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The e!ects of periodic chemotherapy administration are evaluated within the context of a G
0model of the cell cycle. Parameters are estimated for normal bone marrow cells and malignant

cells in acute myelogenous leukemia (AML). This model explicitly includes the resting G
0phase and the feedback mechanism that recruits the cells back into the cell cycle. Periodic

chemotherapy administration can induce resonance within our model under high cell kill rate
where the average cell cycle times may change during the course of treatment, and therapeutic
bene"ts from these resonances cannot be solely based on cell cycle times in untreated tissue.
The depletion rate under chemotherapy and the regrowth rate may di!er between the cell
populations, and our analysis suggests that this favors the tumour cells. We were able to
distinguish between the e!ects of cycle-non-speci"c, S-phase-speci"c and M-phase-speci"c
drugs, and found that these can show di!erences in sharpness and location of the resonance
phenomenon. We conclude that resonance chemotherapy (chronotherapy) is unlikely to be
e$cacious in the treatment of AML.
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1. Introduction

Chemotherapy is often the only means to treat
patients with acute myelogenous leukemia, but
it is toxic because of many side-e!ects, and does
not usually o!er a lasting cure (Lee et al., 2000).
Chemotherapy can kill malignant tumour cells in
one or more of the proliferative phases of the
cell cycle, but it is also a potent killer of nor-
mal proliferative cells in bone marrow where
hematopoietic cells are produced. The goal of
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chemotherapy is, therefore, to maximally kill the
malignant cells and minimally kill the normal
cells. To do this, one must consider di!erences
between normal and malignant cells.

In some tumours, the cell cycle times of normal
and malignant cells di!er. Chronotherapy studies
the timing of drug administration in order to
achieve optimal therapeutic success (resonance)
for disease treatment. The basic idea behind this
resonance is as follows. Given a cell population in
which all cells divide at the same age, a single
dose of chemotherapy kills cells in a speci"c age
range. These cells will not produce any daughter
cells and if the next dose is administered where
these daughter cells would have been susceptible
( 2001 Academic Press
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to chemotherapy, a minimal kill is observed.
Therefore, administration of chemotherapy with
a period commensurate with the normal cell cycle
time is hypothesized to minimize the normal
cell kill.

1.1. THE CELL CYCLE

Self-replication of cells takes place through
several di!erent phases in the cell cycle. These
phases are: G

1
, S (DNA synthesis), G

2
and

M (mitosis). After completing cell division (M ),
the daughter cells can recycle, decycle tempo-
rarily (and remain in a dormant state (G

0
)

until environmental conditions stimulate their
reentry into the cell cycle), or they can leave
the cell cycle and progress along a course
that leads to reproductive cessation, terminal
di!erentiation, and eventual death (Alison &
Sarraf, 1997; Burns & Tannock, 1970). Some
decycled stem cells "nd themselves in G

0
and

do not cycle until marrow depletion causes them
to reenter the cycle and proliferate in order to
replenish the marrow (Baserga, 1981; Burns
& Tannock, 1970). The time between two mitoses
is called the cell-cycle time which may vary
widely depending on the duration of the
G

0
(Baserga, 1981) and G

1
phases (Burns &

Tannock, 1970).
In the context of periodic chemotherapy ad-

ministration, a relevant question is whether there
is a well-de"ned cell cycle time or inter-mitotic
interval, ¹

IM
. The time spent in the S, G

2
, and

M phases is measurable and well de"ned. Vari-
ations in ¹

IM
stem primarily from the time spent

in G
0

and G
1
.

1.2. CLINICAL CHEMOTHERAPEUTIC

TREATMENT OF AML

Chemotherapeutic agents are often phase spe-
ci"c and target cells in one or more of the cell
cycle phases e.g. S-phase speci"c. Most often,
remission induction chemotherapy in treatment
of AML will consist of a combination of S-phase-
speci"c drugs such as cytarabine and an
anthracycline (adriamycin/doxorubicin, dauno-
rubicin, idarubicin (Foon & Casciato, 1995;
Sather et al., 1978)). A typical administration
schedule is as follows. Cytarabine is administered
continuously for a week and the anthracycline is
administered by a large, rapid bolus injection
three times over a three-day period. The adminis-
tration schedule is typically not periodic but, in
rare cases, a high dose of Ara-C is periodically
administered as a bolus injection every 12 hr
(Beutler et al., 1995) when the patients are in
relapse.

Ara-C (cytosine arabinoside, cytarabine)
100 mgm~2 intravenous (IV) as a
continuous infusion for 7}10 days
and
adriamycin (doxorubicin)
30 mgm~2 IV days 1}3 (Sather et al., 1978)

Cytarabine
100 mgm~2 by continuous IV infusion for
seven days
and
Idarubicin
12 mgm~2 IV push on either days 1, 2 and 3 or
days 5, 6 and 7
or
daunorubicin 45}60 mgm~2 may be
substituted for idarubicin (Foon &
Casciato, 1995)

1.3. OVERVIEW

In Section 2, we review the experimental
e!orts that have been made to examine the e!ects
of periodic chemotherapy administration as well
as the theoretical (mathematical) treatments that
have been carried out to test these ideas. Much of
this previous work has concluded that properly
designed periodic chemotherapy can be more
e!ective than constant chemotherapy. However,
all of these studies have also ignored several key
elements of the mammalian cell cycle and its
regulation that may play a pivotal role in altering
this conclusion. In Section 3, we present the for-
mulation of a G

0
cell cycle model that we feel

avoids these omissions, and analyse the steady
states of this model for their stability. Section 4
extends this model to the situation in which
exogenous chemotherapy is being administered
and brie#y examines both conventional and peri-
odic chemotherapy protocols within the context
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of this extension. We use the best available para-
meters derived for both normal human bone
marrow and bone-marrow cells typical of acute
myelogenous leukemia. The result of this study is
that in every case the protocols are more destruc-
tive to the normal cell population than they are
to the leukemic population. Section 5, the core of
this work, examines the possibility of chemothera-
peutic-induced resonance within the bone-mar-
row cells in the context of the role of the feedback
in the system, phase-speci"c drugs and the inten-
sity of the chemotherapy. We conclude with
a brief summary in Section 6. The appendices
detail the parameter estimation procedures that
we have followed.

2. Previous Work

Optimal chemotherapy scheduling has been
investigated in the past in a number of experi-
mental and theoretical studies.

To our knowledge, Dibrov and his coworkers
(Churikova et al., 1986; Dibrov et al., 1988, 1986,
1998, 1984, 1985; Vtiurin et al., 1987) were the
"rst to carry out extensive experimental work
investigating the treatment of laboratory-in-
duced tumours with periodically timed chemo-
therapy that took into account cell-cycle kinetics.
Other experiments carried out by Dibrov et al.
(1985) showed survival of murine hematopoietic
stem cells as a function of drug delivery period
that had a peak near a period of 12 hr, which is
within the experimental range of the cell-cycle
time for hematopoietic stem cells in the strain of
mouse they were using. Though the results are
not entirely conclusive (there were no error bars
plotted with these values and the di!erence be-
tween minimum and maximum survival is not
strikingly large) a theoretical modeling explana-
tion for the e$cacy of this treatment was o!ered
(Dibrov et al., 1985) that has been recently ampli-
"ed (Dibrov, 1998).

