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We have formulated and analysed a dynamic model for recurrent inhibition that takes into
account the state dependence of the delayed feedback signal (due to the variation in threshold
of fibres with their size) and the distribution of these delays (due to the distribution of fibre
diameters in the feedback pathway). Using a combination of analytic and numerical tools, we
have analysed the behaviour of this model. Depending on the parameter values chosen, as
well as the initial preparation of the system, there may be a spectrum of post-synaptic firing
dynamics ranging from stable constant values through periodic bursting (limit cycle)
behaviour and chaotic firing as well as bistable behaviours. Using detailed parameter
estimation for a physiologically motivated example (the CA3-basket cell-mossy fibre system
in the hippocampus), we present some of these numerical behaviours. The numerical results
corroborate the results of the analytic characterization of the solutions. Namely, for some
parameter values the model has a single stable steady state while for the others there is a
bistability in which the eventual behaviour depends on the magnitude of stimulation (the
initial function).

r 2002 Elsevier Science Ltd. All rights reserved.
1. Introduction

Recurrent inhibition, in which activity in a
population of neurons excites a second popula-
tion that, in turn, inhibits the activity of the first,
is ubiquitous throughout the nervous systems of
species ranging from insects through the mam-
mals. The widespread occurrence of recurrent
inhibition has intrigued many investigators, and
generated considerable speculation concerning
its functional significance.
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Time delays are ubiquitous in the functioning
of biological systems, and the nervous system is
no exception. In the nervous system, delays
occur at the synaptic level due to transmitter
release dynamics and the integration time of
inhibitory and excitatory post-synaptic poten-
tials (IPSPs and EPSPs) at the dendritic tree level
where post-synaptic potentials (PSPs) have a
finite conduction time to the soma, and in the
axons due to the finite axonal conduction speed
of action potentials (Ermentrout & Kopell, 1998;
Ernst et al., 1995; Eurich et al., 1999, 2000).
When delays are merely involved in the

transmission of information along a feed
forward pathway, their effect is to give rise to
r 2002 Elsevier Science Ltd. All rights reserved.
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dispersion of signals that may have been initially
quite synchronous and to affect the timing of
these signals from diverse sources. (An exception
are systems where the timing of signals is
important. In such cases, conduction delays are
adapted to certain tasks. Examples include
sound localization in barn owls (Carr & Konishi,
1990) and the transmission of visual information
by retinal ganglion cells of the cat (Stanford,
1987).) When these physiologically derived
delays are part of feedback pathways (like
recurrent excitatory and/or recurrent inhibitory
circuits), then the presence of the delays can have
profound functional effects. The dynamic con-
sequences of these delays in feedback situations
have rarely been considered in the context of
neural dynamics.
The ubiquitous nature of recurrent inhibition

has generated a plethora of mathematical
models, but all have failed to include some of
the relevant neurophysiological detail. In this
paper, we extend a previous model for recurrent
inhibition to include:

*The distribution of delays in the recurrent
inhibitory pathway due to the distribution of
fibre diameters in the feedback pathway.

*The variation in the sizes of recurrent fibres
excited as a consequence of the variation in
threshold with fibre size.

These two facts, neglected in all previous
models of recurrent inhibition, lead to an
interesting mathematical problem since they
imply a state-dependent distribution of delays.
Through an analysis of this problem, we have
studied the dynamical effects of this neurophy-
siologically based state dependent delay.
This paper is organized as follows. In Section 2,

we briefly survey previous models for recurrent
inhibition before starting the development of an
extension of the model of Mackey & an der
Heiden (1984) to include state-dependent dis-
tributions of delays. Section 2.1 details how we
have determined the nature of the state-depen-
dent distribution of feedback conduction delays.
The basic dynamics of the membrane potentials
V are developed in Section 2.2, as is the relation
between membrane potential and neural firing
frequency. The model is reduced to a dimension-
less form in Section 2.3. Section 3 summarizes
the numerical and analytic results of our analysis
of the model, the full details of which are in
Appendix A. (The steady states are considered in
Appendix A.1, and their local stability
in Appendix A.2.) In Section 4, we consider a
specific realization of our model based on the
hippocampal mossy fibre-CA3 pyramidal cell-
basket cell complex. Parameter estimation for
the model of Section 2 is carried out in Section
4.1, and the numerical behaviour of the model is
explored in Section 4.2. We conclude with a brief
discussion in Section 5.

2. Model Development

Many authors have considered mathematical
models for recurrent inhibitory processes (an der
Heiden & Mackey, 1987; an der Heiden et al.,
1981; Castelfranco & Stech, 1987; Martinez &
Segundo, 1983; Milton, 1996; Guevara et al.,
1983; Mackey & an der Heiden, 1984; Milton
et al., 1989, 1990; Plant, 1981; Traub & Miles,
1991; Traub et al., 1991, 1993, 1994, 1996,
1999a, b; Traub & Bibbig, 2000; Tuckwell, 1978;
Wilson & Cowan, 1972, 1973). Comprehensive
surveys can be found in an der Heiden (1979,
1991) and Milton (1996).
These previous modelling efforts span a range

of complexity. Some include the barest of
neurophysiological detail. Others include sophis-
ticated assumptions concerning the synaptic
transmission properties of the neural popula-
tions involved, as well as quite detailed assump-
tions concerning the underlying ionic processes
leading to excitation in the postsynaptic popula-
tion of excitatory neurons and the recurrent
inhibitory population.
The model of Mackey & an der Heiden (1984)

was intermediate in this range as the focus was
on the dynamics effects of recurrent inhibition
per se. That model considered the nonlinear
feedback due to the stoichiometry of the
inhibitory receptor interactions, the nonlineari-
ties induced by the firing frequency vs. input
relation, and the inherent delays induced by the
recurrent feedback pathway. It was a natural
consequence of the underlying physiology that
the solutions showed a range of dynamic
behaviour ranging from quiescence through
regular, synchronized, oscillatory bursting



Fig. 1. A diagrammatic representation of the inhibitory
feedback loop. For mathematical notation, see text.

Fig. 2. A schematic representation of the density f ðDÞ
of fibre diameters, and the corresponding density of delay
times xðtÞ as given in eqn (7). In the right-hand panel,
increases in the post-synaptic potential V move the left-
hand boundary toward tmin; so for very large inputs V the
entire density is involved.
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behaviour to culminate in quite irregular firing
behaviour of the excitatory cells. Additionally,
the model displayed the property of multi-
stability whereby the eventual solution beha-
viour could be highly dependent on the initial
function that was chosen for the system (cf.
an der Heiden & Mackey, 1982).
Here, as in Mackey & an der Heiden (1984),

the important dependent variables will be the
excitatory potential E in the excitatory popula-
tion in response to stimulation of the pre-
synaptic population, and the inhibitory potential
I in the excitatory population due to the
activation of the inhibitory interneurons. The
difference between these two quantities, E � I , is
the intracellular potential V (relative to the
resting potential) and will be identified with the
input of the excitatory population. The degree to
which V ¼ E � I exceeds the post-synaptic
threshold for activation (Y) determines the firing
properties of the excitatory population. Figure 1
shows a schematic representation of the feed-
back loop under consideration.

