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This paper surveys the general theory of operon regulation as first formulated by Goodwin and
Griffith, and then goes on to consider in detail models of regulation of tryptophan production by
Bliss, Sinha, and Santilleand Mackey, and the interrelationships between them. We further give a
linear stability analysis of the Sanfitleand Mackey model for wild typ&. coli as well as three
different mutant strains that have been previously studied in the literature. This stability analysis
indicates that the tryptophan production systems should be stable, which is in accord with our
numerical results. €2001 American Institute of Physic§DOI: 10.1063/1.1336806

The development of the operon concept of gene regula-
tion 40 years ago was one of the seminal developments in
molecular biology. In the intervening four decades ex-
perimentalists have intensively studied regulation in
many different operons, but none so extensively as thac
(lactose and trp (tryptophan) operons. Strangely enough,
in spite of the extensive knowledge of the biology of these
two systems and the wealth of experimental data avail-
able about their dynamics, there have been few attempts
on the part of applied mathematicians to integrate this
knowledge into coherent mathematical models. In this
paper we review the earliest mathematical treatments of
the general operon concept, and then consider three spe-
cific models for the tryptophan operon. The most recent
of these is due to Santilla and Mackey, and we provide
new local stability analysis of the steady state of that
model which indicates that the steady state is locally
stable. This stability is also found in numerical simula-
tions that we present.

I. INTRODUCTION

repressor molecule binds the operator, blocking it and pre-
venting the binding omRNApolymerase.

The most extensively studied operon systems are those
controlling the production of lactose and tryptophan, namely
thelac andtrp operons. Hand in hand with the acquisition of
experimental knowledge about these systems, a few applied
mathematicians have developed models to help understand
the experimental data that has been colle¢tédRefs. 2—4
for modeling related to théac operon, and Refs. 5-10 for
the trp operon. Studies of the tryptophan operon have been
especially fruitful, and offer prime examples of the way in
which experimentalists in molecular biology and applied
mathematicians can work cooperatively to untangle nature’s
secrets.

In this paper, we first briefly discuss the most general
model of the operon developed 35 years ago by Gootwin
and Griffitht? in Sec. Il. Then in Sec. Ill we discuss specific
models of the tryptophan operon developed by Bliasd
Sinha’ respectively. Section IV discusses a much more re-
cent model for the tryptophan operon due to Samtikkand
Mackey! and briefly comments on comparisons between this
newer model and experimental data taken filgncoli. Sec-
tion V points out the connections between these three models

This paper considers the development of models relateBY taking appropriate limits in the Santilaand Mackey
to operon regulation. Perhaps one of the most important cofnodel. Finally, Sec. VI offers a partial local stability analysis
Cepts in modern molecular bio|ogy, the notion of the Operorpf the Sant”[a] and MaCkey model under the conditions that
has revolutionized the way in which molecular biologiststhese limiting procedures are fulfilled and shows that the

think about the regulation of intracellular processes.

dynamics of tryptophan production are locally stapfeac-

The general theory of the operon was introduced by Jacord with numericgl resulisn wild type E. cgli as well as in
cobet al.in 1960 This theory postulated that all genes arethree mutant strains that have been previously studied. The

controlled by means of operons subject to a single regulatorf@Per concludes with a brief discussion in Sec. VII.
mechanism known as repression. An operon consists of a set

of genes preceded by a small DNA segméht operator,
where repression takes place anBNApolymerase binds to

Il. THE GENERAL THEORY OF THE OPERON

In 1965 Goodwih! proposed a mathematical model of

initiate transcription. An operon is repressed when an activéhe operon based on the general theory. This model considers

three independent variables: The operon-relab&NAcon-
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by the operon gene<£], and the concentration of the end
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product of the reactions catalyzed by enzymeThe equa- from a regulatory point of view, and the tryptophan concen-
tions describing the Goodwin model, as modified bytration (T). The equations governing the dynamic evolution

Griffith,? can be written without loss of generality as of these three quantities are

dM 1 dMm

dE

vl - BE, 2 EZKpM(t—TP)—KZE, 5)
and and

daT daT

a=E—yT. (3) H=KIEI(T)—G(T)—KT. (6)