Other experiments in mice also suggest that
there may be optimal periods of chemotherapy
administration. Agur and co-workers (Agur et al.,
1988) inoculated mice with lymphoma cells to
produce tumours and found that the 7 hr proto-
col matching the presumptive normal cell-cycle
duration and 10 hr protocol showed signi"cantly
higher survival than random drug administration
and an 8 hr protocol. While the advantage of the
7 hr protocol may lie in the fact that it is tuned to
the internal cell parameters, this does not explain
why the 10 hr protocol also shows high survival
rates. A 12 hr protocol would, in theory, yield the
lowest survival rates because it shields the cancer
cells with this resonance, but unfortunately
a 12 hr protocol was not attempted in these ex-
periments. Other experiments along these lines
(Ubezio et al., 1994) have given similar results.
Agur and her co-workers have introduced
a simple heuristic "nite di!erence model equation
to describe a cell population (cells in mitosis)
undergoing periodic chemotherapy (Agur et al.,
1988). They predicted that bene"cial e!ects could
be obtained if the drug administration is done at
a resonant period equal to the average cell-cycle
time of the normal cells. This resonance strategy
works if the malignant cell population has di!er-
ent cell-cycle times, or greater variation in the
cell-cycle times, than the normal cell population.
Other modeling studies by her group (Cojocaru
& Agur, 1992; Mehr & Agur, 1992) have reached
the same conclusion.

Swierniak et al. (1996) introduce a model of
phase-speci"c chemotherapy based on ordinary
di!erential equations where cells #ow through the
G

1
}M compartments, and show analytically that

periodic chemotherapy protocols may be optimal
solutions under certain circumstances but that this
is by no means a universal conclusion.

Webb (1992) has presented an age-structured
model and an interesting feature of this model is
that an age-speci"c division rate is modeled using
a displaced gamma distribution. The presence of
long tails in this distribution mimics the e!ect of
the resting G

0
state, where cells can stay a long

time before reentering the cell cycle. Using this
model, it is shown that the sharpness of the reson-
ance can be controlled by varying the width of
the gamma distribution. Dibrov et al. (1985)
introduced an integral equation model describing
the #ux out of the mitotic phase. As in the age-
structured model of Webb, a long tail in the
gamma distribution describing the age at division
also mimics the existence of a resting cell
population.

Based on this previous work, three points are
noteworthy and have motivated the work pre-
sented here:
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;nphysiological parameters. The cumulative
factor R used by Dibrov (1998), Dibrov et al.
(1985), Agur et al. (1991, 1988, 1992) and Swier-
niak et al. (1996) includes apoptosis, di!erenti-
ation and division and does not distinguish
between these di!erent events. None of the
studies discussed above make an e!ort to
estimate realistic physiological parameters aside
from cell-cycle length and cell cycle variance in
untreated tissue.

Existence of G
0
. All of the above models omit

explicit consideration of the resting G
0

state.
Agur et al. (1991, 1988, 1992), Swierniak et al.
(1996) and Webb (1990, 1992a, b) do not discuss
G

0
while Dibrov et al. (1985) discuss why the G

0
state is excluded from their model. Dibrov et al.
argue that both normal and malignant cells are
continuously dividing (Dibrov et al., 1985). The
rationale behind this is the assumption that:
(Dibrov et al., 1985, p. 2) &&2in an untreated
organism most hematopoietic stem cells were
resting, while all of the detectable tumour cells
appeared to be proliferating2''. However, in
AML, it has been observed that &20% of the
normal bone-marrow cells (Peters et al., 1986)
and &10% of the leukemic bone-marrow cells
(Vidriales et al., 1995) appear to be proliferating
prior to treatment.

Dibrov goes on to argue how the normal cells
also become continuously dividing (Dibrov et al.,
1985, pp. 5, 6): &&Under multiple treatment by
cytotoxic drug, the limiting tissue is continuously
damaged, and consequently stem cells become
continuously cycling soon after the beginning of
therapy.'' When chemotherapy is applied, more
cells are recruited from G

0
and more cells skip

this phase resulting in a shorter average time
spent here. This e!ect is due to feedback in the
system.

Feedback. When chemotherapy is applied, the
tissue corrects for the resulting cell loss by re-
cruiting more cells from the resting, G

0
-pool. In

this way, G
0

acts as a bu!er. This was clearly
stated in Dibrov et al. (1985). A further assump-
tion, clearly stated in Dibrov et al. (1985) and
implicitly assumed in Agur et al. (1991, 1988,
1992), Swierniak et al. (1996) and Webb (1990,
1992a, b), is that the internal cell-cycle para-
meters do not change during chemotherapy
(Dibrov et al., 1985, p. 5): &&It is assumed further
that the cell-cycle parameters are independent of
the time and of the population size''. The argu-
ment for this assumption is as follows (Dibrov et
al., 1985, p. 6): &&The use of the above assumption
for tumour population is of little importance,
since it will be shown that the optimal schedules
obtained depend primarily on the cell-cycle para-
meters of normal cells and do not depend on the
parameters of tumour cells as long as their mean
generation time di!ers considerably from that
of normal cells (as it does for most natural
tumours)''.

Unfortunately, the assumption that all cells
are proliferating voilates the assumption about
stable parameter values, and in many tumours
these two assumptions are not ful"lled at the
same time. When cells are being recruited from
G

0
at a higher rate, the cells spend less time there

on average and G
0

becomes less important.
Therefore, the cell-cycle parameters are not
stable during the course of chemotherapy. This
is the nature of feedback. In the untreated
case, the total average intermitotic interval
(including time spent in G

0
) di!ers considerably

between the normal and the leukemic bone-
marrow cells, see also Appendix A. But since
these di!erences stem mainly from time spent in
G

0
(Baserga, 1981) and G

1
(Alison & Sarraf,

1997), the di!erences vanish when both cell popu-
lations become continuously dividing during
chemotherapy treatment.

3. Cell Kinetic G0 Model

In Section 1.1, the underlying kinetics of cell
replication were described. These features are
captured in a simple model with a few, but
physiologically meaningful, parameters (Burns
& Tannock, 1970; Hearn et al., 1998; Mackey,
1978, 1981; Smith & Martin, 1973) illustrated in
Fig. 1. The development of this model, which has
been used to explain a number of diseases in the
hematopoietic system, is presented as well as an
analysis of the stability of the model steady states.
The e!ects of chemotherapy are considered in
Section 4.

The number of cells in the proliferative phase,
P, is made up of cells in the S, G

2
, and M phases

of the cell cycle. The number of cells in the
non-proliferative phase, N, is made up of cells in



FIG. 1. Schematic diagram of the G
0

phase cell-cycle
model used in this study. This model was "rst analysed
mathematically by Burns & Tannock (1970) and later rein-
troduced by Smith & Martin (1973) in an examination of the
statistics of cell division.

