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Abstract

We present a dynamical model of the production and regulation of circulating blood neutrophil number. This model is derived

from physiologically relevant features of the hematopoietic system, and is analysed using both analytic and numerical methods.

Supercritical Hopf bifurcations and saddle-node bifurcations of limit cycles are shown to exist. We make the estimation of kinetic

parameters for dogs and then apply the model to cyclical neutropenia (CN) in the grey collie, a rare disorder in which oscillations in

all blood cell counts are found. We conclude that the major cause of the oscillations in CN is an increased rate of apoptosis of

neutrophil precursors which leads to a destabilization of the hematopoietic stem cell compartment.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Hematopoiesis is the term used to describe the
production of blood cells. Even though all blood cells
come from a unique source, the hematopoietic stem cells
(HSC), the mechanisms regulating this production are
still obscure. Nevertheless, it seems clear that the
production of erythrocytes and platelets is controlled
by feedback mechanisms involving specific cytokines
such as erythropoietin (Epo) and thrombopoietin (Tpo)

(Haurie et al., 1998; Mahaffy et al., 1998; Santillan
et al., 2000). However, the regulation of leukopoiesis
(production of white blood cells) is not as well under-
stood and the local HSC regulation mechanisms
are even less clear (Rubinow and Lebowitz, 1975;
MacDonald, 1978; Hearn et al., 1998; Haurie et al.,
1998, 1999a, b, 2000; Mackey, 2001). Because of
their dynamical character, cyclical neutropenia (CN)
and other periodic hematological disorders offer us
opportunities to better comprehend the nature of
these regulatory processes (von Schulthess and Mazer,
1982).
CN is a rare hematological disorder characterized by

oscillations in the circulating neutrophil count. These
levels fall from normal to barely detectable levels with a
period of 19–21 days in humans (Guerry et al., 1973;
Dale and Hammond, 1988; Haurie et al., 1998), and
periods up to 40 days have been observed (Haurie et al.,
1998). These oscillations in the neutrophil count about a
subnormal level are generally accompanied by oscilla-
tions around normal levels in other blood cell lineages
such as platelets, lymphocytes and reticulocytes (Haurie
et al., 1998, 2000).
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Many mathematical models have been proposed to
explain the origin of these oscillations as well as to
understand the control of neutrophil production in
non-pathological cases. For a discussion of previous
models that have been developed see, Hearn et al.
(1998). In most of them, the production is controlled by
a feedback loop located at the level of the neutrophil
precursors. Many authors have suggested a destabiliza-
tion of this feedback loop as a source of oscillations
in the neutrophil count seen in CN (Morley
et al., 1969; Morley and Stohlman, 1970; Morley,
1970; King-Smith and Morley, 1970; Reeve, 1973;
MacDonald, 1978; Kazarinoff and van den Driessche,
1979; von Schulthess and Mazer, 1982; Shvitra et al.,
1983; Wichmann et al., 1988; Schmitz et al., 1990,
1995). However, it has also been shown to be unlikely
that such a destabilization could account for oscillations
in CN (Hearn et al., 1998), further suggesting that
the origin of the oscillations is due to destabilization of
the HSC regulation mechanisms. This would also
explain the fact that other cell lineages oscillate with
the same period as the neutrophils (Haurie et al., 1998,
2000).
Fortunately, CN is found in an animal model. All

grey collies (Lund et al., 1967) are born with this
congenital disease with an oscillation period on the
order of 11–16 days (Haurie et al., 1998, 1999b, 2000).
This canine model has provided extensive experimental
data on the nature of CN. The challenge is to transfer to
humans the knowledge derived from dogs.
In this paper, our primary goal is to model CN in the

grey collie and understand its dynamic behaviour. A
variety of experimental data show that CN is associated
with an elevated rate of apoptosis in neutrophil
precursors (Dale et al., 2000; Aprikyan et al., 2001).
The model developed in this paper is used to explore
the possibility that the oscillations characteristic of CN
are actually a consequence of this increased rate of
apoptosis.
The paper is organized as follow. In Section 2 we

develop the model, which is a simple two-compartment
production system. In Section 3, we use the experimental
and clinical literature to estimate the model parameters,
mainly using data from mice and dogs. In Section 4 we
analyse the model using a combination of analytical and
numerical continuation methods. A local supercritical
Hopf bifurcation and a saddle-node bifurcation of limit
cycles are found as critical parameters are varied.
Numerical simulations are presented in Section 5. In
Section 6 we present a new hypothesis for the origin of
the oscillations characteristic of CN. We propose this
oscillation mechanism as a generic way to introduce
oscillations in hematopoiesis. In Section 7, we discuss
some of the difficulties in estimating the system
parameters for dogs and the important issues in
adapting such a model for humans.

2. A model of white blood cell production

2.1. The model equations

Fig. 1 illustrates the two components of this model:
the hematopoietic stem cell (HSC) compartment (de-
noted S) and the maturing neutrophil compartment
(denoted N). The HSCs are self-renewing and pluripo-
tential (can differentiate into any blood cell type), and
the rate at which they differentiate into the neutrophil
line is assumed to be determined by the level of
circulating neutrophils. As these neutrophil precursors
differentiate, their numbers are amplified by successive
divisions. After a certain maturation time tN they
become mature neutrophils and are released into blood.
The transit time through the neutrophil precursor
compartment is not fixed but follows a distribution of
times resembling a gamma distribution (Guerry et al.,
1973; Deubelbeiss et al., 1975; Price et al., 1996; Basu
et al., 2002). In the present paper however, the single
fixed transit time tN will be used since it simplifies the
model without compromising essential features (Ber-
nard et al., 2001).
As shown in Fig. 1, there are two feedback loops. The

