
CHAOS VOLUME 11, NUMBER 1 MARCH 2001
Dynamic behavior in mathematical models of the tryptophan operon
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This paper surveys the general theory of operon regulation as first formulated by Goodwin and
Griffith, and then goes on to consider in detail models of regulation of tryptophan production by
Bliss, Sinha, and Santilla´n and Mackey, and the interrelationships between them. We further give a
linear stability analysis of the Santilla´n and Mackey model for wild typeE. coli as well as three
different mutant strains that have been previously studied in the literature. This stability analysis
indicates that the tryptophan production systems should be stable, which is in accord with our
numerical results. ©2001 American Institute of Physics.@DOI: 10.1063/1.1336806#
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The development of the operon concept of gene regula
tion 40 years ago was one of the seminal developments
molecular biology. In the intervening four decades ex-
perimentalists have intensively studied regulation in
many different operons, but none so extensively as thelac
„lactose… and trp „tryptophan… operons. Strangely enough,
in spite of the extensive knowledge of the biology of thes
two systems and the wealth of experimental data avail-
able about their dynamics, there have been few attempts
on the part of applied mathematicians to integrate this
knowledge into coherent mathematical models. In this
paper we review the earliest mathematical treatments of
the general operon concept, and then consider three spe
cific models for the tryptophan operon. The most recent
of these is due to Santilla´n and Mackey, and we provide
new local stability analysis of the steady state of that
model which indicates that the steady state is locally
stable. This stability is also found in numerical simula-
tions that we present.

I. INTRODUCTION

This paper considers the development of models rela
to operon regulation. Perhaps one of the most important c
cepts in modern molecular biology, the notion of the ope
has revolutionized the way in which molecular biologis
think about the regulation of intracellular processes.

The general theory of the operon was introduced by
cob et al. in 1960.1 This theory postulated that all genes a
controlled by means of operons subject to a single regula
mechanism known as repression. An operon consists of a
of genes preceded by a small DNA segment~the operator!,
where repression takes place andmRNApolymerase binds to
initiate transcription. An operon is repressed when an ac

a!Author to whom correspondence should be addressed; electronic
moyo@esfm.ipn.mx
2611054-1500/2001/11(1)/261/8/$18.00

Downloaded 29 Mar 2001 to 163.1.103.109. Redistribution subject
d
n-
n

-

ry
set

e

repressor molecule binds the operator, blocking it and p
venting the binding ofmRNApolymerase.

The most extensively studied operon systems are th
controlling the production of lactose and tryptophan, nam
the lac andtrp operons. Hand in hand with the acquisition
experimental knowledge about these systems, a few app
mathematicians have developed models to help unders
the experimental data that has been collected~cf. Refs. 2–4
for modeling related to thelac operon, and Refs. 5–10 fo
the trp operon!. Studies of the tryptophan operon have be
especially fruitful, and offer prime examples of the way
which experimentalists in molecular biology and appli
mathematicians can work cooperatively to untangle natu
secrets.

In this paper, we first briefly discuss the most gene
model of the operon developed 35 years ago by Goodw11

and Griffith12 in Sec. II. Then in Sec. III we discuss specifi
models of the tryptophan operon developed by Bliss5 and
Sinha,9 respectively. Section IV discusses a much more
cent model for the tryptophan operon due to Santilla´n and
Mackey,7 and briefly comments on comparisons between t
newer model and experimental data taken fromE. coli. Sec-
tion V points out the connections between these three mo
by taking appropriate limits in the Santilla´n and Mackey
model. Finally, Sec. VI offers a partial local stability analys
of the Santillán and Mackey model under the conditions th
these limiting procedures are fulfilled and shows that
dynamics of tryptophan production are locally stable~in ac-
cord with numerical results! in wild type E. coli as well as in
three mutant strains that have been previously studied.
paper concludes with a brief discussion in Sec. VII.