The first term on the right-hand side of Ed) models re- In Eq. (4), K,, is the intrinsic rate of transcription initiation
pression, and the positive Hill constamt specifies the of an operon that is not repress&{}) is the probability that
strength of the repression. The constamfs3, andy are all  an operon is not repressed at timer,, is the time delay
positive and account for dilution by growth and enzymaticbetween initiation of transcription and initiation of transla-
degradation. The parametgr-0 includes both of these ef- tion, O is the total operon concentration, aldg is a positive
fects as well as end product consumption. The enzyme prazonstant accounting fanRNAdepletion due to dilution by
duction rate is assumed proportional to thRNAconcentra- growth and enzymatic degradation.

tion, while the end product production rate is taken to be  Bliss et al. assumed thaR(t) can be modeled by a Hill

proportional to the enzymatic concentration. function

Griffith*? proved analytically that the equilibrium solu-
tion of this model for operon regulation is locally stable with Ky 7
n<8. He further showed that far>8, the solution can al- KM Tm’ ™

ways be made unstable by a proper choice of the parameters

a, B, and y. From these results, Griffith concluded that With m=4. In Eq. (5), K, denotes the rate of translation
oscillations of operon activity could occur only if there is initiation permRNAmolecule,r, is the time delay between
cooperative repression of such a high order as to be unlikelipitiation of translation and the appearance of functional en-
from a biochemical point of view. Nevertheless, the intro-zyme, andK; is a positive constant accounting for enzyme
duction of biologically significant time delays as well as adepletion due to dilution by growth and enzymatic degrada-
nonlinear demand for end product may modify the stabilitytion. Finally, in Eq.(6), K is the tryptophan production rate
properties of the model. Tyson and Othiidrave given an  Per enzyme](T) is the fraction of enzyme not inhibited by
early and very complete survey of dynamics in biochemicathe end productG(T) is the tryptophan consumption rate,

feedback pathways that stands as one of the most comple@@dK is the growth rate of the bacterial culture.
available. This model clearly considers two different regulatory

mechanisms, repression and enzymatic feedback inhibition
by tryptophan.R(t) accounts for repression, whilg(T)
IIl. MODELING OF THE TRYPTOPHAN OPERON stands for feedback inhibition. Blisst al. also assert that
REGULATORY SYSTEM I(T) can be modeled by a Hill function

With the development of more refined experimental n
techniques and the acquisition of more data, it became clear Ki
that in addition to repression there are many regulatory K{‘+T”’
mechanisms involved in the control of operons, and that .
these vary from operon to operon. One of the most intenW'.th an, and that the de”.‘a”d for tryptophan obeys a
sively studied of these systems from an experimental point OMlchaells—Menten type equation
view is the tryptophan operon. An excellent review of this
system and its regulatory mechanisms is to be found in Ref. ~ G(T)=Gmaxg 9
14. Considering the intensity of the experimental study of the g
tryptophan operon, there have been surprisingly few math- The authors made a careful estimation of the parameters
ematical model&810-° in this model based on the available experimental data. They
solved the model equations numerically and also performed
an analytical stability analysis of the steady states. They

One of the first mathematical models of the tryptophanwere able to reproduce the results of derepression experi-
operon was introduced by Bligg al.in 1982° The indepen- ments with cultures of wild and mutar. coli strains re-
dent variables of this model are thgp mRNAconcentration ported in Ref. 15. From these experiments, the tryptophan
(M), the concentration of anthranilate synthd&g which,  operon losses stability in mutaii. coli cell cultures that
according to the authors, of all the enzymes formed with thénave a partial loss of feedback inhibition. The previously
polypeptides of the tryptophan operon is the most importanstable steady state is replaced by an oscillatory production of