first is between the mature neutrophil compartment
and the rate (F ðNÞ) of HSC differentiation into the
neutrophil line. F ðNÞ operates with a delay tN that
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Fig. 1. Model of neutrophil production. The variable S represents the

number of HSC in the resting (G0) phase. Cells in the resting phase can

either enter the proliferative phase at a rate KðSÞ or differentiate at a
rate F ðNÞ to ultimately give rise to mature neutrophils N ; the second
variable. Cells in the HSC proliferative phase undergo apoptosis at a

rate gS and the cell cycle duration is tS : Cells in the differentiation

pathway are amplified by successive divisions by a factor A which is

also used to account for cell loss due to apoptosis. After a time tN ;
differentiated cells become mature neutrophils N and are released into

the blood. It is assumed that mature neutrophils die at a fixed rate a:
Two feedback loops control the entire process through the prolifera-

tion rate KðSÞ and the differentiation rate F ðNÞ:
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accounts for the time required for neutrophil division
and maturation so the flux of cells from the resting
phase of the HSC compartment is F ðNtN ÞStN . Here, as
elsewhere, the notation xt means xðt � tÞ:
The second loop regulates the rate (KðSÞ) at which

HSCs reenter the proliferative cycle from G0 state, and it
operates with a delay tS that accounts for the length of
time required to produce two daughter HSCs from one
mother cell. KðSÞ is a monotone decreasing function of
S (and therefore acts like a negative feedback). The flux
of cells out of the resting phase of the HSC compart-
ment is given by KðSÞS: KðSÞ regulates the level of
hematopoietic stem cells ðSÞ; while F ðNÞ controls the
number of neutrophils.
The main agent controlling the peripheral neutrophil

regulatory system through F ðNÞ is granulocyte colony
stimulating factor (G-CSF), which acts in two ways.
First, it decreases the apoptosis rate of neutrophil
precursors (leading to an increase of the amplification
number A in the model (Basu et al., 2002) and, second,
it increases the rate of HSC differentiation into the
neutrophil precursor compartment. The clearance of G-
CSF decreases as the number of neutrophils decreases
(Kearns et al., 1993; Terashi et al., 1999) and the
neutrophil count increases when the level of G-CSF is
increased (Petros, 1992; Chatta et al., 1994; Price et al.,
1996). This type of regulation suggests a negative
feedback: an increase of neutrophil count is followed
by a decrease in G-CSF concentration, leading to a
decrease in neutrophil count. The effect of G-CSF is
analysed in Appendix A. Other effects of elevated G-
CSF concentration are to decrease both the mean and
variance of the maturation time tN (Chatta et al., 1994;
Schmitz et al., 1994; Price et al., 1996; Haurie et al.,
1999b) and to decrease the rate of apoptosis of stem
cells.
In the present model, we have implicitly included the

effect of G-CSF through the feedback F ðNÞ: We have
not included the effect of G-CSF on the amplification A:
Rather, the parameter A is used as a bifurcation
parameter. A recent study indicates that CN is
associated, in part, with an increased rate of apoptosis
(Aprikyan et al., 2001) and the model developed and
analysed in this paper is used to determine whether this
effect is sufficient to induce the dynamical behaviour of
the neutrophil count observed in CN.
From Fig. 1 we can write down the model equations.

The production of N is equal to the influx F ðNÞS
in the precursor compartment times the amplification
A, delayed by the transit time tN ; for a total production
of AF ðNtN

ÞStN
: The loss from the compartment N

is the efflux to death aN; so that the total variation
of N is

dN

dt
¼ �aN þ AF ðNtN

ÞStN
: ð1Þ

The production of S is equal to the flux of cells
reentering the proliferative phase, KðSÞS; times the
fraction of surviving cells expð�gStSÞ times the cell
division factor 2, delayed by the cell cycle time tS; for a
total production of 2 expð�gStSÞKðStSÞStS: The loss
from compartment S is the flux reentering the prolifer-
ating phase, KðSÞS; plus the efflux into differentiation
F ðNÞS:
The total variation of S is then

dS

dt
¼ �F ðNÞS � KðSÞS þ 2e�gstS KðSts

ÞSts
: ð2Þ

The model parameters are the circulating neutrophil
death rate a; the neutrophil pathway amplification A;
the maturation delay of neutrophil precursor tN ; the
HSC proliferative phase duration tS and the apoptotic
rate of proliferating HSC, gS: As noted above, the
function F is the differentiation rate from the HSC
compartment into the neutrophil lineage and the
function K is the HSC self-renewal (proliferation) rate.
These functions are made more precise in Appendix A.

3. Parameter estimation

Estimation of the parameters is one of the most
critical aspects of our work since it is crucial to establish
the cause for the onset of oscillations in CN. Parameters
that are outside the feedback functions can be retrieved
or easily derived from experimental data found in
literature.
In humans and dogs, circulating neutrophils disap-

pear at a rate of a ¼ 2:4 day�1 (Deubelbeiss et al., 1975;
Haurie et al., 2000). A number of these parameters
depend on the number of stem cells S at steady state.
Estimates of this number can vary dramatically,
depending on what kind of cells are classified as stem
cells. Here a stem cell is defined as a non-differentiated,
pluripotential and self-renewing cell. Data from the
literature (Boggs et al., 1982; Micklem et al., 1987;
Harrison et al., 1988; McCarthy, 1997) give a value of
between 1 and 50 stem cells per 105 nucleated bone
marrow cells in mice with a value of 8 stem cells per 105

nucleated bone marrow cells in cats (Abkowitz et al.,
2000). Novak and Ne&cas (1994) give a mean count of
1.4� 1010 nucleated bone marrow cells per kg in mice.
This leads to an estimate of 1.12� 106HSC/kg.4 We
assume a number of stem cells of S� ¼ 1:1� 106 cell/kg
of body weight. The daily neutrophil production in
dogs has been evaluated to 1.65� 109 cell/kg/day
(Deubelbeiss et al., 1975). The average circulating
neutrophil count N� is therefore 6.9� 108 cells/kg. The
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4The actual density of HSC in the bone marrow is almost