TABLE 1
Estimated parameters for normal and malignant
bone-marrow cell population, determined using the
techniques and data of Appendices A.2 and A.3,

respectively

Symbol Normal BM Malignant BM

t
S

14.3 hr 17.4 hr
0.60 day 0.73 day

q 20.0 hr 21.2 hr
0.83 day 0.88 day
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G
0

and G
1
.* The cellular dynamics in the two

compartments are described by the following
pair of di!erential delay equations (Haurie et al.,
1998; Mackey, 1978, 1996):

NQ "!dN!b (N)N#2e~cqb(Nq)Nq, (1)

PQ "!cP#b (N)N!e~cqb(Nq)Nq, (2)

where we assume that b is a monotone decreasing
function of N and has the explicit form of a Hill
function

b(N)"b
0

hn

hn#Nn
. (3)

The symbols in eqns (1)}(3) have the following
interpretation: N is the number of cells in non-
proliferative phase (G

0
#G

1
), Nq"N(t!q),

P the number of cycling proliferating cells
(S#G

2
#M), c the rate of cell loss from proli-

ferative phase, d the rate of cell loss from
non-proliferative phase, q the time spent in the
proliferative phase, b the feedback function, rate
*Many chemotherapeutic drugs kill cells during DNA
synthesis (S phase) or mitosis (M phase). Going into syn-
thesis, the only important information is the age distribution
of the cells because certain ages are not represented. There is
no additional information in the transition time between G

0
and G

1
. For these reasons, in the model we have combined

the G
0

and G
1

phases so the time spent in the non-prolif-
erative phases, ¹

N
, includes time spent in both G

0
and G

1
. In

what follows, when we refer to G
0
, we refer to G

0
and G

1
.

of recruitment from non-proliferative phase, b
0

the maximum recruitment rate, and h, n the con-
trol shape of the feedback function.

In this paper, we study the growth of normal
and leukemic cell populations using this model. It
is generally believed that normal and malignant
cell populations have di!erent cell-cycle times
(Baserga, 1981) and thus they will be described by
di!erent parameters in our model. In particular,
in untreated leukemic cells the apoptotic rate
is signi"cantly smaller than in normal cells
(Macnamara et al., 1999; Okita et al., 2000; Ong
et al., 2000; Parker et al., 2000), and the time
spent in the non-proliferative phase is longer
relative to normal cells in the bone marrow. It is
a central assumption of this study that leukemic
cells have a lower basal rate of apoptosis than
normal cells.

We solve the model eqns (1) and (2) with
the initial steady-state conditions N(t)0)"N*
and P(t)0)"P*. This requires that we esti-
mate the entire parameter set for both leukemic
and normal cell populations, including the initial
conditions N* and P*. To do this, we have
used values from the experimental and clini-
cal literature as discussed in Appendix A.
The resulting parameter values are presented in
Table 1.
c
0

0.015 hr~1 0 hr~1
0.36 day~1 0 day~1

b
0

0.14 hr~1 0.14 hr~1
3.5 day~1 3.5 day~1

d 0.0068 hr~1 0.0047 hr~1
0.16 day~1 0.11 day~1

N* 2.87]108 cells kg~1 3.25]108 cells kg~1
P* 0.70]108 cells kg~1 0.32]108 cells kg~1
h 1.38]108 cells kg~1 1.06]108 cells kg~1
n 3 3



FIG. 2. This diagram shows the parameter space which is
separated into two regions by the line labeled &&Existence of
non-zero steady state'': These two regions are the upper
right region, where only the zero steady state exists and is
stable, and the lower left region, where the zero and non-
zero steady states coexist. The big &&tongue'' coming from the
upper left corner indicates the area where Im(j)O0, e.g.
where oscillatory behavior around the non-zero steady state
is predicted from the linear analysis and the smaller tongue
is the area in parameter space where the non-zero steady
state is unstable and the system shows periodic solutions.
The diagram corresponds to the normal bone-marrow value
of d"0.16 day~1 and only small di!erences are obtained by
using the leukemic bone-marrow value of d"0.11 day~1
(see Table 1). The trivial steady-state eigenvalue is always
real.
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The steady states of eqns (1) and (2) consist of
the trivial steady state

(N*, P*)"(0, 0) (4)

and the non-trivial steady state

(N*, P*)"Ah nS
b
0
(2e~c0q!1)!d

d
,

]
dN*
c
0
C

1!e~c0q
2e~c0q!1DB. (5)

The non-trivial steady state exists if

0(c
0
q(ln A

2
1#d/b

0
B . (6)

With the notation and approximation,

b (N)N"a(N)Ka(N*)#(N!N*)a@ (N*),

we can linearize eqn (1) in the neighborhood of
a steady state. De"ning the deviation in the non-
proliferative population from the steady state by
Z(t)"N(t)!N* it is easy to show that

dZ
dt

"!AZ#BZq , (7)

where

A"d#a@(N*), (8)

B"2e~c0qa@ (N*). (9)

The stability of P (t) follows the stability of N(t).
The ansatz Z(t)"Z

0
ejt yields the eigenvalue

equation

j"!A#Be~jq. (10)

According to Hayes' (1950) criteria, the eigen-
values will have negative real part and the steady
state will thus be stable if

K
A
B K'1 (11)
or

K
A
B K)1 and q(

arccos(!A/B)

JB2!A2
. (12)

These stability criteria are illustrated in the
(c

0
, q) parameter space in Fig. 2. The parameter

estimates in Table 1 suggest that qK20 hr for
both populations while c

0
K0 hr~1 and

0.149 hr~1 for the untreated leukemic and
normal cell populations, respectively. Thus,
the untreated populations are both stable,
non-oscillatory "xed points far from the non-
zero steady-state boundary in terms of the
apoptotic loss rate c

0
. It should be noted that

the malignant population is further from this
boundary and a higher c

c
must be applied in

order to drive the system to extinction (a stable
zero steady state).

4. Chemotherapy

The chemotherapeutic drugs clinically used in
remission induction therapy of AML are Ara-C



FIG. 3. Modeling results of AML remission induction
schedule of Ara-C infusion for 7 days (days 1}8) together
with IV bolus injection of Idarubicin on day 1, 2 and 3. The
ratio of number of cells to the number of cells before treat-
ment for normal and malignant cells is plotted vs. day
number. When replacing Idarubicin with one of the other
anthracyclines, similar results are obtained.
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and the anthracyclines idarubicin, doxorubicin
and daunorubicin. They are all S-phase speci"c,
but may have an e!ect in other phases too, e.g.
G

1
/S block (Alison & Sarraf, 1997). For simpli-

city, we "rst assume that all proliferating cells are
a!ected by the drug, but later we will show the
e!ect of phase-speci"c drugs. In our model, the
cells in the proliferative phase die due to an
increased apoptotic rate c"c

0
#c

c
(t). The para-

meter c
c
(t) is the loss rate due to chemotherapy

and is periodic with period P. In Appendix B, we
estimate the value of c

c
for a number of clinical

schedules/doses. Here, we derive equations for
the system under the in#uence of phase-
non-speci"c chemotherapy and describe our
simulations.