2.1. THE DISTRIBUTION OF CONDUCTION DELAY

TIMES IS STATE DEPENDENT

One of the interesting aspects of this problem
is that the inhibitory interneuron firing fre-
quency *FðtÞ is related to the delayed excitatory
cell firing frequency F ðt � tÞ weighted by the
density x of the distribution of conduction delays
(see Fig. 1). To see why this is so, consider the
following.
It is well known (Jack et al., 1975) that action

potentials propagate with a conduction velocity
which is an increasing function of the fibre
diameter, and that this diameter dependence is
different for myelinated and non-myelinated
axons. Thus, if a single fibre in our feedback
pathway has a diameter D; then that fibre will
have a conduction velocity (v) along the feed-
back pathway given by

vðDÞ ¼ wDb; ð1Þ

where

b ¼
1
2
for non-myelinated fibres;

1 for myelinated fibres:

(
ð2Þ

If the feedback pathway has an effective length
of L; then a fibre of diameter D will have a
feedback conduction delay (t) given by

tðDÞ ¼
L

vðDÞ
¼

L
wDb

: ð3Þ

Assume now that the feedback pathway
consists of a number of fibres distributed
(with respect to their diameter) with a density
f ðDÞ that is supported on the interval
[Dmin;Dmax] (see Fig. 2) where Dmin and Dmax are
the minimal and maximal fibre diameters to
be found in the recurrent pathway. To find the
density gðtÞ of the distribution of delays corre-
sponding to the distribution of diameters re-
member simply that if a variable D is distributed
with a density f ðDÞ; then a transformation t ¼
hðDÞ of that variable will be distributed with a
density

gðtÞ ¼ f ðh�1ðtÞÞ
dh�1ðtÞ
dt

����
����: ð4Þ
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In our case, D ¼ h�1 ¼ ðL=wtÞ1=b so

gðtÞ ¼
1

bt
L
wt

� �1=b
f

L
wt

� �1=b !
ð5Þ

or

gðtÞ ¼

2

t
L
wnt

� �2
f

L2

w2nt2

� �
:

non-myelinated fibres;

L
wmt2

f
L
wmt

� �
for myelinated fibres:

8>>>>>>>><
>>>>>>>>:

ð6Þ

From these considerations, it is clear that the
density of the distribution of delay times ½xðtÞ� when
the full feedback pathway is activated is given by

xðtÞ ¼

0 0ptotmin;

gðtÞ tminptptmax;

0 tmaxotoN:

8><
>: ð7Þ

xðtÞ is shown schematically in Fig. 2. Since xðtÞ is
a density, Z

N

0

xðtÞ dt ¼ 1: ð8Þ

The second interesting aspect of this problem
is that the density of the distribution of
conduction delay times that we have just
determined is in fact dependent on the state of
the system. Consider the following.
As Jack et al. (1975) have pointed out, the thresh-

oldY for the intracellular activation of a nerve fibre
of diameter D must be proportional to D3=2: This
has the following interesting consequences:

* Small cells in the feedback pathway (which
have the largest conduction delays) have a low
threshold for activation; while

*Large cells in the feedback pathway (with
short conduction delays) will have a large
threshold for activation.

Thus if YBD3=2 then YBt�3=2b or Y ¼
Y0t�3=2b and

YðtÞ ¼ Y0
t�3 for non-myelinated fibres;

t�3=2 for myelinated fibres:

(
ð9Þ
The logical consequence of these facts is that the
density of the distribution of conduction delay
times that we have developed will in fact depend
on the level of activity in the population, i.e. it
will be state dependent. This state dependence
will manifest itself in the following way. At very
low levels of input V ¼ E � I to the excitatory
population, we will find that the distribution of
delay times is narrowly focused on a small
interval of delays ½ tðV Þ; tmax�; where tðV Þ is given
by

tðV Þ ¼
Y0
V

� �2b=3
: ð10Þ

As the input E � I is progressively increased, the
minimum of the support interval ½tðV Þ; tmax� will
progressively decrease until, with maximal input,
we will finally have the density of the conduction
time delays supported on [tmin; tmax]. Thus, it is
clear that with progressively increasing input
V ¼ E � I we have a state-dependent minimal
delay, tðV Þ: When the population of cells is not
fully activated, this leads to a state-dependent
density of the distribution of delay times, see
Fig. 2.

2.2. DYNAMICS OF THE INHIBITORY AND

EXCITATORY POTENTIALS

In the presence of constant pre-synaptic
excitatory drive E (mV), the dynamics in the
model with a distribution of delays (not includ-
ing the state dependence) are governed by an
equation of the form

dI
dt

¼ �gI þ *F Zð *F Þ; ð11Þ

where I (mV) is the inhibitory potential due to
the recurrent feedback, *F (s�1) is the instanta-
neous inhibitory interneuron firing frequency,
g (s�1) is the inverse of the membrane time
constant for the decay of inhibition, and Z is a
frequency-dependent interaction coefficient (an
der Heiden and Mackey, 1982) that is a function
of *F: Writing dynamics (11) in terms of the
intracellular potential V we have

dV
dt

¼ �
dI
dt

¼ gðE � V Þ � *F Zð *F Þ: ð12Þ
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It is through the function Z that the stoichio-
metry and the nonlinearity of the inhibitory
feedback enter the problem. Specifically, Z is
given by

Zð *F Þ ¼ RDGð *F Þ: ð13Þ

In eqn (13), R is the average number of inhibitory
receptors per excitatory cell, and D is the
magnitude (in mV) of the inhibitory post-synaptic
potential resulting from the activation of one
receptor. The fraction of inhibitory receptors
available for activation is given by Gð *F Þ:
To determine Gð *F Þ we must consider the

stoichiometry of the inhibitory transmitter–
receptor interaction. Of the total receptor
population R; we assume that L are active (that
is, combined with transmitter) and that M are
inactive. We assume further that the transmitter–
receptor interaction is governed by

M þ nC"L; ð14Þ

where n is the number of molecules of transmit-
ter (C) required to activate one inhibitory
receptor. Under the assumption that reaction
(14) is sufficiently rapid to be at equilibrium, and
that there is conservation of receptors so R ¼
LþM ; then it is straightforward to show that
the fraction of receptors available for activation
is given by

GðCÞ ¼
K

K þ ½C�n
; ð15Þ

where K [in units of (mML�1)n] is the equili-
brium constant for eqn (14) and [C] denotes the
concentration (in units of mML�1) of inhibitory
transmitter.
Taking this development further, we assume that

the interneuronal intracellular pool of inhibitory
transmitter is sufficiently large not to be depleted
by the interneuronal activity. Then the relation
between the released transmitter concentration [C]
and the firing frequency *F at the synaptic terminals
of the interneuron will be given by ½C� ¼ m *F;
where m is a proportionality constant. Thus the
function Gð *FÞ takes the final form

Gð *F Þ ¼
K

K þ ðm *F Þn
: ð16Þ
To close this set of equations we must relate the
instantaneous firing frequency F ðtÞ (the excita-
tory cell output) to the excitatory cell input V ¼
E � I : To do this the following considerations
are important.
Let YðtÞ be the threshold for the generation of

an action potential in a fibre with a delay time t
as in eqn (9). Then we approximate the firing
frequency at the soma of the excitatory cell by