immaterial. Indeed, changing the HSC level by a factor 10 together

with the amplification A will result in the same values. Therefore, we

will use the value 1.12� 106HSC/kg for the normal HSC number.
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proliferation rate K has been evaluated for mice in
Abkowitz et al. (2000) to be about 20–25 times per year
and once each 19 days in Bradford et al. (1997), giving a
value of K� ¼ 0:06 day�1 . Under steady-state assump-
tion, with an apoptosis rate into the HSC proliferative
phase gS ¼ 0:07 day�1 (Mackey, 2001), and a cell cycle
duration tS ¼ 2:8 days (Mackey, 2001; Cheshier et al.,
1999; Abkowitz et al., 2000), we find

F
*
¼

K
*

2e�gSTS � 1
¼ 0:04 day�1: ð3Þ

Then, we can give an estimation of the normal
amplification factor between HSCs and the mature
neutrophil pool

A ¼
aN

*

F
*

S
*

¼ 215:2: ð4Þ

This is the effective amplification, and without
apoptosis in the proliferative compartment of neutrophil
precursors, the number of divisions performed by
precursors would be around 15. The ratio between the
steady-state granulocyte turnover rate (GTR) and the
maximal turnover rate (when there is no apoptosis) has
been estimated as between 8 and 16 (Hearn et al., 1998;
Haurie et al., 2000), implying that 3 or 4 more divisions
than the effective number of division is required to
produce enough neutrophil under steady state. The
maximum total number of divisions between the stem
cell and mature neutrophils is then around 18 (15
effective plus 3 to compensate apoptosis).
The parameters within the feedback functions KðSÞ

and F ðNÞ are much more difficult to estimate. Under
steady-state conditions, these functions are constant, so
we must rely on the dynamics of CN to guide these
estimations. Since the dynamics found in CN are varied
(Haurie et al., 1998, 1999b), we may expect an equally
large variation in these parameters.
The two feedback functions include six parameters: f0;

k0; y1; y2; n; and s: These parameters have been fitted by
visual inspection of the dynamics of the model
compared to experimental data on circulating neutro-
phil counts in CN. However, some of these parameters
can be related to other experimental data or modeling.
The maximal reentry rate k0 can be evaluated from cell
division tracking experiments (Lyons, 1999). In a recent
study (Bernard et al., in review), a model based on
physiologically relevant properties was used to evaluate
kinetic parameters from primitive murine bone marrow
cells stimulated in vitro (Oostendorp et al., 2000). Values
of 2.0–2.5 day�1 were found for the reentry rate into the
cell cycle, suggesting a value of k0X2:5 day�1. A value
of k0 ¼ 8:0 day�1 gave a good fit to experimental
data. The parameter s controls the steepness of the
feedback function K ; and is associated with the number
of cytokines involved in the division signaling

(see Appendix A). It is not clear what this value should
be but there is evidence that at least two different
cytokines are needed to trigger HSC proliferation
in vitro (Mckinstry et al., 1997). In (Pujo-Menjouet
and Mackey, to appear), a study is carried out when s

takes large values, but traditionally small values have
been used in modeling (Andersen and Mackey, 2001).
We will therefore assume a value of s ¼ 2: The
two parameters k0 and s; with the steady-state value
K� allow us to compute the value of y2 ¼ 0:095�
106 cell/kg. With the same argument, we will choose
n ¼ 1; since we are primarily concerned with the effect of
G-CSF alone.
The parameters of F ; f0 and y1; are more difficult

to estimate since cellular differentiation dynamics
are not well characterized. Some experiments report a
20-fold increase in differentiation activity under admin-
istration of G-CSF (Lotem and Sachs, 1988; Ward et al.,
1999; Akbarzadeh et al., 2002) suggesting a value of f0 of
the order of 20� 0.04=0.8 day�1. This value, along with
F� and n; gives a value of y1 ¼ 0:36� 108 cell/kg.
Table 1 shows the ranges for which the parameters are

in agreement with experimental data.
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Table 1

Estimated model parameters

Parameter Unit Range Value used Reference

A 100 0–1000 380 1, 2

f0 day�1 0.4–1.5 0.8 3, m

y1 108 cell/kg 0.1–2.0 0.36 m

k0 day�1 2.0–10.0 8.0 m

y2 106 cell/kg 0.0001–0.10 0.095 m

n — — 1 4

s — 2–3 2 4

tN day 3.0–10 3.5 5

tS day 1.4–4.2 2.8 1, 6

gS day 0.01–0.20 0.07 1

a day�1 2.2–2.5 2.4 7

S� 106 cell/kg 0.001–1.1 1.1 1, 8

N� 108 cell/kg 5.0–10 6.9 1, 9

F� day�1 0.01–0.04 0.04 1

K� day�1 0.02–0.06 0.06 1

The ‘‘range’’ column shows values found in literature or values, which

are consistent with numerical simulation. The column ‘‘value used’’

shows the value used here in the numerical analysis and simulations.