II. THE GENERAL THEORY OF THE OPERON

In 1965 Goodwin11 proposed a mathematical model
the operon based on the general theory. This model consi
three independent variables: The operon-relatedmRNAcon-
centration (M ), the concentration of the enzyme produc
by the operon genes (E), and the concentrationT of the end
il:
© 2001 American Institute of Physics
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262 Chaos, Vol. 11, No. 1, 2001 M. Santillán and M. C. Mackey
product of the reactions catalyzed by enzymeE. The equa-
tions describing the Goodwin model, as modified
Griffith,12 can be written without loss of generality as

dM

dt
5

1

11Tn
2aM , ~1!

dE

dt
5M2bE, ~2!

and

dT

dt
5E2gT. ~3!

The first term on the right-hand side of Eq.~1! models re-
pression, and the positive Hill constantn specifies the
strength of the repression. The constantsa, b, andg are all
positive and account for dilution by growth and enzyma
degradation. The parameterg.0 includes both of these ef
fects as well as end product consumption. The enzyme
duction rate is assumed proportional to themRNAconcentra-
tion, while the end product production rate is taken to
proportional to the enzymatic concentration.

Griffith12 proved analytically that the equilibrium solu
tion of this model for operon regulation is locally stable wi
n,8. He further showed that forn.8, the solution can al-
ways be made unstable by a proper choice of the param
a, b, and g. From these results, Griffith concluded th
oscillations of operon activity could occur only if there
cooperative repression of such a high order as to be unli
from a biochemical point of view. Nevertheless, the intr
duction of biologically significant time delays as well as
nonlinear demand for end product may modify the stabi
properties of the model. Tyson and Othmer13 have given an
early and very complete survey of dynamics in biochemi
feedback pathways that stands as one of the most com
available.

III. MODELING OF THE TRYPTOPHAN OPERON
REGULATORY SYSTEM

With the development of more refined experimen
techniques and the acquisition of more data, it became c
that in addition to repression there are many regulat
mechanisms involved in the control of operons, and t
these vary from operon to operon. One of the most int
sively studied of these systems from an experimental poin
view is the tryptophan operon. An excellent review of th
system and its regulatory mechanisms is to be found in R
14. Considering the intensity of the experimental study of
tryptophan operon, there have been surprisingly few ma
ematical models.5,6,10,9

A. The Bliss model

One of the first mathematical models of the tryptoph
operon was introduced by Blisset al. in 1982.5 The indepen-
dent variables of this model are thetrp mRNAconcentration
(M ), the concentration of anthranilate synthase~E!, which,
according to the authors, of all the enzymes formed with
polypeptides of the tryptophan operon is the most import
Downloaded 29 Mar 2001 to 163.1.103.109. Redistribution subject
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from a regulatory point of view, and the tryptophan conce
tration (T). The equations governing the dynamic evoluti
of these three quantities are

dM

dt
5KmOR~ t2tm!2K1M , ~4!

dE

dt
5KpM ~ t2tp!2K2E, ~5!

and

dT

dt
5KtEI~T!2G~T!2KT. ~6!

In Eq. ~4!, Km is the intrinsic rate of transcription initiation
of an operon that is not repressed,R(t) is the probability that
an operon is not repressed at timet, tm is the time delay
between initiation of transcription and initiation of transl
tion, O is the total operon concentration, andK1 is a positive
constant accounting formRNAdepletion due to dilution by
growth and enzymatic degradation.

Bliss et al. assumed thatR(t) can be modeled by a Hil
function

Kr
m

Kr
m1Tm

, ~7!

with m54. In Eq. ~5!, Kp denotes the rate of translatio
initiation permRNAmolecule,tp is the time delay between
initiation of translation and the appearance of functional
zyme, andK2 is a positive constant accounting for enzym
depletion due to dilution by growth and enzymatic degra
tion. Finally, in Eq.~6!, Kt is the tryptophan production rat
per enzyme,I (T) is the fraction of enzyme not inhibited b
the end product,G(T) is the tryptophan consumption rate
andK is the growth rate of the bacterial culture.