®

A. The Bliss model
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tryptophant® This mutation is modeled by increasitig to  tophan operon regulatory system, and their exclusion makes
ten times its wild type value. However, to our knowledge,the Sinha model unable to reproduce some of the important
these experiments have never been successfully repeatatynamic system characteristics.
Moreover, more recent experimental evidence has demon- Itis also important to note that Sinha assumes a constant
strated that the functioiR(t), which Bliss et al. used to tryptophan consumption rat&,.. Noting this, Sen and
model repression, is in disagreement with the experimentaliu® modified the Sinha model to study the case of a nonlin-
facts about the interaction between thgoperon and repres- ear tryptophan consumption rate given by a Michaelis—
sor molecules. The issue of oscillations in tryptophan controMenten functionG(T) =G, T/(T+Ky). Sinha, as well as
was revisited by Xitet al?in their investigation of the role  Sen and Liu, studied the stability of their models for various
of growth and dilution rates on stability. values of parameteis, andK, and found the corresponding
stability regions in theK,—K, parameter space. However,
they neither compare their models with experimental data
nor do they discuss whether the valuesKgrandK, where
stability is lost are physiologically attainable in wild type or
In 1988 Sinhaintroduced a different model for the tryp- mutant bacterial strains.
tophan operon regulatory system in which the DNA-—
repressor interaction is modeled in a more detailed way. The
independent variables of the Sinha model are the same as l¥- A MORE DETAILED MODEL

the Blisset al. mOdel, i.e., th&l’p mRNAconcentration M), Recent|y Santi"a and Macke{, introduced a more de-

the anthranilate synthase enzyme concentratign @nd the  tajled mathematical model of the tryptophan operon regula-
tryptophan concentrationT{. The dynamic equations for tory system which is shown schematically in Fig. 1. This

B. The Sinha model

these variables are model considers four independent variables: the concentra-
dM K Ky+K,T tion of trp operons with operators free to bgz boundrbRNA
F:KmK K TKTInRTC KiM, (10 polymerase moleculeﬂ,:), the con(_:entranon d_fp_mRN_A
oftd ™ o molecules with freeTrpE-related ribosome binding sites
dE (Mg), the concentration of the enzyme anthranilate synthase
gt = KeM—K2E, (1) (E), and the tryptophan concentratiom)(
Although five different polypeptides are synthesized dur-
and ing the expression of thap operon and they combine to
dT form the enzymes that catalyze the reaction pathway which
— =KE—Gpa— KT. (12 synthesizes tryptophan from chorismic acid, this model con-

dt centrates on anthranilate synthase. The reason for this focus

The first term on the right-hand side of H30) is themRNA is that this enzyme is the most important from a regulatory
production rate. It is assumed to be proportional to the conPoint of view since it is subject to feedback inhibition by
centration of unrepressed operons, with a proportionalitfryptophan and is the first to play its catalytic role in the
constantk ,,. The concentration of unrepressed operons ig€action pathway.

calculated by taking into account the fact that active repres- ~Anthranilate synthase is a complex of tWepE and two

sor molecules reversibly bind operons to block transcription! 'PD polypeptides. From this, Santiieand Mackey assume
initiation, and assuming that this reaction takes place suffithat the anthranilate synthase production rate is twice that of
ciently rapidly that it is in a quasisteady state. From this, thehe TrpE polypeptide and look only at thErpE-related ribo-
concentration of unrepressed operonsG&,/(K,+Ry), some binding sites of thmRNAchain. The equations gov-
whereK, is the dissociation constant of the repressor-opero@mning the dynamics of these variables are

reaction,O is the total operon concentration, aRd is the do;
concentration of active repressor molecules.

When produced by thepR operon, repressor molecules
are unable to repredgp operons. For this repression to take —uOg, (13
place, they need to be activated by two tryptophan molecules
which sequentially bind noncooperatively in two indepen-dMF =Kk POR(t—Tp)e A 1—A(T)]

r

dt K, +Ra(T

) {/-LO_ ka[OF(t) - OF(t_ Tp)e_l”p]}

dent places. From this, and assuming that this reaction takeslt
place in a quasisteady state, Sinha obtained the concentration

— _ _ —uT,
of active repressor given bR,=nTR/(T+K,), wheren Kpp[Me()=Mg(t=r,)e 7]