F ðV ; tÞ ¼ kðV �YðtÞÞH ðV �YðtÞÞ; ð17Þ

where k has the dimensions of HzmV�1 and H is
the Heavyside step function,

H ðxÞ ¼
0 xo0;
1 0px:

(
ð18Þ

Since F ðV ðtÞ; tÞ is the firing frequency at the
soma of the excitatory cell, the inhibitory
interneuron firing frequency *F ðtÞ will be
aF ðV ðt � tÞ; tÞ (a is a proportionality constant
determined by the average number of action
potentials in the excitatory cell required to elicit
one action potential in the inhibitory interneu-
ron) weighted by the distribution x of conduc-
tion delays. *FðtÞ is given explicitly by

*FðtÞ ¼ ak
Z

N

0

½V ðt � tÞ �YðtÞ�

	 H ðV ðt � tÞ �YðtÞÞxðtÞ dt: ð19Þ

If we combine eqns (12), (13) and (16) into a
single equation for the dynamics of the mem-
brane potential we obtain

dV
dt

¼ �
dI
dt

¼ gðE � V Þ � *FRD
K

K þ ðm *F Þn
: ð20Þ

To completely specify the semi-dynamical sys-
tem described by eqns (19) and (20) we must
additionally have an initial function

Iðt0Þ � jðt0Þ for t0Að�N; 0�: ð21Þ

2.3. DIMENSIONLESS FORM OF THE MODEL

To facilitate our later analysis of the model, as
well as our numerical investigation, it is prudent
to reduce the number of parameters in the model
formulation through judicious scaling.
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We start by scaling the temporal variables to
the minimal delay tmin and defining

%t ¼
t

tmin
and T ¼

t
tmin

: ð22Þ

If we define the maximal threshold by Ymax ¼
YðtminÞ ¼ Yt�3=2bmin then we can scale all of the
potentianls to Ymax using

y ¼
Y

Ymax
; e ¼

E
Ymax

; i ¼
I

Ymax

and v ¼
V

Ymax
:

ð23Þ

We further define two dimensionless firing
frequencies by

f ¼
F tmin
c

and f0 ¼ a
kYmaxtmin

c
; ð24Þ

wherein the constant c is defined by

cn ¼ K
tmin
m

� 
n
: ð25Þ

Finally, we define two parameters G and b
through

G ¼ gtmin and b ¼
RcD
Ymax

: ð26Þ

With these definitions, we can write eqn (20) in
the dimensionless form

dv
d%t

¼ Gðe� vÞ � b *f
1

1þ *f
n ¼ Gðe� vÞ � bGð *f Þ;

ð27Þ

wherein

Gð *f Þ ¼
*f

1þ *f
n: ð28Þ

*f is given from eqn (19) by

*f ðvÞ ¼ f0

Z
N

0

½vT � yðT Þ�H ðvT � yðT ÞÞ%xðT Þ dT

ð29Þ

with

yðT Þ ¼ T�3=2b: ð30Þ
In eqn (29) the notation vT means

vT ð%tÞ � vð%t � T Þ

and

%xðT Þ ¼ tminxðT tminÞ: ð31Þ

3. Summary of Analytic and Numerical
Model Properties

We have presented our full analytic analysis of
the steady states of the model defined by eqns
(19) and (20) in Appendix A, and the reader
interested in the details may find them there. In
this section, we merely give a brief resume of
those results which are easy to state if difficult to
demonstrate.
In terms of steady states, the results of

Appendix A.1 show that, depending on the
parameters of the model, there may be one, two,
or three steady-state values of the membrane
potential (cf. Fig. 7). We denote these by vi; i ¼
1; 2; 3 with 0pv1�pv2�pv3�: Since the firing fre-
quency Fðv�Þ is a monotone function of v� we
therefore know that Fðv1�ÞpFðv2�ÞpFðv3�Þ: If a
steady state v�pymin there is no firing and
Fðv�Þ ¼ 0:
From a point of view of stability, and thus

what is likely to be observable either numerically
or experimentally, we must rely on Appendix
A.2 and Proposition 2. From these we know that
regardless of the number of steady states v1� may
be either stable or unstable (if it is unstable it is
replaced by an apparently stable limit cycle), v2� is
always unstable (and therefore will never be
observed), and v3� is always stable.
From an experimental and dynamical point of

view perhaps the most interesting situation is
that for which there are three coexisting steady
states 0pv1�pv2�pv3�: In this case, there will be
genuine bistable behaviour possible in which,
depending on the initial function selected [cf.
eqn (21)], the model behaviour will either go to a
relatively high firing rate Fðv3�Þ that will be
constant in time, or there will be a lower firing
rate Fðv1�ÞpFðv3�Þ: This lower firing rate Fðv1�Þ
may be either stable (and constant), or un-
stable and periodic (and thus display bursting
behaviour).
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An extensive numerical investigation of the
model defined by the dimensionless eqns (27)–
(30) has been carried out. Briefly, we have found
that in addition to the stable steady states, limit
cycles, and bistability uncovered by the analytic
analysis of Appendix A there can also be a
hierarchy of bifurcations to limit cycles of higher
period as well as solution behaviours that are
apparently ‘‘chaotic’’. We have not presented
these results here since the dimensionality of the
parameter space that had to be searched is so
high [the dimensionality is six, corresponding to
the dimensionless parameters G; b; n; f0; b and e
in addition to the parameters defining the
dimensionless distribution of delays %xðT Þ].
Rather, in the next section we pick recurrent
inhibition in the hippocampus as a particular
physiological example to localize a region in this
high dimensional parameter space and then
present numerical results for that situation.

4. A Particular Example

There are six parameters in the dimensionless
model of Section 2.3. To localize attention to a
smaller volume of the model parameter space,
we have determined parameters for our recurrent
inhibitory model using the hippocampal mossy
fibre-CA3 pyramidal cell-basket cell complex as
an example. In this case, the mossy fibres
correspond to the pre-synaptic population, the
CA3 pyramidal cells are the post-synaptic cells,
the basket cells are the interneurons, and the
inhibitory transmitter is GABA.
Thanks to the long-term efforts of Traub and

his co-workers (Traub & Miles, 1991; Traub
et al., 1991, 1993, 1994, 1996, 1999a, b; Traub &
Bibbig, 2000) we have extremely detailed knowl-
edge of the dynamics of the hippocampus that
has been incorporated into sophisticated math-
ematical models of the hippocampal physiology.
In estimating parameters for our model for the
dynamics of recurrent inhibition based on
hippocampal physiology, we fully realize that
our model of recurrent inhibition lacks much of
the physiological detail that these other models
have. However, we are merely concerned with
using the hippocampal data to derive physiolo-
gically realistic parameter values with which we
can explore the numerical behaviour of the
model.
We first estimate the model parameters using a

variety of hippocampal data in Section 4.1 and
then present numerical results of our simulations
in Section 4.2.

4.1. PARAMETER ESTIMATION

There are a number of parameters that must
be estimated before the dimensionless para-
meters f0; G and b can be determined and a
coherent numerical investigation of the system
defined by eqns (27)–(29) carried out. This
section is devoted to an explanation of how we
carried out this determination for the parameters
that we were able to calculate from hippocampal
experimental data. Our final determinations are
summarized in Table 1.