For the references, 1=(Mackey, 2001), 2=(Novak and Ne&cas, 1994;

Hearn et al., 1998), 3=(Haurie et al., 2000), 4=(Andersen and

Mackey, 2001; Niu et al., 1999; Bagley et al., 1997), 5=(Lebowitz and

Rubinow, 1969; Nakamura, 1999; Burthem et al., unpublished),

6=(Cheshier et al., 1999), 7=(Haurie et al., 2000, 1999b; Hearn

et al., 1998), 8=(Edelstein-Keshet et al., 2001), 9=(Haurie et al.,

2000). The ‘‘m’’ in reference means that the parameter has been chosen

to make the model fit available data. All HSC data come from mice,

cats, or dogs.
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4. Analysis of the model

4.1. Two mechanisms for the onset of oscillations

In this section we study the linear stability of the
model Eqs. (1) and (2). First note that there exists one
and only one positive steady state for N and S if

f0o1
2 ð2 exp ð�gStSÞ � 1Þk0 ð5Þ

(see Appendix B for a proof of this claim). The right-
hand side of this equation is half the output of the HSC
proliferative phase minus one, i.e. half the net increase
due to one cell division times the proliferative rate k0:
The condition states that the rate of differentiation must
be smaller than this output rate. Condition (5) is always
satisfied for the range of parameters used here. Let N�

and S� denote the unique positive steady-state values of
N and S; respectively, when it exists. Then in the
neighbourhood of this unique non-trivial stationary
solution, we can linearize Eqs. (1) and (2) to obtain the
characteristic equation

l2 � ðA1 þ B2Þl� A2le�ltN � B3le�ltS þ B2A1

þ ðA2B2 þ B1A3Þe�ltN þ A1B3e
�ltS

þ A2B3e
�lðtNþtSÞ ¼ 0: ð6Þ

This characteristic equations is derived in Appendix
C. Eq. (6) is a transcendental equation and it is not
possible to study the roots of this equation by means of
analytical tools alone. A simpler equation is obtained,
however, if we assume that the function F is a constant.
In that case, Eq. (2) is uncoupled from Eq. (1) and an
analytical stability study can be performed on Eq. (2)
alone. The mechanisms leading to oscillations found in
this simpler reduction of the model have been also found
numerically in the full nonlinear model, i.e. when F is a
function of the number of neutrophils N: These
mechanisms are explained below and numerical meth-
ods have been used to plot the bifurcation diagrams for
the full model (Figs. 3 and 4).
Based on our model analysis, there are two physio-

logically plausible mechanisms that can lead to oscilla-
tion in the model described by Eqs. (1) and (2). Both
involve the stem cell compartment:

Mechanism 1. In the first, we assume that the stem cell
parameters are at their normal values (cf. Table 1), and
we mimic an increase in the rate of apoptosis in the
neutrophil compartment by decreasing the parameter A:
This leads to an increase in the stem cell differentiation
rate F ðNÞ that may destabilize the stem cell compart-
ment.

Mechanism 2. The other mechanism is an increase in
the apoptosis rate gS in the stem cell compartment. This
leads to an increased rate of replication KðSÞ that may
also destabilize the system. The second mechanism has
been studied in (Mackey, 1978; Fowler and Mackey,

2002), and can lead to long period oscillations (from 20
to 40 days, as shown in Fig. 5, bottom panel). This
destabilization can only occur when the differentiation
rate F is sufficiently small.5

To distinguish between the two mechanisms, we have
to look at the sign of B2 in Eq. (6). If B2 is positive, then
a long period (greater than 4tS) bifurcation can occur. A
high value of F in B2 will make it negative and in this
case an increase in gS will give the same effect as
Mechanism 1. Let F ¼ F� be constant, so that A2 and B1

are zero. This is the quasi-steady-state assumption. The
characteristic equation (6) reduces to

ðl� A1Þðl� B2 � B3 exp ð�ltSÞÞ ¼ 0: ð7Þ

As long as A1o0; the stability only depends on the
second factor in Eq. (7). The location of the roots of
Eq. (7) will determine the stability of Eqs. (1) and (2)
under the quasi-steady-state assumption. This charac-
teristic equation (7) has been studied in many papers
and recently in Bernard et al. (2001). The stability space
(B1;B2) can be divided in three regions.

(1) If �B2X|B3|, then the steady state of system (1, 2) is
locally stable;

(2) if B3>�B2, then the unique positive steady-state
condition is violated, and we will not consider this
case further;

(3) if B3p–|B2|, then the local stability of system (1, 2)
is dependent on the following condition (Hayes,
1950):

tSo
across �B2=B3

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
3 � B2

2

q : ð8Þ

This condition states that the cell cycle duration tS

of the stem cells must be small enough for the
solutions to be locally stable.

Only case 3 is of interest since it is the only one
potentially leading to a loss of stability of the steady
state and giving rise to oscillations. In the following
analysis, case 3 will be assumed: B3p� jB2j: When
inequality (8) becomes an equality, a Hopf bifurcation
occurs (Bernard et al., 2001) with period

THopf ¼
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
3 � B2

2

q : ð9Þ
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5Considerations of telomere loss during stems cell replication

(Vickers et al., 2000) indicate that the differentiation rate F could be

very small in humans compared to those in mice or dogs. This may

explain why long period oscillations are sometimes observed in

humans and not in grey collies. This also suggests that, in some cases,

the source of oscillation in cyclical neutropenia may be different in

human and grey collies (although the differences in parameter values

between the two species may also account for a difference in the

period).
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When B2 is negative, the arccos in inequality (8) is
bounded below by p=2 and above by p: Thus, from
Eqs. (8) and (9), it is easy to show that the period THopf

is restricted to the interval [2tS; 4tS] for B2 negative. In
this case no long period oscillations can occur. However,
if B2 is positive and close to B3; a Hopf bifurcation will
have a Hopf period THopf X4tS and thus a long period
bifurcation can occur if the denominator of Eq. (9)
becomes small. We can even give an upper bound for the
value THopf : From the definition of B2 and B3 in
Eq. (C.3), we have

B3o� 2 exp ð�gStSÞB2; ð10Þ

and as we are in case 3,

B2
3 > 4 expð�2gStSÞB2

2: ð11Þ

Inserting Eq. (11) into Eq. (9) leads to

THopf o
2p

B2j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 exp ð�2gStSÞ � 1

p : ð12Þ

Refer to Fig. 2 to see what happens for each value of
(B2;B3) in term of stability and bifurcation period.
From Eq. (12) we see that it is necessary to have a

large value of gStS for a long Hopf period at the
bifurcation point. Another requirement from Eq. (9) is
that B3B� B2; which can only happen when the
differentiation rate F is small and 2 exp(�gStS) is near 1.