4.1. EQUATIONS WITH CHEMOTHERAPY

To derive a system of model equations that
includes the e!ects of non-phase-speci"c chemo-
therapy, note that the number of cells recruited
from the non-proliferative phase and back into
the cell cycle will, until division, obey

NQ "!Mc
0
#c

c
(t)NN(t). (13)

Between t!q and t the solution to this equation
is given by

P
N(t)

N(t~q)

dN
N

"!P
t

t~q
Mc

0
#c

c
(t@)Ndt@, (14)

N(t)"N(t!q)expA!c
0
q!P

t

t~q
c
c
(t@) dt@B. (15)

The integral of c
c
represents the fact that all prolif-

erative cells are a!ected by the history of c
c
from

time t!q to time t.
Thus, when chemotherapy acts non-speci"cally

throughout the cell cycle (duration q) the system of
governing equations is given by

NQ "!dN!b(N)N

#2 expA!c
0
q!P

t

t~q
c
c
(t@) dt@Bb(Nq)Nq ,

(16)
PQ "!c(t)P#b(N)N

!expA!c
0
q!P

t

t~q
c
c
(t@) dt@Bb(Nq)Nq .

(17)

4.2. CONVENTIONAL CHEMOTHERAPY SCHEDULES

Using parameters for normal and leukemic
bone marrow, eqns (16) and (17) have been integ-
rated numerically using software written in C##

with a fourth-order Runge}Kutta integration rou-
tine and a "xed time-step dt"0.1 hr. In Fig. 3, we
present a typical simulation for a conventional
schedule of Ara-C plus idarubicin discussed in
Section 1.2.

Unfortunately, the simulated tumour was
not killed by this protocol, but neither was
the normal tissue. For the estimated para-
meters, the regeneration time for the tumour
is shorter than for the host cells, and chemo-
therapy schedules are very unlikely to succeed
in eradicating the tumour. This failure in the
simulation results is due to two reasons, both
related to the di!erences in the appoptotic rates
of normal and leukemic cells: (i) when chemo-
therapy is applied, it is more devastating to the
normal cells than to the leukemic cells; and
(ii) leukemic cells regrow faster than their normal
counterparts.



FIG. 4. The model predicted growth rate vs. administra-
tion period for normal and malignant cells. In this simula-
tion c

c
"1.0 hr~1 and D"0.4]P. There are peaks at

PK45, 90 and 135 hr, indicating resonant behavior. Note
that the resonances occur at the same periods for both
populations and that the malignant population always
decays more slowly.
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5. Resonance in the Cell Kinetic G0 Model

Here, we study the periodic administration of
chemotherapy (at a periodP) in which c alternates
between the natural loss rate, c

0
, and an elevated

loss rate, c
0
#c

c
, for a period of time equal to D. In

what follows, we keep the average c
c

over one
period independent of the period by varying the
duration D so that the ratio r"D/P is "xed.
Previous work (Agur et al., 1988; Dibrov, 1998;
Dibrov et al., 1985; Webb, 1992a) has suggested
that resonant chemotherapy administration peri-
ods occur near integer multiples of the cell-cycle
time. We, therefore, expect any resonance in our
model to occur near the average inter-mitotic in-
terval, which is the duration of the cell-cycle time
plus the average time spent in G

0
.

When chemotherapy is applied periodically
with period P, the cell number will oscillate with
that period either around a constant mean value
or around a decreasing mean

N(t)KNI (t, P)eat, (18)

where NI (t, P) is periodic with period P,
NI (t#P)"NI (t). In what follows, a is calculated
using

a"
ln(N

t2
)!ln(N

t1
)

t
2
!t

1

(19)

for su$ciently large t
1

and t
2
. The exponent

a satis"es a)0 and will be referred to as rate of
growth or simply growth rate. A zero growth rate
corresponds to no e!ect of chemotherapy and
a negative growth rate corresponds to a situation
where cell numbers are being depleted. The transi-
ent period is of the order of a few multiples of
max[q, P].

In Fig. 4, we show the growth rate as a function
of chemotherapy administration period P for
both normal and malignant cells. The growth
rates of both populations show clear peaks at
PK45, 90 and 135 hr, indicating resonance and
the existence of higher harmonic responses. This is
in spite of the fact that the two populations have
di!erent untreated inter-mitotic intervals.
Because the peaks occur at the same periods, it
is di$cult to spare only the normal cells and it is
not bene"cial to administer chemotherapy at these
resonant periods. Note also that the malignant
population always decays more slowly than the
normal population, even at resonance. This is due
to the fact that the malignant population has
a lower apoptosis rate from the proliferative phase
than the normal population.

5.1. ROLE OF FEEDBACK

The feedback in the system controls the rate of
recruitment out of G

0
into the proliferative phase,

and a!ects the average inter-mitotic interval, the
variance in inter-mitotic interval and resistance to
chemotherapy. The average inter-mitotic interval
consists of two parts: the time spent in the prolif-
erative phase (q) and the time spent in the non-
proliferative phase S¹

N
T. Cells are recruited from

the non-proliferative phase back into the cell cycle
at a rate b(N) and move on to further di!erenti-
ation and maturation at a rate d. The distribution
of time spent in the non-proliferative (G

0
) phase is

of the form

f(a)"ke~ka, (20)

where a is the chronological age of the cell
and k"d#b(N) is the total loss rate out of
the non-proliferative phase. The mean and the



FIG. 5. Model predicted growth rates for normal bone-
marrow cells vs. chemotherapy administration period for
c
c
"1.0 hr~1. Top curve: b

0
"b*. Middle curve: b

0
"5b*.

Bottom curve: b
0
"10b*. The duration of the chemotherapy

on-phase is D"0.4]period. The simulations are all carried
out for S-phase drugs (see later).
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variance of inter-mitotic intervals, ¹
IM

, are given
by

S¹
IM

T"q#
1
k
, (21)

p2"
1
k2

, (22)

while the coe$cient of variation (C<, standard
deviation relative to the mean) is given by

C<"
p

S¹
IM

T
"

1
kS¹

IM
T

. (23)

With our estimated b
0

value, after only a few
pulses of chemotherapy, the system will be at cell
number levels such that b(N)Kb

0
. In this case,

the cells are rapidly recruited out of the non-
proliferative phase, supporting the assumption
(Dibrov et al., 1985) of a short transit time through
the non-proliferative phase. This explains why
both Dibrov's model and our model display res-
onance. Also, when b(N)Kb

0
, the mean inter-

mitotic interval for both malignant and normal
cells is around 27 hr and the coe$cient of vari-
ation is K25% for both normal and malignant
populations, making it impossible to shield only
normal cells from chemotherapy e!ects. This
explains why the resonance occurs at the same
periods in both populations. In the presence of
feedback, the cell number N will decrease over
a course of chemotherapy, increasing the recruit-
ment rate b(N) and both the mean and variance of
¹
IM

will decrease. If, however, we assume that the
recruitment rate back into the active proliferating
cycle is constant and equal to the estimated un-
treated steady-state value, b(N)"b(N*), the aver-
age inter-mitotic interval does not change as the
cells are being depleted by chemotherapy.