This model clearly considers two different regulato
mechanisms, repression and enzymatic feedback inhibi
by tryptophan.R(t) accounts for repression, whileI (T)
stands for feedback inhibition. Blisset al. also assert tha
I (T) can be modeled by a Hill function

Ki
n

Ki
n1Tn

, ~8!

with n52, and that the demand for tryptophan obeys
Michaelis–Menten type equation

G~T!5Gmax

T

T1Kg
. ~9!

The authors made a careful estimation of the parame
in this model based on the available experimental data. T
solved the model equations numerically and also perform
an analytical stability analysis of the steady states. Th
were able to reproduce the results of derepression exp
ments with cultures of wild and mutantE. coli strains re-
ported in Ref. 15. From these experiments, the tryptop
operon losses stability in mutantE. coli cell cultures that
have a partial loss of feedback inhibition. The previous
stable steady state is replaced by an oscillatory productio
 to AIP copyright, see http://ojps.aip.org/chaos/chocr.jsp
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263Chaos, Vol. 11, No. 1, 2001 Behavior in mathematical models
tryptophan.15 This mutation is modeled by increasingKi to
ten times its wild type value. However, to our knowledg
these experiments have never been successfully repe
Moreover, more recent experimental evidence has dem
strated that the functionR(t), which Bliss et al. used to
model repression, is in disagreement with the experime
facts about the interaction between thetrp operon and repres
sor molecules. The issue of oscillations in tryptophan con
was revisited by Xiuet al.10 in their investigation of the role
of growth and dilution rates on stability.

B. The Sinha model

In 1988 Sinha9 introduced a different model for the tryp
tophan operon regulatory system in which the DNA
repressor interaction is modeled in a more detailed way.
independent variables of the Sinha model are the same
the Blisset al. model, i.e., thetrp mRNAconcentration (M ),
the anthranilate synthase enzyme concentration (E), and the
tryptophan concentration (T). The dynamic equations fo
these variables are

dM

dt
5Km

KoKd1KoT

KoKd1KoT1nRT
O2K1M , ~10!

dE

dt
5KpM2K2E, ~11!

and

dT

dt
5KtE2Gmax2KT. ~12!

The first term on the right-hand side of Eq.~10! is themRNA
production rate. It is assumed to be proportional to the c
centration of unrepressed operons, with a proportiona
constantKm . The concentration of unrepressed operons
calculated by taking into account the fact that active repr
sor molecules reversibly bind operons to block transcript
initiation, and assuming that this reaction takes place su
ciently rapidly that it is in a quasisteady state. From this,
concentration of unrepressed operons isOKo /(Ko1RA),
whereKo is the dissociation constant of the repressor-ope
reaction,O is the total operon concentration, andRA is the
concentration of active repressor molecules.

When produced by thetrpR operon, repressor molecule
are unable to represstrp operons. For this repression to tak
place, they need to be activated by two tryptophan molec
which sequentially bind noncooperatively in two indepe
dent places. From this, and assuming that this reaction t
place in a quasisteady state, Sinha obtained the concentr
of active repressor given byRA5nTR/(T1Kd), where n
52, R is the total repressor concentration, andKd is the
repressor activation dissociation constant.

Compared with the Blisset al. model, the Sinha mode
considers the DNA–repressor and repressor–tryptophan
teractions in a more detailed way. On the other hand, it a
ignores the fact that anthranilate synthase is feedback in
ited by tryptophan as well ignoring the time delays inher
to the system. These are both important features of the t
Downloaded 29 Mar 2001 to 163.1.103.109. Redistribution subject
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tophan operon regulatory system, and their exclusion ma
the Sinha model unable to reproduce some of the impor
dynamic system characteristics.

It is also important to note that Sinha assumes a cons
tryptophan consumption rateGmax. Noting this, Sen and
Liu8 modified the Sinha model to study the case of a non
ear tryptophan consumption rate given by a Michaeli
Menten functionG(T)5GmaxT/(T1Kg). Sinha, as well as
Sen and Liu, studied the stability of their models for vario
values of parametersKo andK2 and found the correspondin
stability regions in theKo–K2 parameter space. Howeve
they neither compare their models with experimental d
nor do they discuss whether the values forKo andK2 where
stability is lost are physiologically attainable in wild type o
mutant bacterial strains.