4.2. Numerical analysis of the model

The numerical analysis described in this section does
not take the form of traditional numerical simulations
since we used a Matlab package, DDE-BIFTOOLS

(Engelborghs et al., 2001), which is based on continua-
tion methods that are in widespread use for ordinary
differential equations through the software AUTO (Doe-
del, 1981).
First assume that for a given value of A (large enough),

the unique positive steady state is locally stable. When A

is decreased, corresponding to an increased level of
neutrophil precursor apoptosis, this steady state is
destabilized (Mechanism 1). A second way to destabilize
the system is by increasing the apoptosis rate gS in the
HSC compartment (Mechanism 2). Figs. 3 and 4 show
the bifurcation diagrams for the full model for changes
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Fig. 2. Stability region in the B2 B3-plane when F is a constant. The stability region is below the thick curve (A) and to the right of the dashed line

(B). The system becomes unstable through a Hopf bifurcation when (B2;B3) crosses the stability boundary (A). The period of oscillation at the

bifurcation depends on the position of the bifurcation point relative to the dotted line (C). If the bifurcation occurs to the right of the dotted line, then

2tSpTHopf o4tS : If the bifurcation occurs to the left of the dotted line, then THopf X4tS : The period increases when the bifurcation point goes to the
left of the figure (B2 more positive) and tends to infinity when the stability curve (A) meets the dashed–dotted curve (D) at point PN: The dashed
curve (B) delimits the values that can be taken by (B2;B3). The upper part of line (B) has a slope of 2 exp2gStS > 1 and approaches 1 when gS is

increased. The only way for a bifurcation to occur near PN is by either increasing tS or gS : The parameters used to plot this figure are gS ¼ 0:07 day�1

and tS ¼ 2:8 days.
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in either the amplification A or the HSC apoptosis rate
gS; respectively. From the numerical analysis, the
destabilization of the fixed point in both cases occurs
via a supercritical Hopf bifurcation (point O in Figs. 3
and 4). Before this bifurcation can be observed, the
system undergoes a saddle-node bifurcation of limit
cycles: a stable and an unstable limit cycle appear at
points II in Figs. 3 and 4. This happens either when A

decreases or when gS increases.
In Fig. 3, the bifurcation diagram is plotted for N�

and S� with respect to A; and represents Mechanism 1.
Four types of solutions can be found in the figure: stable
steady-states, unstable steady-states, stable limit cycles
and unstable limit cycles. The steady states (plotted in
thin lines) range from 0 to 1.7� 108 cell/kg for N� and
from 0.22 to 0.56� 106 cell/kg for S� when A goes from
0 to 50. These values of S� are close to the normal steady
state of 1.1� 106 cell/kg, and can be explained by a
robust adaptivity, a necessary condition for a system
such as the hematopoietic system. Experimental data
show that in neutropenic patients, the neutrophil count
is around 0.12 of the normal value, whereas other cell
lines do not show significant decreases in their level
(Wright et al., 1981; Haurie et al., 1998). The relative
independence of S� with respect to A shows that the

model presented here reproduces well this robustness of
the HSC compartment and explains why other cell
lineages show oscillations around their normal values in
CN without depletion in their level.
However, the effect differs when we look at Fig. 4.

Indeed, when gS is taken as the bifurcation parameter,
the diagrams look similar to Fig. 3 qualitatively but
things are different quantitatively. From a dynamical
point of view, we can see that in both panels of Fig. 4, a
supercritical Hopf bifurcation occurs at point O, and
there is a small stable limit cycle as in the bifurcation
diagram of A: The stable limit cycle disappears at point I
through a saddle-node bifurcation of limit cycles and an
unstable limit cycle joints points I and II. At point II, a
large limit cycle appears and stays until gS ¼ 0:20 day�1,
after which the numerical continuation method failed to
follow the periodic solution. If we look at the steady
states, we note that N* goes from 0.45 to 1.0� 108 cell/
kg and S� from 0.14 to 0.58� 106 cell/kg when the HSC
apoptosis rate gS goes from 0 to 0.20 day�1. The
situation is reversed from the bifurcation diagram with
A: Now the HSC steady-state level S� is decreased by a
factor 4 while the neutrophil count decreases by a factor
2. The HSC apoptotic rate gS is a sensitive parameter,
and small changes can have deleterious effects in the
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reaches the points I and I0 (at A ¼ 13:24). At this point the limit cycle disappears through a reverse saddle-node bifurcation of limit cycles (point I),

together with an unstable limit cycle between points I and II (A ¼ 30:73). This unstable limit cycle, with envelope defined by curves between points I
and II and between I0 and II0, appears at a larger value of A (point II) through another saddle-node bifurcation of limit cycles together with a stable

limit cycle of large amplitude. The large amplitude limit cycle exists from point II to A ¼ 0; and coexists with a locally stable steady state up to point
O, with a stable limit cycle between points O and I, and is the only attractor for A values to the left of point I. The steady state for N ranges from 0 to

1.7� 108 cell/kg whereas S ranges from 0.22 to 0.56� 106 cell/kg. Parameters used for this simulation as in Table 1.