In Fig. 5, the growth rate is plotted for three
di!erent values of b

0
which give rise to three

di!erent average inter-mitotic intervals and varia-
tion. Note that the absence of feedback wipes out
the resonance and no di!erences with di!erent
administration periods are observed. It is striking-
ly clear that, in spite of the lack of resonance,
the system will decay more slowly than it would at
resonant period. This is because of a resistance
to chemotherapy caused by a low proportion
of proliferating cells.

Most chemotherapeutic agents a!ect cells in
one or more of the phases of the proliferative cycle.
Only drugs of this type are considered here. It is,
therefore, not possible to target the large number
of resting cells, and in order to kill these they must
be recruited back into the cycle. A strong feedback
allows the system to respond to low cell numbers
quickly as opposed to a weaker feedback or no
feedback at all. This e!ect is emphasized by the
large number of cells initially in the resting phase
(80}90%, Peters et al., 1986; Vidriales et al., 1995).
If the feedback is strong, most of the cells will be
back in the cycle even after a few chemother-
apeutic drug pulses to make up for the apoptotic-
induced loss. A weak or non-existent feedback
slows the replenishment and thus the resultant
suicide happens more slowly for all periods. This is
shown in Fig. 5 and explains why, in spite of the
lack of resonance, a system with no feedback
decays more slowly than a system with large
feedback.

Dibrov et al. (1998) suggest that the resonance
phenomena can only be observed when the coef-
"cient of variation in inter-mitotic intervals is less
than 50% and only if there is a stable distribution
of inter-mitotic intervals and stable average inter-
mitotic interval. Estimating the coe$cient of
variation using eqn (23), we "nd that it is 70%
when b

0
"b* (no feedback), 39% when b

0
"5b*

(low feedback) and 25% when b
0
"10b* (high
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feedback). In Fig. 5, we can clearly see resonance
when the coe$cient of variation is less than 50%.
This is in spite of the fact that our model has
neither a constant inter-mitotic interval distribu-
tion nor mean.

The two main di!erences between our consider-
ations and the previous results discussed in
Section 2 are that our cell kinetic model explicitly
includes both a resting G

0
state as well as feed-

back. Feedback controls the rate of recruitment
out of G

0
into the proliferative phase. As we have

seen, this has three main e!ects:

f Average inter-mitotic interval. The distribution
of inter-mitotic intervals is not constant under
feedback, and the average inter-mitotic interval
for a given cell population can change during
chemotherapy. This capacity for adjustment is
an important feature of the G

0
state.

f <ariance in inter-mitotic interval. The strength
of the resonance is controlled by the variance in
the distribution of inter-mitotic intervals. A low
feedback tends to increase the time spent in the
resting G

0
phase, and thus also increases the

variance in inter-mitotic intervals.
f Resistance to chemotherapy. A cell population

is more resistant to chemotherapy when fewer
cells are in the proliferative compartment. A low
feedback tends to make the population more
resistant to chemotherapy because cells are not
immediately recruited back into the prolif-
erative phase from G

0
.

Previous models (Agur et al., 1988; Dibrov,
1998; Dibrov et al., 1985; Webb, 1992a) of periodic
applications of chemotherapy have all concluded
that the normal cell population will decay more
slowly than the malignant cells when chemother-
apy is administered at the resonant period of the
normal cells as long as the cell-cycle times of the
two populations di!er. This is based on the as-
sumption that one can estimate the average cell-
cycle time based on information about the
untreated tissue. In untreated tissues, the average
inter-mitotic intervals di!er between normal
and malignant cells but, when chemotherapy is
applied, the inter-mitotic intervals may change.
In our model, it is observed that the resonant
periods of the normal and malignant populations
can approach each other for parameters estimated
for normal marrow and AML.
5.2. DRUG SPECIFICITY

The external parameters in our model consist of
the chemotherapy administration schedule: dura-
tion of susceptible phase (S, M or cycle-non-
speci"c), duration of drug e!ectiveness, D, and the
intensity of chemotherapy c

c
. When the integra-

tions of eqns (16) and (17) for phase-speci"c
chemotherapy are carried out, the di!erences
between cycle-non-speci"c, S-phase-speci"c and
M-phase-speci"c drugs can be uncovered.

By analogy with our previous considerations,
the equations describing the system under the
in#uence of an S-phase-speci"c chemotherapeutic
agent are given by

NQ "!dN!b(N)N

#2expA!c
0
q!P

t~q`TS

t~q
c
c
(t@) dt@Bb(Nq)Nq,

(24)

SQ "!(c
0
#c

c
(t))P#b(N)N

!expA!c
0
¹
S
!P

t

t~TS

c
c
(t@) dt@Bb(N

TS
)N

TS
,

(25)

MQ "!c
0
M

#expA!c
0
¹
S
!P

t

t~TS

c
c
(t@) dt@Bb(N

TS
)N

TS

!expA!c
0
q!P

t~q`TS

t~q
c
c
(t@) dt@Bb(Nq)Nq.

(26)

Here, N is the number of non-proliferative cells,
S is the number of cells in the DNA synthesis
phase and M is the number of cells in mitosis. The
main di!erence between the original model and
this version is that the integral over c

c
is carried

out from t!q to t!q#¹
S

instead of t!q to t.
Now, we can only kill true S-phase cells.

A number of drugs are anti-mitotic and a!ect
only cells in mitosis or entering mitosis. Examples
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are Vincristine and Vinblastine (Calabresi &
Schein, 1993; Foon & Casciato, 1995). For such
cases, the system equations are only slightly di!er-
ent from those for S-phase-speci"c drugs, and are
given by

NQ "!dN!b(N)N

#2expA!c
0
q!P

t

t~q`TS

c
c
(t@) dt@Bb(Nq)Nq,

(27)

SQ "!c
0
P#b(N)N!exp(!c

0
¹
S
)b(N

TS
)N

TS

(28)

MQ "!(c
0
#c

c
)M#exp(!c

0
¹
S
)b(N

TS
)N

TS

!expA!c
0
q!P

t

t~q`TS

c
c
(t@) dt@Bb(Nq)Nq .

(29)

Figure 6 shows a typical example of the reson-
ance observed for these three di!erent drug mech-
anisms. S-phase-speci"c resonance is more pro-
nounced than cycle-non-speci"c resonance, and
M-phase-speci"c resonance is even sharper than
the S-phase resonance. This is true for both
normal and malignant cells, where the growth
rates for the malignant cells are elevated relative
to normal. In general, the shorter the susceptible
phase, the sharper the resonance. This is also
FIG. 6. The growth rate vs. administration period pre-
dicted from the modeling for cycle-non-speci"c, S-phase-
and M-phase-speci"c drugs. The chemotherapy duration is
D"0.4]period and c

c
is 1.0 hr~1. The simulations were

carried out for normal cell parameters.
a feature of other models that predict resonance
(Agur et al., 1998; Webb, 1992a).

5.3. INTENSIVE CHEMOTHERAPY

For intensive drug therapy, c
c
becomes large in

both magnitude and duration of e!ectiveness.
When this is the case and there is a long suscep-
tible phase, a new form of resonance can occur. In
this case, the resonance does not occur at the
inter-mitotic interval but is shifted toward longer
periods as in Fig. 6.

