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Information capacity and pattern formation in a tent map network featuring statistical periodicity
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We provide quantitative support to the observation that lattices of coupled maps are ‘‘efficient’’ information
coding devices. It has been suggested recently that lattices of coupled maps may provide a model of informa-
tion coding in the nervous system because of their ability to create structured and stimulus-dependent activity
patterns which have the potential to be used for storing information. In this paper, we give an upper bound to
the effective number of patterns that can be used to store information in the lattice by evaluating numerically
its information capacity or information rate as a function of the coupling strength between the maps. We also
estimate the time taken by the lattice to establish a limiting activity pattern.
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Coupled map lattices~CMLs! have been recently elevate
to the status of paradigm models for studying spatially
tended systems composed of interacting units or agents
as populations of biological species@1,2# and plasma physics
@3# ~for a review see Ref.@4#!. From the point of view of
neural computation, CMLs also provide an interesting al
native to standard neural networks since they are capab
reproducing three important dynamical features of exp
mentally observed populations of neurons:~i! a rapid re-
sponse to stimuli,~ii ! a highly irregular or ‘‘chaotic’’ behav-
ior of single neurons or small ensembles of locally coup
neurons, and~iii ! a temporal cycling of the statistical activit
of the entire population of neurons~statistical periodicity!.

In a recent paper@2#, Milton and Mackey have argued tha
these three properties of CMLs may provide a basis for
pothesizing neural information encoded in the spatiotem
ral states of ensembles of neurons or in the overall distr
tion of activity of these neurons~ensemble coding!, rather
than in the temporal dynamics of individual neurons~tempo-
ral coding!. Many aspects of biological neurons remain to
studied in order to prove or disprove this conjecture. Ho
ever, CMLs provide on their own a tractable model w
which many ideas and observations about neural informa
processing can be considered. In addition, it is suggestiv
think that the chaotic behavior of individual neurons, mo
eled in CMLs at the level of the individual chaotic maps,
responsible for the high variability of activity patterns o
served experimentally in ensembles of neurons, and for
high information capacity of these neuronal systems. In
itively, however, there seems to be a trade-off involve
namely, ~a! the ability of an ensemble of chaotic maps
converge rapidly to a steady state is proportional to

*Corresponding author. Email address: chauptma@cnd.mcgi
1063-651X/2003/67~2!/026217~5!/$20.00 67 0262
-
ch

r-
of
i-

d

-
-
-

-

n
to
-

e
-
,

e

strength of the interaction which couples the different ma
of a CML together, but~b! increasing the coupling strengt
too much is likely to reduce the overall activity and variab
ity of the CML, and thereby reduce its information capaci

Understanding how the coupling between the maps o
CML influences both of the above competing phenome
~rapid convergence and high capacity! is an important step
toward establishing whether or not CMLs constitute a pla
sible model of neural information coding and storage.

In this paper, we study this technical issue by compar
two quantities which respectively measure the importance
each of the two competing phenomena. The first quantit
the information capacity~or information rate! which is de-
fined, in the case of a CML, as the entropy of the jo
probability density describing the steady-state activity of
CML divided by the number of maps composing the lattic
The information capacity, as we will see, is a direct correl
of the number of steady-state patterns which can be reac
by any initial states of the CML. The other quantity of inte
est is the locking time of the network of maps, which
simply the time taken by the CML to reach a limiting activi
pattern averaged over many initial configurations of t
CML.

In the following, we evaluate both quantities numerica
for a specific CML consisting ofn3n tent maps arranged o
a square lattice. The temporal evolution of each map in ti
is given by the equation

xt11
i , j 5~12e!S~xt

i , j !1
e

4
@S~xt

i 21,j !1S~xt
i , j 21!1S~xt

i 11,j !

1S~xt
i , j 11!#, ~1!

wherea
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S~x!5H ax, 0<x,
1

2

a~12x!,
1

2
<x<1.

~2!

The indicesi , j above denote the position of a specific m
or pixel in the lattice (1< i , j <n), while t denotes the time
The coupling parametereP@0,1# sets the interaction be
tween the different pixels which, we assume, interact o
with nearest neighbors~periodic boundary conditions are im
posed!. Finally, aP@0,2# is a parameter that controls th
properties of the tent map.