S. Bernard et al. / Journal of Theoretical Biology 223 (2003) 283–298 289



HSC level. In fact, if the apoptotic rate is high enough,
less than one daughter cell will come out of the
proliferative phase for each mother cell entering the cell
cycle. If

gS >
ln 2

tS

; ð13Þ

then the HSC count will decrease to zero, meaning that
the hematopoietic system can no longer produce blood
cells (note that condition (5) holds this case). This
situation is never encountered when A is changed; even
when A ¼ 0 the steady state S� > 0: For that reason, we
hypothesize that the most important source for the onset
of oscillations in CN is an elevated apoptotic rate in the
recognizable and committed neutrophil precursors
(Mechanism 1).
Another piece of evidence supporting the hypothesis

that CN in grey collies is due to a higher than normal
apoptosis rate in the neutrophil precursors is given by
looking at the period of oscillation with respect to A and
gS in Fig. 5. In panel (A) the period is plotted as a
function of A: For values of A between 12 and 30, the
period of the stable limit cycle is almost constant,
ranging from 14 to 16 days. These values corresponds to
the ones seen in grey collies with CN. This range from 12

to 30 is also an acceptable range for A when the model is
fitted to experimental data. The rapidly falling period as
A becomes smaller than 15 occurs at the same time than
the disappearance of the stable limit cycle (point I in
Figs. 3 and 5, panels (A)).
In Fig. 5(B), the period of oscillation is plotted as a

function of gS: As we can see, for a short range
(gS ¼ 0:0520:12 day�1), the period is almost constant
around 16–17 days. For larger apoptosis rates, the
period increases rapidly and reaches nearly 30 days
when gS ¼ 0:20 day�1. These long period oscillations
have been observed in humans with CN (Haurie et al.,
1998), and an increase in HSC apoptosis could, in some
cases, play a role.

5. Model simulations of neutrophil oscillation

5.1. Periodic solutions behaviour

We performed numerical simulations on the full
model (1,2) using the software xppaut (Ermentrout,
2001, 2002).
Fig. 6 shows two types of periodic solutions that can

exist in CN. In panel (A) is shown a small amplitude
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periodic solution, which had appeared through the Hopf
bifurcation (point O in Fig. 3). This periodic solution
does not exist for a large window of A values, thus it is
not likely to be experimentally observable. However, in
Fig. 6(B), the periodic solution, which appeared through
the saddle-node bifurcation, is representative of the
behaviour of neutrophil counts in grey collies. The
neutrophil count goes from nearly zero to a normal level
with a characteristic secondary bump on the falling
phases. This second mode in the neutrophil oscillation in
grey collies has been shown to be due to the interaction
of the delay tN and the periodic input of HSC into the
neutrophil lineage (Bernard et al., 2001).

5.2. Effect of G-CSF administration

In Fig. 7 we have simulated the effect of administrat-
ing G-CSF to a neutropenic dog. Five effects of G-CSF
were considered:

* decrease of apoptosis in neutrophil precursors,
leading to an increase in A;

* increase in the HSC differentiation rate F ; by
increasing y1: The parameter y1 is proportional to
the production of G-CSF;

* decrease of apoptosis gS of HSC;
* decrease of the proliferative phase duration tS of

HSC; and
* decrease of the neutrophil precursors transit time tN

Clinical studies have shown that administrating G-
CSF to patients with CN usually results in a net increase
of the mean neutrophil count, in the amplitude of
oscillation and in the minimum neutrophil count, and a
decrease in the period of oscillation (Hammond et al.,
1989). The same effects have been observed in grey
collies following G-CSF treatment (Haurie et al., 2000).
Fig. 7 shows all of these changes when G-CSF
administration is simulated with the above-mentioned
changes in the model parameters.

6. A new hypothesis for the origin of oscillations in

cyclical neutropenia

The results of Sections 4.1 and 4.2 suggest a new
hypothesis concerning the onset of oscillations seen in
CN. Namely:
We hypothesize that the cause of the oscillations in

CN is a destabilization in the hematopoietic stem cell
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regulatory system due to an elevated apoptotic rate in
the recognizable and committed neutrophil precursors.
This elevation has been observed experimentally

(Aprikyan et al., 2001) but a link between elevated
apoptosis in committed neutrophil precursors and
oscillations in the stem cell compartment has not been
clear until now.
Oscillations seen in other cell lineages—reticulocytes,

monocytes, platelets, lymphocytes—(Haurie et al.,
1999a) further support the idea that the origin of this
disorder lies in the primitive bone marrow cell popula-
tion. In Fig. 3, the mean HSC level is about 50%
normal, whereas the neutrophil level undergoes a
ten-fold decrease from normal values in CN. This
small decrease in HSC level compared to the neutrophil
level explains why the mean level of other blood cell
lines are relatively unaffected by CN. The regulation
mechanisms in these lines are robust enough to
compensate for a periodic decrease in HSC level (this
is confirmed by numerical simulations, not shown here).
We propose this oscillation mechanism as a generic way
to introduce oscillations in hematopoiesis. It could, for
instance, explain oscillations of period between 16 and
19 days seen in erythrocyte levels after marrow
irradiation in mice (Gurney et al., 1981; Gibson et al.,
1984, 1985).

7. Discussion

CN is a rare disorder characterized by oscillatory
production of blood cells in the bone marrow. The
oscillations are most prominent in the neutrophil count,
but are also present in other cell lineages (lymphocytes,
reticulocytes, monocytes and platelets). In this study, we
have developed a physiologically realistic mathematical
model for neutrophil production from the HSC. We
tested the hypothesis that the oscillations of CN
originate from the HSC (Haurie et al., 2000; Hearn
et al., 1998) as a secondary response to a primary
increased rate of apoptosis (mimicked by a decrease in
the value of the parameter A) in the recognizable
neutrophil precursors (Aprikyan et al., 2001). Our
numerical simulations show that increasing the apopto-
sis rate in the neutrophil regulatory system leads to an
increased demand on the HSC with a consequent
destabilization of the steady-state number of stem cells
and the appearance of oscillations through a Hopf
bifurcation
Discrepancies between experimental data or indirect