* g is the inverse of the time constant for the
decay of inhibitory potentials. However, there
are two types of inhibitory synapses mediated by
GABA (Traub & Miles, 1991). The GABAA

synapses have inhibitory currents carried by Cl�,
are located on the soma and apical dendrites, are
blocked by penicillin, and have an associated
membrane time constant of about 23ms. The
GABAB synapses mediate inhibitory currents
carried by K+, are located more distally on the
dendrites, and are characterized by a long time
constant of about 185ms. Since the shorter time
constant will dominate the decay of the inhibi-
tory potentials we have taken g ¼ (23ms)�1¼
4.3	 10�2ms�1.

*D is the size of the unitary IPSP that can be
elicited in a pyramidal cell. From the data of
Traub & Miles (1991, Fig. 3.2) this ranges
between 0.5 and 1.5mV. We have chosen
D ¼ 1mV.

*R is the average number of GABA receptors
per pyramidal cell. The direct estimates of
Meg!ıas et al. (2001) place the average number
of inhibitory synapses on CA1 pyramidal cells at
1700.

*K is the equilibrium binding constant between
the inhibitory transmitter GABA and the
excitatory cell GABA receptor. From cell culture
preparations, this was determined in Nowak
et al. (1982) to be K ¼ ð5mM)3.



Table 1
Parameters estimated for the hippocampal CA3 pyramidal cell-basket cell-mossy fibre inhibitory

recurrent network

Parameter Units Hippocampal value Reference

g ms�1 4.3	 10�2 Traub & Miles (1991)
D mV 1 Traub & Miles (1991)
R F B1700 Anderson et al. (1964), Traub & Miles (1991),

Meg!ıas et al. (2001)
K (mM)n 53=125 Nowak et al. (1982)
m mMs 0.62 See text
n F 3 Nowak et al. (1982), Werman (1979)
a F 0.4 Traub & Miles (1991)
k (mV s)�1 20 Kandel & Spencer (1961)
tmin ms 5.6 Anderson et al. (1964)
tmax ms 9.1 Anderson et al. (1964)
Ymin mV 2 Kandel & Spencer (1961), Spencer & Kandel (1961)
Ymax=Ymin F 5 Anderson et al. (1964), Kandel & Spencer (1961)
f0 F 16	 mC9:92
G F C0.24
b F 4.5	 10�3R
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*m is the concentration of GABA released per
action potential in the basket cells, and is
difficult to estimate. Traub & Miles (1991,
p. 55) estimate that one quantum of GABA
activates about 20 receptors. n ¼ 3 is estimated
to be the number of molecules required to
activate one receptor. These figures were used
to employ a statistical algorithm to find the
number M1 of GABA molecules contained in
one quantum: assume that an effective number
ReffoR of receptors can be reached by the
GABA molecules contained in the quantum. The
molecules are distributed randomly among these
receptors but no receptor must receive more than
n ¼ 3 molecules. Then M1 is the number of
GABA molecules which yields, on average, 20
active receptors. With Reff ¼ 50; a numerical
calculation yields M1E94: Traub & Miles (1991)
further estimate that a single inhibitory action
potential releases of the order of 12 quanta
of GABA. Under the assumption that each
receptor receives molecules only from a single
quantum, a single action potential releases about
12M1E1128 molecules of GABA.

Assume that these 1128 GABA molecules are
released into an effective synaptic volume of V
measured in m3, so we have a concentration of
1128=V molecules	 m�3. We wish to express
this in terms of moles. Keeping the numerical
value of V but reexpressing the units in molar
concentration we arrive at

m ¼
1128

V

molecules

m3

¼
1:128	 1018

V

molecules

l
E
1:87

V
mM:

However, this is for one action potential, and if
we assume that an action potential has a
duration of 1ms then this translates to an m
value of

m ¼
1:87	 10�3

V
mMs:

From the data of Nusser (1999), inhibitory
synapses have an effective cross-sectional area
of 0.1–0.2m2 and the synaptic gap is about
20	 10�3 m (Prof. C. Stevens, pers. comm.)
to give an effective synaptic volume of
VC224	 10�3 m3. Taking the midpoint of this
range leads to mC0:62mM.
Although there are a number of uncertainties

in the estimation of m; our numerical investiga-
tions suggest that the system dynamicsFinclud-
ing the firing frequencies corresponding to the
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different attractors described belowFdo not
alter significantly as m is varied.

* n is the effective number of GABA molecules
required to bind to the GABA receptor for
activation. This was determined to be between 2
and 3 in Nowak et al. (1982) and between 3 and
4 in Werman (1979). We have taken an inter-
mediate value with n ¼ 3:

* a is the ratio between the firing frequency of
the inhibitory interneurons (the basket cells) and
the pyramidal cells. This can be interpreted as
the reciprocal of the number of pyramidal cell
action potentials required to elicit one basket cell
action potential. Based on the data presented in
(Traub & Miles, 1991, p. 65, Table 3.2 and
Fig. 3.8) aC0:320:4 and we have taken a ¼ 0:4:

* k is the slope of the firing frequency vs.
membrane potential relation. From the data of
Kandel & Spencer (1961, Fig. 8A) this relation-
ship is linear as we assumed in eqn (17), and
k ¼ 26	 1010 (amp-s)�1. With a membrane
resistance of Rm ¼ 13	 106O (Kandel & Spen-
cer 1961; Spencer & Kandel, 1961) this translates
to k ¼ 20 (mV s)�1.

* tmin is the minimal value of the delay that is
expected from the most rapidly conducting
(largest) fibres in the recurrent pathway. From
the data of Anderson et al. (1964, Fig. 3A and
p. 596) the minimal latency for the inhibition
with commissural stimulation of 5 times thresh-
old was tmin ¼ 5:6ms.

* tmax was determined from the same source as
tmin (Anderson et al., 1964) where a latency of
9.1ms was observed with a commissural stimu-
lation of 1.02 times threshold.

*Ymin is the minimum threshold for firing.
From Kandel & Spencer (1961, Fig. 8A) the
rheobase current in one cell wasB6.5	 10�10A,
which is at the upper end of the range of
rheobase currents in Spencer and Kandel (1961,
Table 2) who report a rheobase ranging from 1.0
to 5.0	 10�10A. With a membrane resistance of
Rm ¼ 13	 106O (Kandel & Spencer, 1961;
Spencer & Kandel, 1961) this range of rheobase
currents corresponds to a threshold range with a
minimum ofYmin ¼ 1:3mV. This is about half of
the minimum firing levels reported in Kandel &
Spencer (1961, Table 1) which range from 2.7 to
5.2mV. We have chosen a Ymin ¼ 2mV.
*Ymax=Ymin is taken to be 5 in accordance with
the data of Kandel & Spencer (1961, Table 2),
and the data of Anderson et al. (1964).

The data on Ymin; Ymax; tmin and tmax are
interesting when considered within the context
of the relationship Y ¼ Y0t�3=2b derived in
Section 2.1. From this relation between the
threshold and the conduction delay we have

b ¼
3

2

ln tmax=tmin
lnYmax=Ymin

: ð32Þ

Using the values tabulated above we obtain an
approximate value of bC0:45; which is close to
the value of 0.5 that would hold if the feedback
pathway were non-myelinated. Given the con-
duction velocities of 0.5m s�1 for pyramidal cells
(Colling et al., 1998) and 0.2m s�1 for inter-
neurons (Salin & Prince, 1996) the pathway is
most certainly non-myelinated. This close corre-
spondence gives us confidence in our parameter
estimation as well as this portion of our model
formulation.