=2, R is the total repressor concentration, alig is the — (kgD + w)Mg(1), (14
repressor activation dissociation constant. dE 1
Compared with the Blisgt al. model, the Sinha model ~=_ ZK,pME(t—Te)e #Te— (y+ w)E(1), (15)

considers the DNA—repressor and repressor—tryptophan irdt 2
teractions in a more detailed way. On the other hand, it alsg,q
ignores the fact that anthranilate synthase is feedback inhib- g
ited by tryptophan as well ignoring the time delays inherent _T= . B B
to the system. These are both important features of the tryp-  dt KEAET) = G(T)=F(T, Tew) — 1T, (16
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All the parameters in this model were estimated based ofication, which was assumed to be such that it keeps the total
reported experimental results, and the details of the paranoperon concentration at a constant vadebalancing dilu-
eter estimation process are in Ref. 7, which also contains #on by growth.

description of the model derivation process. The term
The factor
—KpP[Og(t) = O(t—mp)exp(— u7p)] (19
L (170  accounts for the rate of free operons bindingnbiRNApoly-
Ke+Ra(T) merase molecules and later freed when the polymerases have

in Eqg. (13) is the fraction of unrepressed operons. This fol_traveled for a distance along the operon in a “';”ﬂe Ky is .
: .. the reaction rate of the DNA—polymerase binding reaction,
lows from the fact that when active repressor reversibly . . .
. . . assumed to be irreversible, aRdis the mMRNApolymerase
binds free operons the experimentally reported reaction rates : . .
. . concentration. The exponential factor exp{r,) takes into
allow one to make a quasisteady state assumpiorns the I _ p
. L . . . . account the dilution due to exponential growth suffered by
dissociation constant of this reaction, @Rg(T) is the active . .
; . ¢ during the timer,,.
repressor concentration. The experimentally reported rates o . L
o i . In Eq. (14), 7, is the time it takes for a polymerase to
the repressor activation reaction also support a quasistead . .

. . oduce amRNAchain long enough to have an available
state assumption. Repressor molecules activate when t . o2 : . "
tryptophan molecules sequentially bind an inactive repress rpE-related ribosome binding Sité\(T) s the probability
ryptop d Y P Yor transcription to be prematurely terminated due to tran-

In two independent sites noncooperatively. From this scriptional attenuation. Sanfilaand Mackey take A(T)
- RT(t) . =b[1—exp(-=T/c)].
AT T HK —K,p[Me(t) = Me(t—7,)exp — uT,)] (20)

where R is the total repressor concentration alidis the accounts for the rate ahRNAs being bound by ribosomes
dissociation constant of the repressor activation constant. and liberated after they travel for a timg along themRNA

w is the growth rate of the bacterial culture. The termchain.k, is themRNA-ribosome binding reaction rate apd
O stands for the operon production rate due to DNA rep-s the ribosomal concentration.
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The first term on the right-hand side of Ed.5) is the b, which determines the probability of transcriptional attenu-
anthranilate synthase production rate. The faétis incor-  ation at high tryptophan levels. The normal value of this
porated because, as mentioned earlier, the enzyme produsarameter i$h=0.85, and to simulate the mutation it was
tion rate is assumed to be one half thafTopE polypeptide. increased td=0.9996.

TheTrpE production rate equals the rate of ribosome binding  The experiments of Yanofsky and Horn were simulated
free TrpE-related ribosome binding sites a timgago.7. is ~ numerically. In all three casdsvild type and two mutanjs

the time it takes for a ribosome to synthesize and release the model results show a reasonable qualitative agreement
TrpE polypeptide. with the experiments, given the simplifying assumptions in-

The tryptophan production rate, the first term on theherent to the model.
right-hand side of Eq(16) is assumed to be proportional to
the concentration of activeuninhibited enzymes E,) with
a proportionality constarit. Anthranilate synthase is inhib-
ited when two tryptophan molecules bind thgE subunits
in a sequential cooperative reaction with a Hill coefficient of ~ To compare the model of Sec. IV with the Bliss and

ny=1.2. The enzyme feedback inhibition reaction rate con-sjnha models, we need to simplify the Santiland Mackey
stants support a quasisteady state assumption, from whichmodel.