measurements of parameters make the parameter
estimation procedure difficult. One of the most difficult
parameters to estimate is the HSC level in normal dogs.
Abkowitz et al. (2002) hypothesized that the absolute
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number of HSC is approximately constant among all
mammals. Implications of this claim are numerous,
one of them being that in larger mammals, like dogs
or humans, the hematopoietic system must work
differently than in small mammals in order to meet
their blood cell production requirements. As many
parameters depend on S�; a judicious choice must be
made.
Another problem raised by stem cell kinetic para-

meter estimation is translating to humans the model
presented here, as few kinetic data for human stem cells
in vivo are available. To obtain a better understanding
of the dynamical features of hematological disorders,
kinetic data for humans have to be determined. Existing
technologies, such as cell markers, could help to attain
this goal. These kinetic data would be of great potential
to help in designing more efficient protocols for bone
marrow transplants.
Despite the parameter estimation problems, the

model presented here captures the essentials of the
white blood cell regulatory system in CN. Both
experimental data and numerical simulations indicate
that regulated apoptosis may be a powerful control
mechanism for the production of blood cells and that
the loss of control over apoptosis can have significant
and negative effects on the dynamical properties of

hematopoiesis. Thus, with a decrease in apoptotic rate
the hematopoietic system can respond rapidly to an
increased demand for circulating blood cells. To make
this comment clearer, as pointed out by the normal
input to the post-mitotic neutrophil compartment is
about 2.3 times the GTR and thus a reduction of the
rate of apoptosis to zero would more than double the
GTR. This means, for example, that a substantial fall in
neutrophil numbers would lead to an increased level of
circulating G-CSF. This would, in turn, lead to a
decreased level of apoptosis and consequent increase in
the GTR. This elevated effective production of neutro-
phils would also be felt rapidly since the increased levels
of G-CSF would not only decrease the level of apoptosis
but also decrease the time spent in the post-mitotic
compartment as has been documented by Chatta et al.
(1994) and Price et al. (1996).
Analytical examination of the model also showed that

an increase in the rate of stem cell apoptosis can lead to
long period oscillations in the neutrophil count. This
could be a factor in the difference between periods
observed in dogs and in humans (14 vs. 21 days).
However, there is no evidence at this time that the rate
of stem cell apoptosis is higher than normal in CN.
The clinical effects of G-CSF administration have

been successfully simulated by varying parameters
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known to be affected by G-CSF. The amplitude, mean
level and nadir of the oscillation increased, while the
period decreased following G-CSF administration.
Our results are thus consistent with the hypothesis

that CN originates from an elevation of apoptosis rates
in the peripheral neutrophil regulatory system that
destabilizes the HSC dynamics leading to the oscillatory
pattern observed clinically.
Another hematological disease in which oscillations in

leukocytes, platelets and erythrocyte precursors can be
seen is periodic chronic myelogenous leukemia (PCML)
(Fortin and Mackey, 1999). This form of leukemia is
characterized by oscillations from normal to high levels
in leukocyte count with periods ranging from 35 to 80
days. A relationship exists between some kinds of
neutropenia and leukemia since it has been established
that some neutropenic patients will eventually develop
leukemia (Lensink et al., 1986; Weinblatt et al., 1995;
Freedman et al., 2000; Jeha et al., 2000; Dinauer et al.,
2000). An interesting question which we are now
exploring is whether there exists a causal link between
CN and PCML in terms of the dynamics of hemato-
poietic regulation.

Acknowledgements

We thank Prof. David Dale and Ms. Caroline Haurie
for the grey collie data and an anonymous referee
for detailed suggestions. This work was supported by
MITACS (Canada), the Natural Sciences and Engineer-
ing Research Council (NSERC Grant OGP-0036920,
Canada), the Alexander von Humboldt Stiftung, Le
Fonds pour la Formation de Chercheurs et l’Aide "a la
Recherche (FCAR grant 98ER1057, Qu!ebec), the
Leverhulme Trust (UK) and the Institut des Sciences
math!ematiques (ISM, Qu!ebec ).

Appendix A. Formulation of the feedback functions

F and K

Recent studies show that a significant degree of G-
CSF clearance is performed by the binding of G-CSF by
G-CSF receptors located on the surface of neutrophils
(Layton et al., 1989; Kato et al., 1997; Stefanich et al.,
1997). This binding allows the activation of mechanisms
leading to enhanced cell survival (Williams et al., 1990;
Borge et al., 1997), increased proliferation and an
increased differentiation rate (Haurie et al., 1998;
Kanayasu-Toyoda et al., 1999). Even if the exact
activation pathway is poorly understood, one can
assume that the cellular response is proportional to the
number of activated (bound) G-CSF receptors per cell.
Assuming that G-CSF binds to the receptor following
the law of mass action, we can determine the dependence
of the differentiation rate on G-CSF.

Let [G] denote the G-CSF concentration, [R] the
density of free receptors, [L] the density of activated
receptors and [N] the concentration of neutrophils and
their precursors. The total number of receptors is

½R� þ ½L� ¼ m½N�; ðA:1Þ

where m is average number of G-CSF receptors per cell.
R can represent dimer or oligomer receptors. If n G-CSF
molecules are required to activate one receptor, then
from the law of mass action

½R� þ n½G�"½L�: ðA:2Þ

At equilibrium we have

½R�½G�n ¼ k½L�; ðA:3Þ

where k is a reaction coefficient. We assume that the
differentiation rate F is proportional to the fraction of
bound receptors on a cell