4.2. NUMERICAL BEHAVIOUR

The dynamical system (27)–(29) was numeri-
cally investigated using a rectangular distribu-
tion of delays (A.30). [We did this in the absence
of any experimental information about the way
in which the delays are distributed between tmin
and tmax: Other numerical studies using the
density of the gamma distribution (results not
shown) have yielded results virtually identical to
those we show here, and it would appear that the
primary important factors are the values of tmin
and tmax as the results of Bernard et al. (2001)
indicate should be the case]. Parameters were
chosen from Table 1 except for the average
number of GABA receptors per pyramidal cell,
R; which was used as a bifurcation parameter
along with the constant excitatory input e: The
reason for choosing R and e is that they may be
variable in the biological feedback loop under
consideration:

*First, in in vitro experimental conditions, the
experimentalist has control over the stimulation
e used in studying the preparation. Second,
in vivo the excitatory input e is likely to vary due



Fig. 3. System behaviour for R ¼ 1700 and small input
e: (a) rðvÞ which is non-monotone and gives rise to three
steady states v1�; v

2
�; v

3
�: (F) horizontal line: e ¼ 2: ( 
 
 
 
 )

vertical lines: two initial conditions v0 ¼ 0:05 and 1.5. For
v0 ¼ 0:05; the post-synaptic cell activity approaches a stable
limit cycle while it converges to the steady-state v3� for v0 ¼
1:5: (b,c) Rescaled membrane potential vð%tÞ and unscaled
firing frequency F ðtÞ for v0 ¼ 0:05: (d,e) vð%tÞ and F ðtÞ for
v0 ¼ 1:5: Remember that the time %t is dimensionless and the
time t is measured in ms. Remaining parameters were
chosen from Table 1.
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to the overall activity of the hippocampal
network and its afferents.

*With respect to the average number of GABA
receptors per cell (R) this is easily modified in the
in vitro situation through titration with penicillin
which is a GABA receptor agonist. Further-
more, a modification of the number of receptors
in the post-synaptic membrane is a likely
candidate for LTP and LTD (e.g. Carroll et al.,
1999; Shi et al., 1999) and may thus vary on the
longer time scale of synaptic modification.

In the following, we display the time course
of the dimensionless membrane potential as a
function of the dimensionless time variable, vð%t Þ;
and the average firing frequency of the excitatory
population in its unscaled form, F ðtÞ; for
different values of the parameters R and e: F ðtÞ
can be calculated from the output frequency of a
single fibre with delay t; eqn (17), and subse-
quent averaging over the rectangular distribu-
tion of delays (A.30). It is obtained from the
dimensionless firing frequency (29) of the in-
hibitory population as

F ð *f Þ ¼

ffiffiffiffi
K3

p
am

*f ¼ 20:16 *f ð33Þ

and has the dimensions of Hz. As initial
conditions for the dynamical system (27)–(29),
we restrict ourselves to constant functions

v0ð%tÞ � v0; �Tmaxo%tp0: ð34Þ

The simulations we have performed with more
complicated initial functions, e.g. functions
which span the unstable fixed point v2�; have
not yielded different results (data not shown).
Simulations were performed in Matlab and with
xpp4w95. Some of the results were also checked
using a Fortran version. Copies of the code are
available from the authors.
The stability considerations of Appendix A.2

were numerically confirmed. In particular, the
steady-state v2� was always unstable, and v3� was
always stable. The dynamical properties of v1�;
however, changed as a function of both R and e
as expected from our linear analysis.
Figures 3 and 4 show the dynamics of the

system for the parameter values of Table 1; in
particular, R ¼ 1700: In this parameter regime,
rðvÞ is non-monotone, and there may be one,
two, or three steady states depending on the
value of the excitatory input e: The steady-state
v1� is unstable. In addition, the dynamics of the
system in the neighbourhood of v1� depend on
the size of the input, e: For small input, i. e. in
the regime of a single steady-state v1� and for
small input in the regime of three steady states, a
stable limit cycle appears in the neighbourhood
of v1�: Trajectories are either attracted to this
limit cycle or to the steady-state v3� (cf. Fig. 3).
The periodic oscillation of the membrane poten-
tial in the neighbourhood of v1� may result in one
or two spikes per oscillation period, i. e. the
period of this oscillation rather than F ðtÞ might
appear in an empirical study of the hippocampal
feedback loop. The eventual maximal firing
frequency in Fig. 3(c) is about 58Hz, while the
frequency of the oscillation is about 26Hz. It is
only weakly dependent on R (data not shown).



Fig. 4. System behaviour for R ¼ 1700 and large input e: (a) rðvÞ which is the same as in Fig. 3. (F) horizontal line:
e ¼ 4: ( 
 
 
 
 ) vertical lines: two initial conditions v0 ¼ 0:5 and 1.5. For both values v0; the post-synaptic cell approaches the
steady-state v3�: (b,c) Rescaled membrane potential vð%tÞ and unscaled firing frequency F ðtÞ for v0 ¼ 0:5: (d,e) vð%tÞ and F ðtÞ for
v0 ¼ 1:5: The time %t is dimensionless and the time t is measured in ms. Remaining parameters were chosen from Table 1.
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The firing frequency F ðtÞ corresponding to the
steady-state v3� is about 264Hz [Fig. 3(e)].
For higher inputs e in the regime of three

steady states, the stable oscillation vanishes, and
v3� is globally stable and numerically attracts
solutions with all initial conditions (Fig. 4). The
firing frequency corresponding to v3� is about
695Hz.
As R is decreased, v1� becomes asymptotically

stable. Figure 5 shows the system for R ¼ 50
where rðvÞ is still non-monotone. In this case,
e ¼ 0:9 and there are three steady-states. The
system is bistable and may switch between the
stable steady states v1� and v3� by varying
the external input. Two sample solutions are
shown in Fig. 5 yielding firing frequencies of
about 12 and 65Hz for v1� and v3�; respectively.
In most bistable cases we encountered, the

unstable steady-state v2� is a basin boundary for
v1� and v3� if constant initial functions (34) are
employed. In rare cases (e. g. for R ¼ 100; e ¼
1:9; v0 ¼ 0:3; data not shown), however, initial
conditions to the left of v1� will result in the
trajectory converging to v3�: This behaviour is
due to the delay in the system and the attendant
infinite-dimensional phase space.
For very small values of R; inequality (A.14)

for the function rðvÞ to be monotone increasing
is satisfied, and a single steady-state v1� exists. In
all cases with monotone rðvÞ; v1� was found to
be globally asymptotically stable resulting in a
regular post-synaptic neural firing. An example
is given in Fig. 6, where R ¼ 10; e ¼ 0:9; and the
firing frequency in the steady state is about
80Hz.