V. COMPARISON BETWEEN THE MODELS

Ny The time amRNAPtakes to free an operator after bind-
EA(E,T)=E(T) ———. (21) g is estimated to be ag,=0.1 min. Experimental results
’ TH+ KinH and model simulations have shown that typical relaxation

) ) o ) ) times of thetrp regulatory system are of the order of a few
K; is the dlssomat_lon constant of this _reactlon. The tryp-qozen minutes for wild type as well amL29 and trpL75
tophan consumption rate constant is modeled as §,iant strains of. coli strain CY15000. This means that
Michaelis—Menten-type function the change irO¢ is negligible on the time scale of,. The
growth rate is estimated g$=0.01 min. From these two
G(T)=Cmaxt - (220 observations, exp{u7,)=1 and this permits us to simplify
9 Eq. (1) by neglecting the term-k,P[Og(t) — O(t— )
Finally, E. coli can uptake tryptophan from the environment. X exp(— ump)].
This can be managed by different tryptophan permeases. The Similar considerations allow us to simplify E) by
rate of tryptophan uptake is modeled by Santilland neglecting the ternk,p[ Mg(t) — Mg(t—7,)exp(—u7,)] (7,
Mackey as is estimated to be,=0.05 min. These simplifying assump-
T tions reduce the number of time delays in the model from
S (23  four to two.
et Tex{ 1+ T/1] To compare with previous models, we consider a culture
Tex is the external tryptophan concentration. growing in a medium without tryptopharT {,=0). With all
After estimating all the parameters from the availableof these simplifications and lumping parameters, the model’s
experimental data, this model was solved numerically, angystem of governing equations becomes
compared with experiments performed by Yanofsky and dO T +K,

F(T, Texy=d

Horn'® on bacterial cultures of wild type as well apL29 = —Op(t) ¢, (24)
andtrpL75 mutant strains oE. coli. In these experiments, a de —* (1+2K)T(1) +K, :
bacterial culture is first grown in a medium with a high tryp- dMe
tophan concentration during a period of time long enough for ~ — 5~ =KpOr(t— 7)€" (1—b)+ be™ T(/e]
the trp operon to reach a steady state. Then the bacteria are
washed and shifted to a medium without tryptophan, and the —(Kp+u)Mg(), (25
response of the anthranilate synthase activity is measured as
a function of time after the nutritional shift. dE _ —pur
; ) = 5 K,Me(t—Te)e #Te—(y+ u)E(1), (26)
ThetrpL29 mutant strain has a mutatighito G at bp 29 dt 2
in the leader region of th&p operon. This change replaces .4
the leader peptide start codon BUG, and decreases op-
eron expression in cells growing in the presence or absence (T KinH T(t)
of tryptophan. This mutation is simulated by Santilland g K K T () E(t) GmaxT(t)+Kg mT(L).
Mackey by decreasing the rate constiptto 0.04 times its i 5
normal value. (27)
The straintrpL75 of E. coli has a mutation o6 to A at The values of all the parameters in E¢&4)—(27) were

bp 75 in the leader region of theep operon. This change estimated from experimental results in Ref. 7, and these val-
decreases the stability of the transcription antiterminatoues are tabulated in Table I.

structure, and increases transcription termination at the at- When we compared the numerical solutions of this sim-
tenuator. Consequently, it decreases operon expression plified model and the original one, we found they are very
cells growing in the presence or absence of tryptophan. Thisimilar for the wild as well as for thérpL29 and trpL75
mutation was simulated by increasing the value of parametanutant strains. This comparison was performed for many
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TABLE I. The values of the parameters in the model equati@ds—(27) as O =— u<0 (29)
previously estimated. See Santilland Mackey(Ref. 7 for details. 1 '
0~3.32x1073 uM R=0.8 uM 0= KiROwK; (30)
p=1.0x10"2 min~* K;=4.09 uM YK T+K K+ TR
K,=2.61x10° uM K4=0.6 min !
K,~20.01 min! Ky=0.2 uM _ —ur, _ ~Ticy~
K,=10.14 min* M=1.2 Qa=Kpe #ml(1-h)+be >0, 3D
K=118.84 min'* K=60.34 uM Q= —(Kp+u)<0, (32
Ga=25 uM min~—?t y=0 min~!
€c=2.0x10"2 uM b=0.85 _ b =
7=0.1 min T;n=0.66 min Qpy=— KpOFe‘WmEe‘T ¢<0, (33
932: %er_MTe> 0, (34)
different sets of initial conditions, and in all cases no signifi-  Qg3=—(y+ u)<0, (35
cant difference was observed between the solutions of the .
two models. _ K"
Making a quasisteady state assumption in(Gy.setting Q4=K K™ TH (36)
the time delaysr,,, and 7, equal to zero, and ignoring tran- :
scriptional attenuation =0), reduces this model to the and
Sinha model. If we only make the quasisteady state assump- MH T(ng—1)
tion in Eq. (5) and ignore transcriptional attenuation, we ob- - K KimnuT E-G 9 0
. . . . _ 44— - n—_2 - max_—z - ILL< .
tain a model similar to that of Bliset al. However, the re (K H4TMH) (T+Kg)
pression dynamics in the Blist al. model is different. (37)
After normalizing, the characteristic equation becomes
VI. LOCAL STABILITY ANALYSIS AND NUMERICAL C(2)=0, with
RESULTS