To properly understand the significance of the two qu
tities that we intend to calculate~information capacity and
locking time!, and understand how these two quantities c
compete with each other, it is instructive to review the pro
erties of the isolated tent mapS(x), and, by a simple gener
alization, of the CML withe50 ~more information can be
found in Ref. @5–7#!. More specifically, we have that th
dynamics of the tent map alone is characterized by
Lyapunov exponent equal to lna. Thus, for 0,a,1, all or-
bits of the map converge to the unique fixed pointx* 50
independent of the value of the initial conditions, while f
a51, all initial points of the map are fixed points. When
,a<2, the dynamics of the tent map switches abruptly t
chaotic regime~see Fig. 1! characterized by a banded bifu
cation diagram~Fig. 2! and a unique unstable fixed poin
located atx* (a)5a/(a11). It is useful to note that the
invariant density of the tent map, i.e., the density function
the invariant measure, is supported on subsets of the inte
@a(12a/2),a/2# for a,A2, and has nonvanishing suppo
on @a(12a/2),a/2# for a>A2 @8#.

Behind the chaotic behavior of the temporal trajectory,
underlying regularity of the dynamics apparent in the ban
structure of the bifurcation diagram is the signature o
property called statistical periodicity, which can be observ
in the density distribution of an ensemble of tent ma

FIG. 1. Dynamics generated by an isolated tent map for a
rametera5A2. ~a! Time series and~b! corresponding histogram
representation obtained from a simulation with 40 000 steps.
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@2,6,7,9#. Specifically, for 21/21/(n11)
,a<21/21/n

, the densities
of the tent map have periodicity with periodT5(n11) for
n51,2, . . . .Here, we always takea5A2 for our numerical
simulations and computations.

The advantage of examining the density evolution of
ensemble instead of the temporal behavior of a single tra
tory of an element originates in the different convergen
times of these two processes. Typically the rate of conv
gence of densities is many orders of magnitude larger t
for a single trajectory@2#.

If an ensemble of noninteracting elements is considere
histogram can be used to display the time evolution of
network activity. We do this by taking a large number of te
maps with different initial conditions. For each time step, w
use the large number of state values to plot the normali
histogram and follow this~collapsed! density as a function of
time ~Fig. 3!. The resulting density shows a cycle with perio
2. In spite of the chaotic behavior within the bands, t
banded structure shows a support of the system densitie
they jump from one band to the other from one time step
the next.

In response to a given initial condition, the network@Eq.
~1!# relaxes into a structurally ordered stable activity patte
~Fig. 4!. Depending on the coupling strength, a stable ac

a-

FIG. 2. Bifurcation diagram of the tent map showing the band
structure changing with varying parametera. Fora5A2, two bands
merge to a continuum with an underlying structure not visible
this plot.

FIG. 3. The collapsed density prepared by iteratingN
5100 000 maps and calculating the density of states at each
step. The interval@0.2,0.8# is indicated by the horizontal line. The
initial values were uniformly distributed on the interval@0.3,0.7#
and the densities are normalized. Parameter:a5A2.
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ity structure is rapidly established and different initial pa
terns converge to different distinguishable limiting activ
patterns. The period-2 oscillation observed fora5A2 in the
collapsed density of the ensemble of uncoupled tent m
causes, in the coupled case, a switching from the acti
pattern to its inverse pattern within one step~Fig. 4!.

A numerical calculation of the Lyapunov coefficient of th
single network element dynamics shows that even when
network is locked to a periodic activity pattern, the sing
element dynamics are still chaotic~Fig. 5!. For the calcula-
tion of the Lyapunov exponent, the evolution of the traje
tory of one network element as a function of time is inve
tigated. The evolution is displayed using a histogram on
interval @0,1# which is divided into 1000 bins. Starting wit
a tight density distribution of initial conditions~within one
bin! for one element of the network, the temporal spread
this density distribution is quantified by the Lyapunov exp
nent. A total of 20 000 simulations are used to obtain
histogram of state evolution for one network element a
function of time@10#. Note that the theoretical value of th
Lyapunov exponent in the uncoupled case is lna50.347.