IV. A MORE DETAILED MODEL

Recently Santilla´n and Mackey7 introduced a more de
tailed mathematical model of the tryptophan operon regu
tory system which is shown schematically in Fig. 1. Th
model considers four independent variables: the concen
tion of trp operons with operators free to be bound bymRNA
polymerase molecules (OF), the concentration oftrp mRNA
molecules with freeTrpE-related ribosome binding site
(MF), the concentration of the enzyme anthranilate synth
(E), and the tryptophan concentration (T).

Although five different polypeptides are synthesized d
ing the expression of thetrp operon and they combine t
form the enzymes that catalyze the reaction pathway wh
synthesizes tryptophan from chorismic acid, this model c
centrates on anthranilate synthase. The reason for this f
is that this enzyme is the most important from a regulat
point of view since it is subject to feedback inhibition b
tryptophan and is the first to play its catalytic role in th
reaction pathway.

Anthranilate synthase is a complex of twoTrpE and two
TrpD polypeptides. From this, Santilla´n and Mackey assume
that the anthranilate synthase production rate is twice tha
theTrpE polypeptide and look only at theTrpE-related ribo-
some binding sites of themRNAchain. The equations gov
erning the dynamics of these variables are

dOF

dt
5

Kr

Kr1RA~T!
$mO2kpP@OF~ t !2OF~ t2tp!e2mtp#%

2mOF , ~13!

dMF

dt
5kpPOF~ t2tm!e2mtm@12A~T!#

2krr@MF~ t !2MF~ t2tr!e2mtr#

2~kdD1m!MF~ t !, ~14!

dE

dt
5

1

2
krrMF~ t2te!e

2mte2~g1m!E~ t !, ~15!

and

dT

dt
5KEA~E,T!2G~T!2F~T,Text!2mT. ~16!
 to AIP copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 1. Schematic representation of the tryptophan o
eron regulatory system. See the text for details.
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All the parameters in this model were estimated based
reported experimental results, and the details of the par
eter estimation process are in Ref. 7, which also contain
description of the model derivation process.

The factor

Kr

Kr1RA~T!
~17!

in Eq. ~13! is the fraction of unrepressed operons. This f
lows from the fact that when active repressor reversi
binds free operons the experimentally reported reaction r
allow one to make a quasisteady state assumption.Kr is the
dissociation constant of this reaction, andRA(T) is the active
repressor concentration. The experimentally reported rate
the repressor activation reaction also support a quasist
state assumption. Repressor molecules activate when
tryptophan molecules sequentially bind an inactive repres
in two independent sites noncooperatively. From this

RA~T!5
RT~ t !

T~ t !1Kt
, ~18!

where R is the total repressor concentration andKt is the
dissociation constant of the repressor activation constan

m is the growth rate of the bacterial culture. The te
mO stands for the operon production rate due to DNA re
Downloaded 29 Mar 2001 to 163.1.103.109. Redistribution subject
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lication, which was assumed to be such that it keeps the t
operon concentration at a constant valueO, balancing dilu-
tion by growth.

The term

2kpP@OF~ t !2OF~ t2tp!exp~2mtp!# ~19!

accounts for the rate of free operons binding bymRNApoly-
merase molecules and later freed when the polymerases
traveled for a distance along the operon in a timetp . kp is
the reaction rate of the DNA–polymerase binding reacti
assumed to be irreversible, andP is the mRNApolymerase
concentration. The exponential factor exp(2mtp) takes into
account the dilution due to exponential growth suffered
OF during the timetp .

In Eq. ~14!, tm is the time it takes for a polymerase t
produce amRNAchain long enough to have an availab
TrpE-related ribosome binding site.A(T) is the probability
for transcription to be prematurely terminated due to tra
scriptional attenuation. Santilla´n and Mackey7 take A(T)
5b@12exp(2T/c)#.