C(2)=(1+Zlwq)(1+ 2l wy)(1+Z/ w3)(1+ 2/ w,)
Given a model as embodied in E¢24)—(27), one of the

first questions a modeler is likely to ask is “What are the + B1(1+2Z/ w1)expl — 712) + BoeXPpl — 722),
steady states of the system?” and second, “Are the steady (39)
states stable?” .
Steady states in this circumstance are defined by the ré(‘—”th @1,
quirement that all of the temporal derivatives in E@f)— @1+ ®2» @3, @4, B1, B2, 71,
(27) are identically equal to zero. Without giving the explicit w;=—01,
form for the steady states, a little algebra shown that there is
a unique nonzero steady state that we denote by  ®2T 7
(OFIMFIE!T)' 0)3:—933,
To answer the second question about the stability of this
steady state in complete generality is usually impossible, and @4~ —Qya,
one must be content with an examination of theal stabil- Q05 0ss
ity. Briefly, in this case this involves only looking at very =
small deviations in the dependent variables away from their Q2213304

wy,w3,04,B1,B8>,>0 and 7,> 7. The constants
and 7, are defined as

steady state values. If these deviations are very small, then it Q14051030 43
is appropriate tdinearize all of the nonlinear terms in Egs. Ba=— m
(24)—(27). We then make thansatzthat the solutions of the 13722533044
linearized equations are of the form ex{p( and from this 1= Te,

obtaining thecharacteristic equatiorin z that must be ana-
lyzed to determine the nature of the roatdf zis real, then and

we must have<0 for linear stability, and in the case that To= Tm+ Te.
is a complex numberz=x+iy, then we must have Re(
=x<0. In both cases a small deviation away from the stead)éte

state will decay back to the steady state—either smoothly, e values of the constanis, througha,, By, B, 71, and

n alga(r)nuﬁegazzmIltag)rzr::rs’;é?(:r}stic equation of the modef2 €N be calculated from their definitions. This was done for
given by Eqs (24’)_(27) is lhe E. coli wild type, thetrpL29 andtrpL75 mutant strains
' studied by Yanofsky and Horn, and the feedback inhibition
(211 2)(Q29—2) (33— 2) (Qas—2) + Q24035 43 resistant mutant strain studiedyby Blissal.
. V7 From Santillm and Mackey, the trpL29 mutant strain
X (Qu-2)e 7 = Q100050 e T MI=0,  (28) can be modeled by decreasiig to 0.04 times its normal
where the constantq;; are defined by wild type value, while therpL75 mutant strain is modeled

Once we have all of the parameters estimated and the
ady state values of the independent variables computed,
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TABLE Il Values of the characteristic equation constants for the wild andwild and mutant strains. In all casg8(z)|> 0, which means
three different mutant strains. FIBR stands for feedback inhibition reS'StamthatC(Z) has no root in the S¢Z| < w3(131+ Bot 2)_ There-
FBIR trpL29 trpL75 fore, the. gharacter|§t|c equation QOes not have any root vy|th
Wild strain mutant strain ~ mutant strain mutant strain feal positive part either for the wild or for the mutant strain
parameter values and thus the system steady states are lo-

0= 0.01 mim? 0.01 min!* 0.01 min®* 0.01 min? .

w= 06l min' 061 min! 061 mn® o061 mn? Calystablein all cases. .