5. Discussion

The model that has been developed and
analysed here is an extension of Mackey and
an der Heiden (1984). The primary extension of
the current model is the inclusion of the
distribution of delay times and the fact that this
distribution is state dependent. A variety of



Fig. 5. System behaviuor for R ¼ 50: (a) rðvÞ is not
monotone; there are three steady states v1�; v

2
�; v

3
� in the post-

synaptic population. (F) horizontal line: excitatory input
e ¼ 0:9: ( 
 
 
 
 ) vertical lines: two initial conditions v0 ¼
0:05 and 1.5. (b, c) Rescaled membrane potential vð%tÞ and
unscaled firing frequency F ðtÞ for v0 ¼ 0:05; the trajectories
approach the steady-state v1�: (d,e) vð%tÞ and F ðtÞ for v0 ¼ 1:5;
the trajectories approach the steady-state v3�: The time %t is
dimensionless and t is measured in ms. Remaining
parameters were chosen from Table 1.

Fig. 6. System behaviour for R ¼ 10: (a) rðvÞ is mono-
tone increasing; there is a single globally stable steady-state
v1� in the post-synaptic population. (F) horizontal line:
excitatory input e ¼ 0:9: ( 
 
 
 
 ) vertical line: initial
condition v0 ¼ 0:5: (b) Rescaled membrane potential vð%tÞ:
(c) Unscaled firing frequency F ðtÞ of the excitatory
population. The time %t is dimensionless and t is measured
in ms. All other parameters were chosen from Table 1.
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numerical simulations (that we have not shown
in this paper, but which will be presented
elsewhere) illustrate that with the original para-
meters of Mackey & an der Heiden (1984) and a
state-dependent distribution of delays, a pro-
gressive increase in the variance of the distribu-
tion leads to a loss of the higher-order
bifurcations and chaotic behaviour found in
Mackey & an der Heiden (1984). On the other
hand, with the current estimates of the para-
meters and maintaining the rectangular distribu-
tion of delays we have also seen a broad
spectrum of dynamic behaviours by simply
increasing the parameter G from the value of
0.24. Thus it is clear that the presence of the
state-dependent distribution of delays does not
destroy the higher-order bifurcation pattern
leading to chaos in this case, but rather shifts it
to a different region of parameter space and a
region that is apparently physiologically inap-
propriate for the recurrent inhibitory system we
have used as an example.
One aspect of the qualitative dynamics ob-
served in Mackey & an der Heiden (1984) and
which is still found here is the bistability in
solution behaviour. The bistability comprising
two fixed points corresponds to switching
between behaviours with firing frequencies 10–
25Hz on the one hand with a second region with
frequencies of 30–100Hz (Fig. 5). The possible
relation of this bistability to any physiologically
observed bistability is unclear, but we do note
that it corresponds to the observed shift between
the g to b frequencies found in hippocampal slice
preparations and which have been described in
Traub et al. (1999).
In our model, the state of the whole post-

synaptic cell population is represented by the
membrane potential vð%tÞ of an average neuron.
To check if this is a valid simplification, a
network model consisting of 500 individual
graded response cells was designed, each with
its own membrane potential dynamics described
by the equations (27) and (28). The output firing
rate of a neuron is chosen to be the positive part
of its potential minus a threshold value. As
thresholds and signal conduction velocities
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covary as described in Section 2.1, the thresholds
of individual cells are set according to the
rectangular delay distribution between a mini-
mal value ymin and a maximal value ymax: Each
neuron is inhibited by the delayed output of all
cells in the network, including itself. This results
in a cumulative inhibition caused by the previous
firing rates corresponding to eqn (29). Note that
the feedback input is the same for all cells, and as
a consequence, their potentials all approach the
same fixed point or limit cycle during simulation.
This is especially the case if the neurons are
started with randomly chosen v0; or if half of the
cells is initialized with v0 near one of the fixed
points, the other half near the other. Although
several starting conditions and parameter regimes
were tested, a split into two or more subpopula-
tions with different time-dependent potentials
could not be observed. Thus, the population
model dynamics seem to mimic those observed in
the simplified model we have presented and
analysed in this paper. We will present a full and
detailed account of these population model
dynamics in a future communication.
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Appendix A

Model Analysis

In this appendix, we give the full analysis
of the model as formulated in eqns (19) and
(20). We start in Appendix A.1 with an examina-
tion of the steady states of the model. Their local
stability is the subject of Appendix A.2.

A.1. STEADY STATES

The dimensionless system defined by eqns
(27)–(29) can have one, two or three steady
states. To see how this can come about, consider
the following.
For vð%tÞ � v ¼ constant; *f takes the form

*f ðvÞ � FðvÞ ¼ f0

Z Tmax

T ðvÞ
½v� yðT Þ�%xðT Þ dT ; ðA:1Þ

with

T ðvÞ ¼
tðvÞ
tmin

¼ v�2b=3X1 ðA:2Þ

and

Tmax ¼
tmax
tmin

: ðA:3Þ

FðvÞ has the following properties:

(i) If voymin ¼ Ymin=Ymaxo1 then there will
be no excitation of the excitatory population of
cells so F � 0:
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(ii) If vA½ymin; 1�; then the lower bound on
the integral in eqn (A.1) is a monotone decreas-
ing function of v so we know that in this
region F is a monotone increasing function
of v:

(iii) If v > ymax � 1 then

FðvÞ ¼ f0

Z Tmax

Tmin¼1
½v� yðT Þ�%xðT Þ dT

¼ f0v� f0

Z Tmax

1

yðT Þ%xðT Þ dT ;

ðA:4Þ

so for v4ymax ¼ 1 we know that F is a linearly
increasing function of v:

Thus, to summarize F ¼ 0 at v ¼ e ¼ ymin
and for v4ymin we know that F is a monotone
increasing function of v:
The steady state(s) of this system are de-

noted by v
*
and are defined from the condition

that dv=d%t � 0: Equations (27), (28) and (A.1)
yield the steady-state condition

e� v
*
¼ Hðv

*
Þ; ðA:5Þ

where

HðvÞ ¼
b
G
GðFðvÞÞ: ðA:6Þ

We rewrite eqn (A.1) in the form

FðvÞ ¼ f0vI1ðvÞ � f0I2ðvÞ; ðA:7Þ

wherein

I1ðvÞ ¼
Z Tmax

T ðvÞ

%xðT Þ dT and

I2ðvÞ ¼
Z Tmax

T ðvÞ
yðT Þ%xðT Þ dT :

ðA:8Þ

The derivative of HðvÞ is then given by

H0ðvÞ ¼
b
G
f0I1ðvÞG0ðFðvÞÞ: ðA:9Þ

To study the number of possible steady states,
we will use a graphical approach since it is the
most transparent. Using the information about
the behaviour of FðvÞ as described above,
eqn (A.5) can be evaluated graphically as shown
in Fig. 7 for n41: The left-hand side of eqn (A.5)
is a linearly decreasing function of v and thus
(for all other parameters being fixed) depending
on the value of the parameters G; e or b we may
have one [Fig. 7(a), (b) and (f)], two [Fig. 7(c)
and (e)], or three [Fig. 7(d)] intersections with a
corresponding number of steady states which we
label from left to right as vi�; i ¼ 1; 2, 3 with
0pv1�pv2�pv3�: In the case of Fig. 7(a), the
steady-state v1�pymin consists of no firing and
Fðv�Þ ¼ 0:
Introducing a function

rðvÞ � vþHðvÞ; ðA:10Þ

the steady-state eqn (A.5) can be written as

e ¼ rðv
*
Þ: ðA:11Þ

If r is a monotone increasing function of v; a
unique steady-state v� is given by eqn (A.11).
According to eqn (A.9)

r0ðvÞ ¼ 1þH0ðvÞ ¼ 1þ
bf0I1ðvÞ

G
G0ðFðvÞÞ:

ðA:12Þ

A necessary and sufficient condition for r
to be monotone increasing is that the in-
equality

H0ðvÞX� 1; ðA:13Þ

or equivalently

G0ðFðvÞÞX�
G

bf0I1ðvÞ
ðA:14Þ

must hold for all v: Note that condition (A.14)
includes the case vpymin ¼ T�3=2b

max where
I1ðvÞ � 0: Consequently, this is a sufficient
condition for a unique steady-state v

*
: An

example where inequality (A.14) is satisfied is
shown in Figs. 8(a) and 9. Fig. 8(a) shows the
graph of the monotone function rðvÞ: Figure 9
illustrates inequality (A.14), and shows that
increasing the parameter b may lead to the
violation of inequality (A.14).
If inequality (A.14) does not hold for all v then

r has two local extrema v1 and v2 ðv1ov2Þ as



Fig. 7. A plot (for n > 1) of the left- and right-hand sides of eqn (A.5) as a function of the membrane potential v: As any
one of the parameters G; e; or R is varied with all other parameters held fixed, we may have one [(a), (b) and (f )], two [(c) and
(e)] or three [(d)] steady states. Here, both functions e� v andHðvÞ were determined assuming a delay distribution with a
rectangular density given by eqn (A.30) and the parameters from Table 1 except for G ¼ 5 which was chosen for better
visibility of the different cases. In (a) e ¼ 0:2; (b) e ¼ 0:6; (c) eE0:95; (d) e ¼ 1:1; (e) eE1:3; and (f) e ¼ 1:4:
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shown in Fig. 8(b). By defining e1 ¼ rðv1Þ and
e2 ¼ rðv2Þ we may distinguish the three cases
(i) For e2oeoe1 there are three steady states.
(ii) For e ¼ e1 and e ¼ e2 there are two steady

states.
(iii) For eoe2 and e > e1 there is a unique

steady state.

A.2. STABILITY OF STEADY STATES

We now turn to a consideration of the stability
of the steady states, defined implicitly by eqns
(A.5) and (A.1), and how that stability may be
lost. In general, the question that one would
always like to be able to examine is the global
stability of a steady state to all perturbations.
However, there are no general global stability
results for systems with dynamics described by
eqns (27)–(29), and consequently the usual
approach is to examine the stability of v

*
in

the face of very small deviations away from the
steady state. This type of examination is called
an analysis of the local stability of v

*
:

Before we proceed to the steady states of the
full system we briefly consider the case of a fixed



 

Fig. 8. The graph of rðvÞ when: (a) condition (A.14)
holds and there is a single steady-state solution v� of (A.5);
(b) inequality (A.14) does not hold and there may be
one, two, or three steady states. The function rðvÞ was
determined assuming a delay distribution with a rectan-
gular density given by eqn (A.30) and standard parameters
from Table 1 except for (a) R ¼ 15; (b) R ¼ 50:

 

Fig. 9. A plot of eqn (A.14) when the condition is
satisfied and there is a single steady-state solution v� of
(A.5). Both functions, AðvÞ � G0ðFðvÞÞ (top) and BðvÞ �
�G=bf0I1ðvÞ (bottom), were obtained from the rectangular
delay distribution (A.30) and standard parameters from
Table 1 except for R ¼ 20:
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point v�oymin as shown in Fig. 7(a). For v
in a neighbourhood of v

*
; FðvÞ � 0 as was

argued in condition (i) after eqn. (A.3). In this
situation there is no excitation of the excitatory
population and consequently no inhibitory feed-
back, i � 0: The steady-state condition (A.5)
reduces to

v
*
¼ e ðA:15Þ

which holds for eoymin: Equation (27) becomes
a linear ordinary differential equation,

dv
d%t

¼ Gðe� vÞ; ðA:16Þ

whose solution is given by

vð%tÞ ¼ v0e�G%t þ eð1� e�G%tÞ; ðA:17Þ

where v0 � vð%t ¼ 0Þoymin: The steady state v� ¼
e is locally stable.
To examine the local stability for eXymin

(corresponding to Fig. 7(b)–(f ) we write out eqns
(27)–(29) for small deviations z of v from v�; so
vð%tÞ ¼ v� þ zð%tÞ: In the linear approximation this
gives

dz
dt
C�Gz�bf0G0ðFðv�ÞÞ

Z Tmax

T ðv�Þ
zT %xðT Þ dT : ðA:18Þ

To proceed, we make the ansatz that the deviation
z from the steady state has the form zð%tÞCexpðl%tÞ;
substitute this into eqn (A.18), carry out the
indicated integrations, and finally obtain

lþ G ¼ �bf0G0ðFðv�ÞÞ
Z Tmax

T ðv�Þ
e�lT %xðT Þ dT

¼ �bf0G0ðFðv
*
ÞÞJðl; v

*
Þ; ðA:19Þ

where

Jðl; vÞ �
Z Tmax

T ðvÞ
e�lT %xðT Þ dT : ðA:20Þ

Note that I1ðvÞ ¼ Jð0; vÞ; and therefore H0ðvÞ
can be written as

H0ðvÞ ¼
b
G
f0G0ðFðvÞÞJð0; vÞ: ðA:21Þ

Assume that the eigenvalue solutions of (A.19)
are complex conjugate l ¼ mþ io so the eigen-
value eqn (A.19) takes the form

mþ ioþ G ¼ � bf0G0ðFðv�ÞÞ

	
Z Tmax

T ðv�Þ
e�mT e�ioT %xðT Þ dT : ðA:22Þ



 

 

Fig. 10. Graphical representation of the stability con-
ditions under consideration in Proposition 1 (a) and
Proposition 2 (b) demonstrating that the functions
CðmÞ � bf0jG0ðFðv�ÞÞjJ1ðm; v�Þ and DðmÞ � mþ G intersect
at some positive value of m (in a) or negative value of m (in
b). In both cases, CðmÞ was obtained from the rectangular
delay distribution (A.30) and standard parameters from
Table 1 except for (b) G ¼ 6: In both cases, v� ¼ 0:8:
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Separating eqn (A.22) into its real and imaginary
parts we have

mþ G ¼ � bf0G0ðFðv�ÞÞ

	
Z Tmax

T ðv�Þ
e�mT cos ðoT Þ%xðT Þ dT ðA:23Þ

and

o ¼ bf0G0ðFðv
*
ÞÞ
Z Tmax

T ðv�Þ
e�mT sin ðoT Þ%xðT Þ dT :

ðA:24Þ

Using eqns (A.23) and (A.24) we now prove
two propositions concerning the local stability of
steady states and apply them to the different
cases discussed in Appendix A.1.

Proposition 1. If H0ðv
*
Þo� 1 then the steady-

state v� is unstable.