In the previous work described in Section 2, the
drug pulse was short compared to the inter-
mitotic interval. In this case, heterogeneity in cycle
phases means that the same few depleted popula-
tions are killed at every administration, while most
of the cells are shielded because they are non-
susceptible.

Under intensive drug therapy, the opposite situ-
ation holds. The drug kills o! all populations in
the cycle except the few populations that are shiel-
ded because their susceptible phase exactly "ts the
o!-phase of chemotherapy during each period.

Periods of drug administration near the
intermitotic interval cannot generate resonance
if the susceptible phase is longer than the
o!-phase. In this case, the resonance moves
towards longer periods, where the o!-phase
is long enough for a single or a few lineages/popu-
lations to be shielded. Because the on-phase
fraction is constant, periods to the right of the
shifted resonance show poorer survival until
a population can be shielded twice each period.
This leads to a new resonance peak. A practical
consequence of this shift may be that the reson-
ance periods will depend on the drug dose and be
harder to predict.

5.4. OPTIMAL CHEMOTHERAPY SCHEDULING

It is now established that resonance can occur
in the G

0
model of the cell cycle. The next question

is whether this resonance can be used to predict an
optimal chemotherapy schedule. Although pre-
vious studies, as discussed in Section 2, have all
concluded that these resonances can be used to
predict optimal chemotherapy schedules, we
conclude that such an optimal schedule cannot be
found within our model. This is because our model
is constrained by the physiological parameters



FIG. 7. The steady-state recruitment rate for normal n(0)
and malignant m(0) cells and feedback curves for strong
feedback n (t) and weak feedback m (t) resulting in higher
coe$cient of variation for the malignant cells, but slower
decay.
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estimated in Appendix A and by a physiologically
realistic drug e!ectiveness, while previous studies
failed to include these constraints.

From our estimation of the physiological para-
meters, malignant cells seem to have a signi"cantly
lower apoptosis rate from the proliferative phase
than do normal cells. This has two important
consequences:

1. The minimum chemotherapeutic apoptotic
rate such that the cell number will decay to the
zero steady state can be found by rearranging
eqn (6):

c
c
(

1
q

lnA
2

1#d/b
0
B!c

0
.

With the parameters we have estimated, this
yields c

c
K0.017 hr~1 and 0.030 hr~1 for the

normal and malignant cells, respectively, and
thus the malignant cells require a minimum
chemotherapeutic kill rate almost twice as high
as the normal cell kill rate to cross the bound-
ary where the zero steady state becomes stable.

2. A lower apoptotic rate also means that the ma-
lignant cells regrow faster after depletion. This is
because the eigenvalue of the steady state is
proportional to the distance to the boundary
where the zero steady state becomes stable.

Previous studies (Agur et al., 1988, 1992; Dibrov
et al., 1985; Dibrov, 1998; Webb, 1990, 1992a, b)
have ignored the role of feedback and have
assumed a stable distribution of cell-cycle para-
meters. While it is true that the average inter-
mitotic intervals of the normal and malignant
populations in the untreated organism di!er, the
important cell parameter under chemotherapy is
the average time spent in the proliferative phase
(q). This is because our modeling predicts that the
average time spent in G

0
tends to zero during che-

motherapy. Our parameter analysis (Appendix A)
suggests that the average time spent in the pro-
liferative phase for the two populations are
similar q

m
Kq

n
. Agur (1988, 1992) discusses this

point, and suggests that one can still bene"t from
resonance as long as the variance in the malig-
nant cell population is greater than in the normal
cell population.

In our model, the larger variance in
inter-mitotic interval would come from a lower
malignant maximal feedback (b
0
)
m
((b

0
)
n
. This

is illustrated in Fig. 7 in which two feedback
curves are shown. Before treatment, the normal
and malignant populations are situated at n(0)
and m(0), respectively. With our current parameter
estimates, both will follow the upper feedback
curves during treatment. Here, the inter-mitotic
intervals and variances will approach each other
as treatment proceeds and no bene"t can be
obtained from resonance. However if, as in Dibrov
et al. (1985), we assume that the malignant cell
population has a longer inter-mitotic interval (lower
feedback), the malignant cell population follows the
lower curve in Fig. 7. This has several e!ects:

f The inter-mitotic intervals change: S¹
IM

T
n
O

S¹
IM

T
m
. The resonant periods no longer co-

incide and the schedule designed to maximally
shield the normal cell population may not
maximally kill the malignant cell population.

f The variance in inter-mitotic interval for the
malignant cell population increases and the
resonance in the malignant cell population is
less pronounced.

f The recruitment of malignant cells from G
0

happens more slowly while the normal cells try
and make up for the loss with a faster recruit-
ment. More normal cells are sent back into the
cycle to try and replenish the population. The
normal cell population is thus more suscep-
tible to chemotherapy and will experience an
increased cell kill.

It is this last e!ect that has been ignored in pre-
vious studies. In these studies, the model starts
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with two untreated populations with feedback of
m(t) and n(t), respectively. This ignores the fact
that, with lower feedback in the malignant popu-
lation, it takes longer to reach the maximum
feedback rate m (t) than to reach n(t) and the
initially large malignant cell population in G

0
(Peters et al., 1986; Vidriales et al., 1995) will be
depleted more slowly.

6. Summary

Based on this study, we have seen that the
system can show resonance for periods slightly
shorter than the mean inter-mitotic interval if the
coe$cient of variation is less than around 50% as
in Dibrov et al. (1985). This condition will hold
when a large number of non-proliferative cells are
being recruited back into the cell cycle after a few
drug pulses and the average time spent in the
non-proliferative phase becomes very short.

In our model, leukemic bone marrow cells
have a longer inter-mitotic interval (and vari-
ance) than normal bone marrow cells when
untreated, but both tend to the same value as
chemotherapy proceeds. However, resonance
alone does not guarantee a cure for the patient,
especially if regrowth is faster in tumour cells
than in the limiting tissue.

We varied the duration of the susceptible phase
in order to mimic the e!ects of cycle-non-speci"c,
S-phase-speci"c and M-phase-speci"c drugs and
observed that di!erences in drug phase e!ects
strongly a!ect the resonance properties. A shorter
susceptible phase gives a sharper resonance, which
agrees with the results of Webb (1992b).

When the drug dose is large, resonance can be
observed until the on-phase becomes longer than
the inter-mitotic interval, and the shielding e!ect
is lost. Just before this happens, resonance can be
seen for periods longer than the average inter-
mitotic interval. When the o!-phase exceeds the
duration of susceptible phase, these long reson-
ant periods can be observed for S-phase drugs
and cycle-non-speci"c drugs. Based on our re-
sults, we conclude that in order to successfully
take advantage of resonance in periodic chemo-
therapy treatment of cancer, one must be very
careful when predicting optimal administration
periods based on cell-cycle times alone. It is
important to note that the average inter-mitotic
interval and its variance may change over the
course of chemotherapy, the speed of recruitment
of cells out of G

0
may favor one population, the

depletion and regrowth rate may di!er between
the two cell populations and the resonance period
itself may be di$cult to predict especially under
intense drug administration (which is actually re-
quired in order to observe resonance at all).