2krr@MF~ t !2MF~ t2tr!exp~2mtr!# ~20!

accounts for the rate ofmRNA’s being bound by ribosome
and liberated after they travel for a timetr along themRNA
chain.kr is themRNA–ribosome binding reaction rate andr
is the ribosomal concentration.
 to AIP copyright, see http://ojps.aip.org/chaos/chocr.jsp
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265Chaos, Vol. 11, No. 1, 2001 Behavior in mathematical models
The first term on the right-hand side of Eq.~15! is the
anthranilate synthase production rate. The factor1

2 is incor-
porated because, as mentioned earlier, the enzyme pro
tion rate is assumed to be one half that ofTrpE polypeptide.
TheTrpE production rate equals the rate of ribosome bind
freeTrpE-related ribosome binding sites a timete ago.te is
the time it takes for a ribosome to synthesize and relea
TrpE polypeptide.

The tryptophan production rate, the first term on t
right-hand side of Eq.~16! is assumed to be proportional t
the concentration of active~uninhibited! enzymes (EA) with
a proportionality constantK. Anthranilate synthase is inhib
ited when two tryptophan molecules bind theTrpE subunits
in a sequential cooperative reaction with a Hill coefficient
nH.1.2. The enzyme feedback inhibition reaction rate c
stants support a quasisteady state assumption, from whi

EA~E,T!5E~T!
Ki

nH

TnH1Ki
nH

. ~21!

Ki is the dissociation constant of this reaction. The try
tophan consumption rate constant is modeled as
Michaelis–Menten-type function

G~T!5Gmax

T

T1Kg
. ~22!

Finally, E. coli can uptake tryptophan from the environme
This can be managed by different tryptophan permeases.
rate of tryptophan uptake is modeled by Santilla´n and
Mackey as

F~T,Text!5d
Text

e1Text@11T/ f #
. ~23!

Text is the external tryptophan concentration.
After estimating all the parameters from the availab

experimental data, this model was solved numerically,
compared with experiments performed by Yanofsky a
Horn16 on bacterial cultures of wild type as well astrpL29
and trpL75 mutant strains ofE. coli. In these experiments,
bacterial culture is first grown in a medium with a high try
tophan concentration during a period of time long enough
the trp operon to reach a steady state. Then the bacteria
washed and shifted to a medium without tryptophan, and
response of the anthranilate synthase activity is measure
a function of time after the nutritional shift.

The trpL29 mutant strain has a mutationA to G at bp 29
in the leader region of thetrp operon. This change replace
the leader peptide start codon byGUG, and decreases op
eron expression in cells growing in the presence or abse
of tryptophan. This mutation is simulated by Santilla´n and
Mackey by decreasing the rate constantkp to 0.04 times its
normal value.

The straintrpL75 of E. coli has a mutation ofG to A at
bp 75 in the leader region of thetrp operon. This change
decreases the stability of the transcription antitermina
structure, and increases transcription termination at the
tenuator. Consequently, it decreases operon expressio
cells growing in the presence or absence of tryptophan. T
mutation was simulated by increasing the value of param
Downloaded 29 Mar 2001 to 163.1.103.109. Redistribution subject
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b, which determines the probability of transcriptional atten
ation at high tryptophan levels. The normal value of th
parameter isb.0.85, and to simulate the mutation it wa
increased tob.0.9996.

The experiments of Yanofsky and Horn were simulat
numerically. In all three cases~wild type and two mutants!,
the model results show a reasonable qualitative agreem
with the experiments, given the simplifying assumptions
herent to the model.

V. COMPARISON BETWEEN THE MODELS

To compare the model of Sec. IV with the Bliss an
Sinha models, we need to simplify the Santilla´n and Mackey
model.