A coarse graining approach allows us to separate
structure of the network activity, the fingerprint of statistic
periodicity, from the chaotic activity of the network elemen
and represent it in a binary activity pattern. To do so,
must choose an appropriate threshold for the coarse grain
The unstable fixed pointx!5a/(a11), for a5A2 where the
two bands merge, seems to be a promising choice a
threshold for the coarse graining. Figure 6 shows the res
ing binary pattern that is used to calculate the cluster siz
the network. The mean size of the clusters, which is
mean number of connected network elements with the s

FIG. 4. Dynamic behavior of the tent map network in respon
to different inputs, Eq.~1!. After a small number of steps, the ne
work locks into a stable activity pattern.~a! initial pattern randomly
chosen from the interval@0,1#, ~b! another random initial pattern
~c! same as in~b! but with an additional stripe of initial value 0.5
~d! same as in~b! but with an additional cross of value 0.5. The pl
represents system statesxP@0,1# for the initial patterns andx
P@a(12a/2),a/2# for the simulated network patterns as indicat
by the bars below in the figures. Parameters:e50.2, a5A2.
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coarse grained state, increases with increasing coup
strengthe ~Fig. 5 lower plot!. In the case of couplinge
.0.4, the network tends to form one large cluster, while
coupling e<0.1 the activity pattern consists of up to 10
clusters with a mean cluster size of 8–11 elements per c
ter.

Using the binary activity pattern, we are also able to c
culate the probability of finding one element of the netwo
in an up or down state if the neighboring elements are in
certain state configuration. This is the conditional probabi
distributionp(xuxnn), wherex indicates the state of a certai
element of the networkxi , j and xnn the states of the nex
neighborsxi 11,j ,xi , j 11,xi 21,j ,xi , j 21. The conditional prob-
ability distribution can be calculated by evaluating the fiv
point joint probability distributionp(x,xnn) and the four-
neighbors joint probability distribution p(xnn)
5(xp(x,xnn). Hence, we obtain@12#

p~xuxnn!5
p~x,xnn!

p~xnn!
. ~3!

e
FIG. 5. The Lyapunov exponent~upper plot! and the number

and size of the clusters~lower plot!. The temporal spread of a tigh
density distribution of initial conditions for one network element
used to calculate the Lyapunov exponent@10#. The cluster size and
number of clusters is calculated using a Hoshen-Kopelman a
rithm @11#. Coarse grained network activity and 10 000 simulatio
with different seeds for the random number generator for each c
pling strength are used. For the cluster detection algorithm, we
into account open boundary conditions.

FIG. 6. Coarse grained network activity pattern. The thresh
value used for the extraction of the binary pattern is the value of
unstable fixed pointx!.
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The nearest neighbor approximation is valid since only ne
est neighbor coupling is considered. The conditional pr
ability distribution allows us to calculate the entropy per n
work element,

H52(
xnn

(
x

p~xuxnn!ln p~xuxnn!. ~4!

The entropy of a single network element calculated as
scribed above gives a value for the uncertainty of the stat
the element with respect to the states of the neighboring
ements~Fig. 7!. When we investigate binary states, we o
tain a maximal uncertainty, or entropy, of ln 2 if the pro
abilities of finding the network element in the two states
equal. The higher the value for the uncertainty the higher
information that can be obtained by knowing the state of
network element. Hence, the entropy per network elemen
proportional to the information capacity of the network.

As can be seen on Fig. 7, the entropy per network u
decreases here with increasing coupling strengthe starting
with a maximal entropy of about ln 2 in the uncoupled ca
For weak coupling, the complexity of the local behavior
preserved, which results in a high entropy value, while
stronger network coupling, the binary states of the netw
units follow even more closely the corresponding states
the neighboring network elements.

In terms of information capacity, this means that for
certain coupling strength, saye50.1, we obtain an entropy
per unit ofH50.6465. Hence, the 40340 network we have
studied is able to realize 21600H/ ln 2'21500 different patterns
in response to different initial patterns. We can also obtain
upper bound for the information that a pattern can store
applying the compression algorithm LZ77@13,14# ~used for

FIG. 7. Entropy per unit in natural units~open circle, full line!
and the inverse of the locking time~cross, full line! as a function of
the coupling strengthe. For the entropy calculation we evaluate
the limiting pattern~after 20 000 simulation steps! of 20 000 simu-
lations with different random initial conditions for each couplin
strength. Ten remote elements of the network are used to calc
the conditional probability distribution. The dotted line indicates t
entropy estimation obtained by using compression algorithms.
the locking time we evaluated the dynamics of 500 simulations w
different initial conditions.
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instance by gzip! to the files containing the binary activit
patterns. This method of calculating the entropy is asym
totically equivalent to the statistical method of evaluati
entropy when applied to infinitely long streams of data. T
resulting compression ratio scaled in natural units valida
our previous results~Fig. 7 dotted line!. Furthermore, these
results show that restricting the computation of probabilit
to the next nearest neighbors is justified. These calculat
are of use only if the structure of the network activity
stable and if the network activity rapidly relaxes onto t
stimulus-dependent final state.