F ¼ f0
½L�
mN

: ðA:4Þ

From Eqs. (A.1) and (A.3) we obtain

½L� ¼
m½N�½G�n

k þ ½G�n
: ðA:5Þ

Using Eq. (A.4), and dropping the brackets, we
arrive at

F ðGÞ ¼ f0
Gn

k þ Gn
: ðA:6Þ

G is mainly regulated by the number N of neutrophils
such that the clearance of G by N is linear with
proportionality constant s (Terashi et al., 1999;
Takatani et al., 1996) and the production P is constant.
Thus, the concentration of G-CSF is represented by the
equation

’G ¼ P � sNG: ðA:7Þ

The G-CSF clearance becomes saturated when the
level of G-CSF increases (Hayashi et al., 2001), but in
this study we assume that this effect is unimportant.
This will keep the formulation in the following as simple
as possible. Then the steady state is

G� ¼
P

sN
: ðA:8Þ

Replacing G in Eq. (A.6) by its steady-state value G�

gives

F ðGÞ ¼ F ðGðNÞÞ ¼ *FðNÞ

¼ f0
ðP=sNÞn

ðP=sNÞn
¼ f0

*k

*k þ Nn
; ðA:9Þ

where

*k ¼
Pn

ksn
: ðA:10Þ
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From these considerations, we take F to be of the
form

F ðNÞ ¼ f0
yn
1

yn
1 þ Nn

ðA:11Þ

with yn
1 ¼ *k: Notice that y1 depends on the production

of G-CSF; this parameter will be affected by adminis-
tration of exogenous G-CSF. Function F is a Hill
function and the exponent n is often referred as a Hill
coefficient or a cooperativity coefficient. We can per-
form much the same derivation for the feedback
function K to obtain the same form as in Mackey et al.
(2003) and Andersen and Mackey (2001):

KðSÞ ¼ k0
ys
2

ys
2 þ Ss

: ðA:12Þ

Appendix B. Existence and uniqueness of the steady state

We present here the details of computations carried
out in Section 4. In this section we present the proof of
the existence and uniqueness of the positive steady state
under condition (5). First write the equations for the
steady states

aN� ¼ AF ðN�ÞS� ðB:1Þ

and

F ðN�Þ ¼ rKðS�Þ; ðB:2Þ

where r ¼ 2 expð�gStSÞ � 1: From the definition of
KðSÞ; Eq. (A.12), and Eq. (B.2) we can find the steady
state S� in term of N�;

S� ¼ y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rk0

F ðN�Þ
� 1

� �s
: ðB:3Þ

From Eq. (B.1) and (B.3), we can eliminate S�;

N� ¼
Ay2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rk0

F ðN�Þ
� 1

� �s
F ðN�Þ: ðB:4Þ

Let the right-hand side of Eq. (B.4) be G(N�). Then
the derivative of G with respect to N� is,

G0ðN�Þ ¼
Ay2
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rk0

F ðN�Þ
� 1

� �s
F 0ðN�Þ

� 2�
2

1� F ðN�Þðrk0Þ
�1

	 

: ðB:5Þ

If we can prove that G0ðN�Þ is always negative, then by
using the fixed point theorem it is easy to show that
there exists one and only one positive steady state N�;
and from that value the uniqueness of the steady state S�

follows naturally. To show that G0ðN�Þ is negative, we
have only to make sure that the factor in the brackets in
Eq. (B.5) is positive since the rest is negative (from the
definition of F ðNÞ in Eq. (A.11), it is obvious that

F1ðNÞo0). So, we need to find conditions for which

2�
1

1� F ðN�Þðrk0Þ
�1 > 0: ðB:6Þ

This is equivalent to showing that

F ðN�Þo1
2
rk0: ðB:7Þ

We know that F ðN�Þof0; so a sufficient condition for
G0ðN�Þ to be negative is

f0o1
2
rk0 ¼ 1

2
ð2 exp ð�gStÞ � 1Þk0; ðB:8Þ

which completes the proof of the existence and unique-
ness of the steady state (N�; S�) under condition (5).

Appendix C. Linearization and characteristic equation

The linearization of Eqs. (1) and (2) around the
unique positive steady state (N�; S�) is performed as
follow. First define new variables x ¼ N � N� and y ¼
S � S� so that x ¼ 0 and y ¼ 0 are fixed points. Then by
linearizing around the steady state (N�;S�), we obtain

dx

dt
¼ A1x þ A2xtN

þ A3ytN
; ðC:1Þ

and

dy

dt
¼ B1x þ B2y þ B3ytS

; ðC:2Þ

where the linearization coefficients are:

A1 ¼ � a ¼ ð�aNÞN ;

A1 ¼AF 0
�S� ¼ ðAF ðNÞSÞN ;

A3 ¼AF� ¼ ðAF ðNÞSÞS;

B1 ¼ � F 0
�S� ¼ ð�F ðNÞSÞN ;

B2 ¼ � ½F� þ K 0
�S� þ K�� ¼ ð�½F ðNÞ þ KðSÞ�SÞS;

B3 ¼ 2 exp ð�gStSÞðK 0
�S� þ K�Þ

¼ 2 exp ð�gStSÞðKðSÞSÞS: ðC:3Þ

The subscripts in the right-hand side equalities denote
the partial derivative with respect to the variable. The
star subscript (*) in the middle equality means that the
function is evaluated at the steady state and the prime
stands for the derivative with respect to the argument.
These equations can be formulated in a vector equation

dX

dt
¼ LX þ RNXtN þ RSXtS; ðC:4Þ

where

X ¼
x

y

 !
ðC:5Þ
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and

L ¼
A1 0

B1 B2

 !
; RN ¼

A2 A3

0 0

 !
;

RS ¼
0 0

0 B3

 !
: ðC:6Þ

The characteristic equation of Eq. (C.4) is defined as

det½lI � L � RN exp ð�ltN Þ � RS exp ðltSÞ� ¼ 0 ðC:7Þ

with I the 2� 2 identity matrix. The characteristic
equation can then be explicitly written as Eq. (6).
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