The time amRNAPtakes to free an operator after bind
ing is estimated to be astp.0.1 min. Experimental results
and model simulations have shown that typical relaxat
times of thetrp regulatory system are of the order of a fe
dozen minutes for wild type as well astrpL29 and trpL75
mutant strains ofE. coli strain CY15000. This means tha
the change inOF is negligible on the time scale oftp . The
growth rate is estimated asm.0.01 min. From these two
observations, exp(2mtp).1 and this permits us to simplify
Eq. ~1! by neglecting the term2kpP@OF(t)2OF(t2tp)
3exp(2mtp)#.

Similar considerations allow us to simplify Eq.~2! by
neglecting the termkrr@MF(t)2MF(t2tr)exp(2mtr)# (tr

is estimated to betr.0.05 min!. These simplifying assump
tions reduce the number of time delays in the model fr
four to two.

To compare with previous models, we consider a cult
growing in a medium without tryptophan (Text50). With all
of these simplifications and lumping parameters, the mod
system of governing equations becomes

dOF

dt
5mH T~ t !1Kt

~111/Kr !T~ t !1Kt
O2OF~ t !J , ~24!

dMF

dt
5KpOF~ t2tm!e2mtm@~12b!1be2T(t)/c#

2~KD1m!MF~ t !, ~25!

dE

dt
5

1

2
KrMF~ t2te!e

2mte2~g1m!E~ t !, ~26!

and

dT

dt
5K

Ki
nH

Ki
nH1TnH~ t !

E~ t !2Gmax

T~ t !

T~ t !1Kg
2mT~ t !.

~27!

The values of all the parameters in Eqs.~24!–~27! were
estimated from experimental results in Ref. 7, and these
ues are tabulated in Table I.

When we compared the numerical solutions of this si
plified model and the original one, we found they are ve
similar for the wild as well as for thetrpL29 and trpL75
mutant strains. This comparison was performed for ma
 to AIP copyright, see http://ojps.aip.org/chaos/chocr.jsp
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different sets of initial conditions, and in all cases no sign
cant difference was observed between the solutions of
two models.

Making a quasisteady state assumption in Eq.~5!, setting
the time delaystm and te equal to zero, and ignoring tran
scriptional attenuation (b50), reduces this model to th
Sinha model. If we only make the quasisteady state assu
tion in Eq. ~5! and ignore transcriptional attenuation, we o
tain a model similar to that of Blisset al. However, the re-
pression dynamics in the Blisset al. model is different.

VI. LOCAL STABILITY ANALYSIS AND NUMERICAL
RESULTS

Given a model as embodied in Eqs.~24!–~27!, one of the
first questions a modeler is likely to ask is ‘‘What are t
steady states of the system?’’ and second, ‘‘Are the ste
states stable?’’

Steady states in this circumstance are defined by the
quirement that all of the temporal derivatives in Eqs.~24!–
~27! are identically equal to zero. Without giving the explic
form for the steady states, a little algebra shown that ther
a unique nonzero steady state that we denote
(ŌF ,M̄F ,Ē,T̄).

To answer the second question about the stability of
steady state in complete generality is usually impossible,
one must be content with an examination of thelocal stabil-
ity. Briefly, in this case this involves only looking at ver
small deviations in the dependent variables away from th
steady state values. If these deviations are very small, th
is appropriate tolinearizeall of the nonlinear terms in Eqs
~24!–~27!. We then make theansatzthat the solutions of the
linearized equations are of the form exp(zt), and from this
obtaining thecharacteristic equationin z that must be ana
lyzed to determine the nature of the rootsz. If z is real, then
we must havez,0 for linear stability, and in the case thatz
is a complex number,z5x1 iy , then we must have Re(z)
[x,0. In both cases a small deviation away from the ste
state will decay back to the steady state–either smoothly
in a damped oscillatory fashion.

In our case, the characteristic equation of the mo
given by Eqs.~24!–~27! is

~V112z!~V222z!~V332z!~V442z!1V24V32V43

3~V112z!e2tez2V14V21V32V43e
2(te1tm)z50, ~28!

where the constantsV i j are defined by

TABLE I. The values of the parameters in the model equations~24!–~27! as
previously estimated. See Santilla´n and Mackey~Ref. 7! for details.