Proof. We show that there exists a real positive
eigenvalue. Equation (A.24) is satisfied for o ¼
0: In this case, eqn (A.23) results in

mþ G ¼ �bf0G0ðFðv
*
ÞÞJðm; v

*
Þ: ðA:25Þ

For negative G0ðFðv
*
ÞÞ the right-hand side of eqn

(A.25) is a monotone decreasing function of m [see
Fig. 10(a)] which intersects the ordinate
at bf0jG0ðFðv

*
ÞÞjJð0; v

*
Þ ¼ GjH0ðv

*
Þj: Therefore,

the graph of the linear function mþ G intersects
the graph of eqn (A.25) at m40 if jH0ðv

*
Þj41 or

mo0 if jH0ðv�Þjo1: Thus for jH0ðv
*
Þj41 there

exists a positive m which satisfies eqn (A.25)
which is sufficient for instability of the steady
state. This situation is shown in Fig. 10(a).

Proposition 2. If �1oH0ðv
*
Þo1 then the

steady-state v
*
is locally asymptotically stable.

Proof. The function

bf0jG0ðFðv
*
ÞÞjJðm; v

*
Þ �

bf0jG0ðFðv
*
ÞÞj
Z Tmax

T ðvÞ
e�mT %xðT Þ dT ðA:26Þ

is an upper bound to the right-hand side of eqn
(A.23) regardless of o: Equation (A.26) is a
monotone decreasing function of m [see
Fig. 10(b)] which intersects the ordinate at bf0j
G0ðFðv

*
ÞÞjJð0; v

*
Þ ¼ GjH0ðv

*
Þj: Therefore, the

graph of the linear function mþ G intersects
the graph of eqn (A.26), and consequently also
the right-hand side of eqn (A.23), at mo0
if jH0ðv

*
Þjo1: In this case, the real part m of any

eigenvalue is negative, and the steady-state v
*
is

asymptotically stable. Fig. 10(b) illustrates the argu-
ment. The results of Propositions 1 and 2 are shown
in Fig. 11(a).
The stability of the steady-states v1�; v

2
� and v

3
� is

determined from Propositions 1 and 2 and from
the following relations that are easy to derive:

H0ðv1�ÞX� 1; ðA:27Þ

H0ðv2�Þp� 1 ðA:28Þ

and

�1pH0ðv3�Þo0: ðA:29Þ

Let us now consider the different cases of
Appendix A.1.

1. If rðvÞ is a non-monotonic function and
there are three steady states [Fig. 7(d)], then:



Fig. 11. Stability properties of the steady states. (a) A
graphical representation of the content of Propositions 1
and 2 showing the dependence of the stability of a steady
state on H0ðT ðv�ÞÞ: (b) Bifurcation curve (A.36) for the
rectangular distribution of delays (A.30); T ðv�Þ is plotted vs.
H0ðT ðv�ÞÞ; for G from Table 1. For the (- - - -) lines,
T ðv�Þ ¼ Tmin ¼ 1 and T ðv�Þ ¼ Tmax: (JJJJ) Circles refer
to the position of steady-states v1� in the simulations shown
Section 4.2; 1, Fig. 3; 2, Fig. 4; 3, Fig. 5; 4, Fig. 6.
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(a) if v1� satisfies Proposition 2 it is asymp-
totically stable. If not it can be asymptotically
stable or unstable;

(b) v2� is unstable according to eqn (A.28)
and Proposition 1;

(c) v3� is asymptotically stable according to
eqn (A.29) and Proposition 2.
2. A unique steady-state v1� [Fig. 7(b); for

monotonic or non-monotonic rðvÞ] is asympto-
tically stable if it satisfies the requirement of
Proposition 2. If not it can be asymptotically
stable or unstable.
3. A unique steady-state v3� [Fig. 7(f )] satisfies

Proposition 2 and is therefore stable.

These statements are consistent with the
results of our simulations in Section 4.2.
Further stability results can be obtained

for special choices of the delay distribu-
tion %xðT Þ only. Here we consider the rectangular
distribution which was also used in the simula-
tions.
A.2.1. Bifurcation Diagram for a
Rectangular Density

Consider a distribution of delays with a
rectangular density:

%xðT Þ ¼

0 0pTo1;
1

Tmax � 1
1pTpTmax;

0 TmaxoToN:

8>>><
>>>:

ðA:30Þ

Functions employed in the stability analysis
like FðvÞ and H0ðvÞ can be easily evaluated for
this case. (Figs. 7–10 were created using this
rectangular density for the distribution of
delays.)
For the stability analysis, we substitute the

density (A.30) into eqn (A.19) and carry out the
integration. Using (A.9) this yields

lþ G ¼ �GH0ðv
*
Þ
e�lT ðv

*
Þ � e�lTmax

lðTmax � T ðv
*
ÞÞ

ðA:31Þ

for yminpv
*
p1; and

lþ G ¼ �GH0ðv�Þ
e�l � e�lTmax

lðTmax � 1Þ
ðA:32Þ

for v�41: In the following, we consider the case
yminpv

*
p1; the case v

*
41 yields similar results.

In eqn (A.31), we write l ¼ mþ io and separate
the real and imaginary parts. Since a stable fixed
point v

*
becomes unstable if it passes from

negative m through m ¼ 0 to m40 we consider
the set of points with m ¼ 0: In this case the real
and imaginary parts of (A.31) are

o2 ¼
2GH0ðv

*
Þ

Tmax � T ðv
*
Þ
sino

Tmax þ T ðv
*
Þ

2
	

sino
Tmax � T ðv

*
Þ

2
;

ðA:33Þ

o ¼
�2H0ðv

*
Þ

Tmax � T ðv
*
Þ
coso

Tmax þ T ðv
*
Þ

2
	

sino
Tmax � T ðv

*
Þ

2
:

ðA:34Þ
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Equations (A.33) and (A.34) yield an implicit
equation for o;

G sino
Tmax þ T ðv

*
Þ

2
þ o coso

Tmax þ T ðv
*
Þ

2
¼ 0:

ðA:35Þ

The solutions of (A.35) are the frequencies
oðG; T ðv

*
ÞÞ which can be paired with m ¼ 0: This

equation has to be solved numerically. The solu-
tions are subsequently inserted into (A.34) leading
to values ofH0ðG; T ðv

*
ÞÞ which allow for m ¼ 0:
H0
*
ðG; T ðv

*
ÞÞ ¼ �ðTmax � T ðv

*
ÞÞ

GoðG; T ðv
*
ÞÞ

2 coso ðG; T ðv
*
ÞÞ½Tmax þ T ðv

*
Þ�=2 sino ðG; T ðv

*
ÞÞ½Tmax � T ðv

*
Þ�=2

:

ðA:36Þ
Keeping G constant we find a set of solutions
oðT ðv

*
ÞÞ of (A.35) and correspondingly a set of

H0ðT ðv
*
ÞÞ from (A.36) where m ¼ 0: Increasing
H0ðT ðv
*
ÞÞ from the stable side, the first passage

through m ¼ 0 marks the onset of instability;
cf. Fig. 11(a). The transition happens for the
smallest H0ðT ðv

*
ÞÞ of the set. The resulting

bifurcation curve is shown in Fig. 11(b) for G
chosen according to Table 1. Comparing these
results with a state-independent density of
delays, and a delta-function density for the delay
distribution with a delay #T; shows that in the
latter case the instability occurs at a value of
H0ðv

*
Þ which corresponds to #T equal to our Tmax:

This demonstrates the expected result that
shorter delays stabilize the system: the
stable regime in Fig. 11 is larger for smaller
T ðv

*
Þ:
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