It is now interesting to ask who would bene"t
from these considerations. To successfully take
advantage of the resonance e!ect, both cell popu-
lations need to have high feedback in order to
recruit the cells into the susceptible proliferative
phase together with parameters such that either:

f The inter-mitotic intervals at low cell numbers
of the two populations di!er (Agur et al., 1988;
Dibrov, 1998; Dibrov et al., 1985; Webb,
1992a). In this case, resonance at low cell num-
bers occurs for di!erent periods so the normal
population can be shielded; or

f There is a larger variance in the malignant cell
inter-mitotic interval ¹

IM
(Agur et al., 1988). In

this case, even though the inter-mitotic inter-
vals may be the same, the malignant cells do
not bene"t from the resonance condition and
only the normal cell population is shielded by
the resonance.

The average inter-mitotic interval and the
variance in inter-mitotic interval are primarily
controlled by two parameters: the strength of
feedback b

0
(which controls S¹

N
T), and the aver-

age time spent in the proliferative phase q. The
e!ect of changing these two parameters are
shown in Fig. 8 where all simulations were car-
ried out for normal cell parameters.

We have shown that the resonance is elimi-
nated by changing the strength of the feedback,
and therefore also the average time spent in the
resting phase, as discussed previously. Assuming
a longer proliferative phase, together with an
unchanged duration of susceptible phase, the
resonance becomes more pronounced. Both the
resonance and the higher harmonics are quite
pronounced allowing this cell type, with a longer
inter-mitotic interval and smaller variation, to
respond more e!ectively to resonant periodic
chemotherapy scheduling. This is in disagreement
with results of previous work (Agur et al., 1988,
1992; Dibrov et al., 1985; Dibrov, 1998; Webb,



FIG. 8. The growth rate vs. administration period pre-
dicted from our modeling for di!erent cell populations with
di!erent inter-mitotic intervals. Here, S¹

IM
T"27 hr and

C<"25%. In the long proliferative phase system, qP2q,
and has a sharper resonance than the reference population
because of a larger S¹

IM
T"47 hr and a smaller C<"15%.

In the lower feedback system, b
0
P0.5b

0
. The mean and

variance for this population are 33 hr and 39%, respectively.
The chemotherapy duration is *"0.4]Period and the
simulations are all carried out for S-phase drugs.
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1990, 1992a, b), where malignant cells are assumed
not to bene"t from resonant periodic scheduling
because of their longer cell-cycle time.

Three major facets of this study demand further
investigation, and are under active investigation.
The "rst of these is related to the lack of adequate
parameter estimation for the hematopoietic
stem cell compartments of normal humans and
patients as alluded to in Appendix A. The second
has to do with the fact that the applica-
tion of chemotherapeutic drugs can cause cell
arrest within the cell cycle and then a subsequent
synchronization.

The "nal one is related to our neglect of the
communication between normal and malignant
cell populations through the exchange of cyto-
kines. Though it is di$cult to forsee the conse-
quence of the inclusion of this e!ect in the model
developed here, there are clues from the work of
|oskot et al. (1991). Using a model for two types of
communicating cells, they demonstrated that
there existed a region of parameter values that
guaranteed the stable coexistence of coupled cellu-
lar populations. The analysis also showed that
increases in the coupling between populations
could ultimately lead to the destruction of one
population and the persistence of the other.
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APPENDIX A

Parameter Estimation

This appendix uses published data to
estimate the parameters for simulations. In
spite of the fact that a great deal of qualitative
information is currently being rapidly accumu-
lated on the hematopoietic stem cells, there
is little quantitative data on which one can
base the type of parameter estimation that this
study requires. Arguably the best estimates for
stem cell parameters are those of Abkowitz et al.
(1996, 2000, 1995) in the cat and mouse, and
Mackey (2000) in the mouse. However, there
is little experimental data on human hema-
topoietic stem cells in either normal individuals
or leukemic patients on which to base similar
estimates.

The hematopoietic stem cells are not the only
proliferating cells in the bone marrow. In fact,
they are vastly outnumbered by the di!erentiated
progeny of these stem cells that are committed to
the production of red blood cells, platelets, and
white blood cells. However, in terms of tissue
growth, we have considered these populations as
a single source (Baserga, 1981) because of the
paucity of data allowing us to distinguish be-
tween them. Our parameters are evaluated under
this assumption.

In the following, the fraction of cells in G0/G1
phase is given by A and the labeling index (the
fraction of cells in DNA synthesis) is represented
by B.

A.1. STEADY-STATE EQUATIONS

At steady state, the fraction of cells in pro-
liferative phase is given by

1!A"
P*

P*#N*
"

(b*/c0)(1!e~c0q)
1#(b*/c0)(1!e~c0q) .

(A.1)

Similarly, the fraction of cells in S phase is
given by

B"
P*

S
P*#N*

"
(b*/c0) (1!e~c0tS)

1#(b*/c0) (1!e~c0q) .

(A.2)

The ratio of the cells in S phase (B) to all prolif-
erative cells (1!A) yields

q"!
1
c0

lnC1!1!A
B

(1!e~c0tS)D . (A.3)

The steady-state recruitment rate (b*) is derived
from

A"
N*

P*#N*
"

1
1#(b*/c0) (1!e~c0q)N

b*"
1!A

A
c0

1!e~c0q"
B
A

c0
1!e~c0qS . (A.4)

Knowing b*, d can be derived:

d"b*(2e~c0q!1)"
B
A

c0
1!e~c0tS

]C1!2
1!A

B
(1!e~c0tS)D. (A.5)
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A.2. NORMAL BONE MARROW

The following data are from the literature:
t
S
"0.60 day (Aglietta et al., 1989), d"

0.164 days~1 (Mackey, 1978), A"80.4% (Peters
et al., 1986), and B"14.6 (Peters et al., 1986).
Using eqns (32)}(34) together with these data
we calculate c0"0.35 day~1, b*"0.35 day~1,
q"0.83 day, t

G2@M"q!t
S
"0.24 day, and

St
G0@G1

T"1/(d#b*)"1.4 day. With these esti-
mates of c0 and q, approximately 81% of the cells
survive through proliferative phase. Under the
assumptions (Mackey, 1978) that N

505!-
"5]

1010 cells/70 kg, 50% of the bone marrow cells
are normal, b* is one-tenth of maximum value
and n"3 the normal bone-marrow parameters
in Table 1 were derived.

A.3. MALIGNANT BONE MARROW

Translocation of the bcl-2 gene (seen in virus-
induced AML) to a transcriptionally active site
may be expected to increase bcl-2 expression and
protect cells, which under normal circumstances
would undergo apoptic cell death (Alison &
Sarraf, 1997). Expression of the bcl-2 oncoprotein
inhibits programmed cell death and has been
shown to predict poor survival, since these forms
of cancer will often be resistant to chemotherapy
which induces apoptosis. In the following it will
be assumed that leukemic cells do respond to
chemotherapy.