O.3.3231023 mM R.0.8 mM
m.1.031022 min21 Ki.4.09mM
Kr.2.6131023 mM Kd.0.6 min21

Kr.20.01 min21 Kg.0.2 mM
Kp.10.14 min21 nH.1.2
K.118.84 min21 Kt.60.34mM
Gmax.25 mM min21 g.0 min21

c.2.031022 mM b.0.85
te.0.1 min tm.0.66 min
Downloaded 29 Mar 2001 to 163.1.103.109. Redistribution subject
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V1152m,0, ~29!

V1452
KtROmKr

@KrT̄1KrKt1T̄R#2
,0, ~30!

V215Kpe2mtm@~12b!1be2T̄/c#.0, ~31!

V2252~KD1m!,0, ~32!

V2452KpŌFe2mtm
b

c
e2T̄/c,0, ~33!

V325
1
2 Kre2mte.0, ~34!

V3352~g1m!,0, ~35!

V435K
Ki

nH

Ki
nH1T̄nH

.0, ~36!

and

V4452K
Ki

nHnHT̄(nH21)

~Ki
nH1T̄nH!2

E2Gmax

Kg

~ T̄1Kg!2
2m,0.

~37!

After normalizing, the characteristic equation becom
C(z)50, with

C~z!5~11z/v1!~11z/v2!~11z/v3!~11z/v4!

1b1~11z/v1!exp~2t1z!1b2exp~2t2z!,

~38!

with v1 ,v2 ,v3 ,v4 ,b1 ,b2.0 and t2.t1 . The constants
v1 , v2 , v3 , v4 , b1 , b2 , t1 , andt2 are defined as

v152V11,

v252V22,

v352V33,

v452V44,

b15
V24V32V43

V22V33V44
,

b252
V14V21V32V43

V11V22V33V44
,

t15te ,

and

t25tm1te .

Once we have all of the parameters estimated and
steady state values of the independent variables compu
the values of the constantsv1 throughv4 , b1 , b2 , t1 , and
t2 can be calculated from their definitions. This was done
the E. coli wild type, thetrpL29 and trpL75 mutant strains
studied by Yanofsky and Horn, and the feedback inhibiti
resistant mutant strain studied by Blisset al.

From Santillán and Mackey,7 the trpL29 mutant strain
can be modeled by decreasingKp to 0.04 times its normal
wild type value, while thetrpL75 mutant strain is modeled
 to AIP copyright, see http://ojps.aip.org/chaos/chocr.jsp
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by increasingb to 0.9996~the normal wild value is 0.85).
Bliss et al. modeled a feedback inhibition mutant strain
increasingKi to ten times its normal wild value. The value
of all the characteristic equation constants calculated for
wild and mutant strains with these changes are tabulate
Table II. Note that constantsv1 throughv3 , t1 , andt2 have
the same value in all cases.

By definition, the system’s steady state is locally sta
for a given parameter set if all of the roots of the charac
istic equation have negative real part. In the Appendix i
demonstrated for any of the parameter sets of Table II th
the characteristic equation has any root with a positive
zero real part, it must be in the regionuzu,(b11b2

12)v3 . Thus, to prove that the system is locally stable,
every case it is sufficient to numerically show thatC(z) has
no root z̃ satisfying the conditions Re(z̃)>0 and uz̃u,(b1

1b212)v3 .
In Fig. 2, three-dimensional plots ofuC(z)u ~where z

5x1iy) as a function ofx and y in a range containing the
region defined byuzu,v3(b11b212) are shown for all the

TABLE II. Values of the characteristic equation constants for the wild a
three different mutant strains. FIBR stands for feedback inhibition resis