To investigate the time evolution of the activity patter
we studied the correlation between the temporal coa
grained activity pattern and the limiting binary activity pa
tern ~in our case after 20 000 simulation steps!. We used the
correlation function

r ~ t !5
1

N (
i , j

@xlimiting
i , j 2xi , j~ t !#2. ~5!

Due to the statistical periodicity with period 2 whena
5A2, the correlation oscillates with a period 2 and if th
network locks to its limiting pattern, the correlationr (t) os-
cillates between the two values 0 and 1. To define the lo
ing time, we detected the first time step at which the cor
lation r (t) was found to be smaller than a threshold val
~0.01!. This value can be interpreted as the reaction spee
the network in arbitrary units. In Fig. 7, it can be seen th
the locking time increases with increasing coupling streng
and the formation of larger clusters in the strongly coup
regime takes several hundred simulation steps. The fas
network response is found in the weak coupling dom
where the cluster size is small. Even in the uncoupled c
fast locking is observed which is induced by the effect
statistical periodicity.

In conclusion, we have shown that if the collapsed dens
displays statistical periodicity, then the information proce
ing task is supported by two advantageous properties:
collapsed density converges rapidly towards a structur
ordered stable state and the information capacity of a
work showing statistical periodicity is extremely high. Th
two quantities, information capacity and locking time, d
indeed compete with each other, and there is an opti
value of the interaction parameter for which the lattice
coupled tent maps is capable of rapid convergence and
multaneously possesses a high information capacity.

Our investigations of a tent map network have also sho
that despite the existence of chaotic temporal behavior in
single elements, the network shows several interesting
haviors. In response to an applied stimulus pattern the
work relaxes onto an activity pattern, which shows a uniq
and stimulus-dependent limiting structure, while the dyna
ics of the single elements are still characterized by a posi
Lyapunov exponent~Fig. 5!. The analytic investigation of the
dynamics of an isolated tent map@8# provides a way to
coarse grain the activity pattern of the network into a bina
pattern through the choice of a threshold value. The resul
binary pattern was studied in terms of its information cap
ity. The entropy of the single elements embedded in the n

te

or
h
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work decreases with increasing couplinge ~Fig. 7!. The un-
derlying reason for this behavior is a variation in the me
cluster size, which increases with increasing coupl
strength until fore50.5 only one large cluster is left. Th
evolution of the network activity is also characterized by t
locking time, the number of steps required for the network
reach the limiting activity pattern~within a certain approxi-
mation!. By comparing this locking time with the informa
tion capacity of the network, we have found that the b
performance of the network was in the weak coupling d
maine50.05. Indeed, in this domain the network has a h
information capacity due to the high single element entro
the cluster size is small and a high number of clusters g
antees a large number of possible limiting activity patter
Moreover, within 5–10 steps, the network obtains the lim
ing unique activity pattern and oscillates between the pat
and its inverse.

These network characteristics, though advantageous
coding mechanism, leave many questions unanswered a
the possibility that statistical periodicity be a viable mech
nism for information storage in the nervous system. For
stance, which part of the nervous system could detect s
s
el

-
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an activity pattern? What reads the code? Delayed syst
have a special ability to detect periodicity. Due to this, w
speculate that neuronal networks involving time delays ar
promising candidate for a decoding device. How can exp
ments be designed to answer these questions and to inv
gate the relevance of the tent map network results in a m
realistic neural network model? Experimental techniqu
with high spatiotemporal resolution are necessary to inve
gate these questions.

Despite many open questions, networks utilizing dens
coding and featuring statistical periodicity seem to be
promising candidate for answering questions about inform
tion coding and storage in the nervous system since syst
with the properties we have examined have high informat
capacity and rapid convergence to limiting activity patter
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