the influence of the stimulation
amplitude on the onset latency of the inhibitory re-
sponse. They investigated the CA3 region of the cat
hippocampus and applied a commissural stimulation. As
a result they found onset latencies of the inhibitory re-
sponse varying from 5.6 to 9.1 ms, while for increasing
amplitude the onset latency gets shorter. On the other
hand, a volley applied to an afferent pathway is able to
inhibit the response of the pyramidal neurons to a test
discharge for a long period, approximately 100-200 ms.

Our network simulations offer an explanation for this
experimentally observed long-lasting inhibition in ex-
tended neuronal systems. Times to peak of 40-100 ms
can occur when the time constants y,, are chosen to
match the dynamics of fast excitatory and inhibitory
synapses. The excitation propagates within the network
and is terminated by a subsequent inhibition front. The
maximal size of this inhibition front depends on the
network size and stimulus location. This leads to an-
other important result: the network size depends on the
time evolution of the inhibitory reaction. Activity
propagation in two-dimensional networks controls the
shape and duration of the overall inhibition.

The results in this paper give a simple model-based
demonstration of how the dynamical features of recur-
rent inhibition and excitatory feedback can induce
stimulus-dependent onset latencies. These results may
also be of use for future modeling studies where even
more simplified models are used. If the dynamical
behavior of the compartments of the model are re-
strained, it might be reasonable to consider the imple-
mentation of fixed time delays in the 5-to-10-ms range
instead of only the conduction time delay of 2.0 ms.

Even though the proposed model is very simple and
does not take into account the spiking of the neuron
populations, it seems to be sufficient to explain the
experimental results first observed by Andersen et al.
(1964).
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