Wy 0.01 min? 0.01 mir! 001 mir® 001 mint The stability of this system was also tested numerically

w4= 3.78 min* 1.05 min* 22.62 min! 30.32 min'? for the wild and three mutant strains. For this, the system

B1= 3.5x10 # 35x10°%  1.34 8.36 equations(24)—(27) were numerically solved using a fourth
2= (1)-2; _ 8-22 _ 33-22 _ 32-22 _ order Runge—Kutta method implementedFORTRAN. The

T1== . min . min . min . min : H

e P, e Pl 0.76 min parameter values were those of Table | for the wild strain,

while for the feedback inhibition resistantypL29, and
trpL75 mutant strains, the parametets, K,, andb were,
respectively, modified as discussed previously. In each case,
by increasingb to 0.9996(the normal wild value is 085) the initial value of all the model variables was set to their
Bliss et al. modeled a feedback inhibition mutant strain by corresponding steady-state value, except forTipeconcen-
increasingK; to ten times its normal wild value. The values tration initial value, which was set equal to 0.9 times its
of all the characteristic equation constants calculated for th€orresponding steady-state value. In all numerical simula-
wild and mutant strains with these changes are tabulated itfons with these parameter values, the system was stable sup-
Table Il. Note that constants; throughws, 71, andr, have  porting the results of the local stability analysis.
the same value in all cases.

By definition, the system’s steady state is locally stable

for a given parameter set if all of the roots of the character-V”' DISCUSSION

istic equation have negative real part. In the Appendix it is  Here we have shown the interrelationships between three
demonstrated for any of the parameter sets of Table Il that ifnajor models for the regulation of tryptophan production.
the characteristic equation has any root with a positive 0fVe have also been able to provide a local stability analysis
zero real part, it must be in the regiojz|<(B:+8,  of the steady states in the SantilMackey model that con-
+2)ws. Thus, to prove that the system is locally stable, infirms the numerical results indicating that the steady states in
every case it is sufficient to numerically show ti&(z) has  this model are globally stable for wild typ colias well as
no rootz satisfying the conditions Re(=0 and|z|<(B, for three different mutant strains.
+By+2)ws. Given the extensive knowledge about the molecular bi-
In Fig. 2, three-dimensional plots 9€(z)| (wherez  ology of regulation in therp andlac operons, and the body
=x+iy) as a function ofx andy in a range containing the of experimental data available on both systems, we find it
region defined byz|<w;(B8,+ B,+2) are shown for all the surprising that there have been so few realistic modeling ef-

10
8d.
~ 6
<]
FIG. 2. Plots of|C(z)| (wherez=x
. +iy) vsx andy for the wild and three
0.05 different mutant strains o. coli: (a)
0.05 wild strain, (b) feedback inhibition re-
sistant strain(c) trpL29 mutant strain,
y -0.05 -005 and (d) trpL75 mutant strain. In all
cases, the plots are given in a range
containing the region |z|<ws(B;
" +B,+2). The parameter values cor-
x10 b \ responding to each strain are given in
5 o “\\ i 9 Table II. Notice thaC(z)|>0 for all
: ‘ “ \\{\ . the wild and mutant strains. This
4 Y /I!{’ ' m“ ““‘ ‘\\\“\\*\\\‘\\ means thaC(z) has no root in the set
=34 WY Zl<w +B,+2).
CH B |1 . ey
I | ;ffff{':f'ﬁ“w‘“““““‘\‘:\‘x&\\‘*\‘\‘*‘“ -
iy
05 .%0000‘:::2:“::‘:0 L 05
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forts on the part of theoretical biologists to understand th z z z

dynamics of these two systems. One can only hope that wit?( I+ ]| 1+ w—) ( 1+ — ‘2,31+ B2t1>p1+ B>

the current intense interest in “molecular biology” this situ- 2 3 4 B

ation will change and experimentalists and theoreticians will =| e mi- B 72

join forces to try to understand these well characterized sys- 1 1+2z/a

tems as prototypes of molecular regulatory systems. when Reg)=0 and|z|=ws(B;,+ B,+2), and so the equa-
tion C(z)=0 does not have any solution under this condi-
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