FBIR trpL29 trpL75
Wild strain mutant strain mutant strain mutant stra

v1. 0.01 min21 0.01 min21 0.01 min21 0.01 min21

v2. 0.61 min21 0.61 min21 0.61 min21 0.61 min21

v3. 0.01 min21 0.01 min21 0.01 min21 0.01 min21

v4. 3.78 min21 1.05 min21 22.62 min21 30.32 min21

b1. 3.5310242 3.5310280 1.34 8.36
b2. 1.37 0.97 33.18 35.96
t1. 0.66 min 0.66 min 0.66 min 0.66 min
t2. 0.76 min 0.76 min 0.76 min 0.76 min
Downloaded 29 Mar 2001 to 163.1.103.109. Redistribution subject
e
in

e
r-
s
if
r

wild and mutant strains. In all casesuC(z)u.0, which means
thatC(z) has no root in the setuzu,v3(b11b212). There-
fore, the characteristic equation does not have any root w
real positive part either for the wild or for the mutant stra
parameter values and thus the system steady states ar
cally stable in all cases.

The stability of this system was also tested numerica
for the wild and three mutant strains. For this, the syst
equations~24!–~27! were numerically solved using a fourt
order Runge–Kutta method implemented inFORTRAN. The
parameter values were those of Table I for the wild stra
while for the feedback inhibition resistant,trpL29, and
trpL75 mutant strains, the parametersKi , Kp , andb were,
respectively, modified as discussed previously. In each c
the initial value of all the model variables was set to th
corresponding steady-state value, except for theTrp concen-
tration initial value, which was set equal to 0.9 times
corresponding steady-state value. In all numerical simu
tions with these parameter values, the system was stable
porting the results of the local stability analysis.

VII. DISCUSSION

Here we have shown the interrelationships between th
major models for the regulation of tryptophan productio
We have also been able to provide a local stability analy
of the steady states in the Santilla´n Mackey model that con-
firms the numerical results indicating that the steady state
this model are globally stable for wild typeE. coli as well as
for three different mutant strains.

Given the extensive knowledge about the molecular
ology of regulation in thetrp and lac operons, and the body
of experimental data available on both systems, we fin
surprising that there have been so few realistic modeling

t.
e

-
in
FIG. 2. Plots ofuC(z)u ~where z5x
1 iy) vs x andy for the wild and three
different mutant strains ofE. coli: ~a!
wild strain, ~b! feedback inhibition re-
sistant strain,~c! trpL29 mutant strain,
and ~d! trpL75 mutant strain. In all
cases, the plots are given in a rang
containing the region uzu,v3(b1

1b212). The parameter values cor
responding to each strain are given
Table II. Notice thatuC(z)u.0 for all
the wild and mutant strains. This
means thatC(z) has no root in the set
uzu,v3(b11b212).
 to AIP copyright, see http://ojps.aip.org/chaos/chocr.jsp
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forts on the part of theoretical biologists to understand
dynamics of these two systems. One can only hope that
the current intense interest in ‘‘molecular biology’’ this sit
ation will change and experimentalists and theoreticians
join forces to try to understand these well characterized s
tems as prototypes of molecular regulatory systems.
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APPENDIX: BOUNDING THE ROOTS OF THE
CHARACTERISTIC EQUATION

Consider the function

C~z!5S 11
z

v1
D S 11

z

v2
D S 11

z

v3
D S 11

z

v4
D

1b1S 11
z

v1
De2t1z1b2e2t2z,

where constantsv1-v4 , b1 , b2 , t1 , andt2 are all real and
positive.

Rewrite equationC(z)50 as follows:

S 11
z

v2
D S 11

z

v3
D S 11

z

v4
D52b1e2t1z2

b2e2t2z

11z/v1
.

Notice that when the real part ofz is greater than or
equal to zero we have

U11
z

v1
U>1, U11

z

v2
U>1, U11

z

v4
U>1,

and

ue2t1zu<1, ue2t2zu<1.

Moreover, u11 z/v3 u>b11b211 when uzu>v3(b11b2

12). Therefore:
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US 11
z

v2
D S 11

z

v3
D S 11

z

v4
D U>b11b211.b11b2

>U2b1e2t1z2
b2e2t2z

11z/a U
when Re(z)>0 anduzu>v3(b11b212), and so the equa
tion C(z)50 does not have any solution under this con
tion.
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