Using the following data from the literature:
c0"0, t

S
"0.73 day (Preisler et al., 1995),

A"91% (Vidriales et al., 1995), and B"7.4%
(Vidriales et al., 1995), we "nd that b*"
0.0047 hr~1"0.11 day~1, d"b*, q"21.2 hr,
t
G2@M"q!t

S
"3.8 hr, St

G0@G1
T"1/(d#b*)"

4.5 days, N*"3.25]108 cells kg~1, and P*"
0.32]108 cells kg~1.

Estimating the maximum recruitment rate (b0)
is not easy. An argument for the form of b (N) is
given in Mackey (1978), and in the following it is
assumed that the leukemic cells resemble those of
their host tissues in maximum recruitment capa-
city (b0), but the untreated recruitment levels (b*)
can di!er. An expression for the doubling time at
depleted levels is also given in Mackey (1978).
For the choice of b0, this doubling time equals
53 hr for normal cells and 29 hr for malignant
cells. Unfortunately, these numbers have not
been veri"ed experimentally but they may be
reasonable since the malignant cell doubling time
is shorter than the normal cell doubling time.
When the maximal rate of reentry from non-pro-
liferative phase into the cell cycle, b0, is assumed
the same for normal and malignant cells we ob-
tain h"1.06]108 cells kg~1. The malignant
bone-marrow parameter values are summarized
in Table 1.

APPENDIX B

Estimation of Apoptotic Rate

To estimate the rate of apoptosis due to
chemotherapy, we assume that c

c
can be "tted to

exponentials, i.e. the drug binds and induces apo-
ptosis in a constant fraction of cells per unit time
and that c

c
is the same for normal and AML cells.

B.1. ARA-C

Kufe & Spriggs (1985) show dose}response
curves of human leukemic myoloblasts after ex-
posure to Ara-C for 1, 3, 6 and 24 hr. They also
show the survival of cells in thymidine suicide
experiments as a measure of cells in S phase
during the exposure periods. The survival frac-
tion was converted into a fraction of surviving
S-phase cells by subtracting the fraction of cells
that survived the thymidine suicide experiment.
This fraction was plotted vs. the duration of ex-
posure for each concentration.

In Chabner & Longo (1996), "gures of Ara-C
plasma concentrations under di!erent adminis-
tration schedules are given. A dose of 3 g m~2
over 2 hr results in plasma concentration that
falls o! close to exponentially, i.e. c(t)Kk1e~at,
where c is the concentration of Ara-C. For the
two hour injections, e!ective drug is assumed to
be in the system only in the initial phase, and the
killing rates are the slopes "t through the "rst
data points up to t"6 hr. The four slopes ob-
tained are c

c
"0.09 hr~1 (10~7 M), c

c
"0.34 hr~1

(10~6 M), c
c
"0.74 hr~1 (10~5 M) and c

c
"

2.0 hr~1 (10~4 M).
In plotting the four killing rates, c

c
vs. Ara-

C concentration on a double logarithmic scale,
one "nds the c

c
(c)Kk2c1@2.

Using this relation together with c(t), the kill-
ing rate of the 2 hr injection is given by:
c
c
(t)Kae~bt with a"2 hr~1 and b"0.4 hr~1.



TABLE B.1
Induced apoptosis rate for a number of chemotherapeutic drugs under certain schedules

Dose c
c

Duration Concentration Reference

100 mgm~2 hr~1 0.015 hr~1 cont Chabner & Longo (1996) Kufe & Spriggs (1985)
Ara-C

3 gm~2 2e~0.4t hr~1 * Chabner & Longo (1996) Kufe & Spriggs (1985)
Ara-C over 2 hr

12 mgm~2 1.6 hr~1 1 hr Tidefelt et al. (1994) Sundman-Engberg et al. (1998)
idarubicin

60 mgm~2 1.2 hr~1 1 hr Sundman-Engberg et al. (1990) Sundman-Engberg et al. (1998)
daunorubicin

30 mgm~2 0.4 hr~1 3 hr Sundman-Engberg et al. (1990) Sundman-Engberg et al. (1998)
doxorubicin
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A dose of 100 mgm~2 hr~1 results in a con-
stant plasma concentrationK2]10~6 M (Chab-
ner & Longo, 1996). Between 6 and 24 hr for
c"10~7 M Ara-C, the fraction of surviving cells
falls from 50 to 32%. For c"10~6 M, the frac-
tion falls from 19 to 18% and for c"10~5 M the
fall is from 4 to 3%. The slopes of these three
curves are: c

c
(10~7)"0.025 hr~1, c

c
(10~6)"

0.003 hr~1, c
c
(10~5)"0.016 hr~1.

Since there is no obvious pattern in these data,
we simply use the average value, c

c
"0.015 hr~1

(Table B.1).

B.2. IDARUBICIN

Sundman-Engberg et al. (1998) show the
survival fraction after incubating normal bone-
marrow cells with concentrations of 0.05 and
0.2 lM idarubicin for 1 and 3 hr. A concentration
of 0.05 lM shows no further e!ect after 1 hr.
During this "rst hour, the apoptotic killing rate is
c
c
K!ln(0.27]14.6/19.6)"1.6 hr~1, where 0.27

is the fraction of surviving S phase cells, 14.6 is
the percentage of cells in S phase and 19.6 is the
percentage of all cycling cells for normal bone
marrow (Peters et al., 1986).

Tidefelt et al. (1994) measure the plasma con-
centration of idarubicin in leukemic peripheral
blood cells after administration of 10 mgm~2 as
a 10 min or a 1 hr infusion. Within 1 hr, the
concentration is in the range 0.025(c(0.2 lM
and we, therefore, assume that the c

c
value esti-

mated at c"0.05 lM will be in the range of
acceptance.
B.3. DAUNORUBICIN

The concentration of daunorubicin in vivo
after a 10 min infusion of 60 mgm~2 results in
intra-cellular concentration in leukemia cells that
resemble 1 hr incubation of 0.2 lM daunorubicin
in vitro (Sundman-Engberg et al., 1990).

The cytotoxicity of 0.2 lM daunorubicin is
estimated according to survival fractions after
1 and 3 hr of incubation (Sundman-Engberg
et al., 1998) of normal bone marrow cells. We "nd
c
c
K1.2 hr~1 for 1 hr.

B.4. DOXORUBICIN/ADRIAMYCIN

As in the case of daunorubicin, the concentra-
tion of doxorubicin in vivo after a 10 min infu-
sion of 60 mg m~2 resembles a 3 hr in vitro
infusion of 0.2 lM (Sundman-Engberg et al.,
1998).

This concentration will result in a
c
c
K0.6 hr~1. Since we are interested in c

c
after

infusion of only 30 mgm~2, we take
c
c
"0.4 hr~1, keeping in mind that the product

c
c
D for the three anthracycline protocols prob-

ably should be of the same order: c
c
D

(idarubicin)"1.6, c
c
D (daunorubicin)"1.2, and

c
c
D (doxorubicin)"1.2 when c

c
"0.4 hr~1.

The rationale for keeping c
c
D constant is based

on the idea that the integrated e!ect of these three
anthracyclines must be the same, since they are
used interchangeably in combination chemo-
therapy with Ara-C.
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