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Abstract. We develop conditions for the stability of the constant (steady
state) solutions of linear delay differential equations with distributed delay
when only information about the moments of the density of delays is available.
We use Laplace transforms to investigate the properties of different distribu-
tions of delay. We give a method to parametrically determine the boundary
of the region of stability, and sufficient conditions for stability based on the
expectation of the distribution of the delay. We also obtain a result based
on the skewness of the distribution. These results are illustrated on a recent
model of peripheral neutrophil regulatory system which include a distribution
of delays. The goal of this paper is to give a simple criterion for the stability
when little is known about the distribution of the delay.

1. Introduction. Delay differential equations (DDE) have been studied exten-
sively for the past 50 years. They have applications in domains as diverse as en-
gineering, biology and medicine where information transmission and/or response
in control systems is not instantaneous. For a good introduction to the subject,
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see [4]. Much of the work that has been done treats DDEs with one or a few discrete
delays.
A number of realistic physiological models however include distributed delays

and a problem of particular interest is to determine the stability of the steady
state solutions. For applications in physiological systems see [5, 6, 10, 14, 15].
Although results concerning DDEs with particular distributed delays (for extensive
results about the gamma distribution see [3]) have been published, there has been
no systematic study of this problem when little is known about the density of the
delay distribution: most notably, results on sufficient conditions for stability of
solutions of equations such as those considered in the present paper are given in
[7, 16].
The problem of stability is very important in physiology and medicine. One class

of diseases is characterized by a dramatic change in the dynamics of a physiological
variable or a set of variables and there is sometime good clinical evidence that
these changes are a consequence of a bifurcation in the underlying dynamics of
the physiological control system. In [6] it was proposed that these diseases be
called dynamical diseases. In many cases, one variable starts (or stops) to oscillate.
In order to treat these diseases, it is useful to know the parameter which causes
the oscillation (or the supression thereoff). An example of a dynamical disease is
cyclical neutropenia which is the subject of Section 6.
In Section 2 we briefly set the stage for the type of problem that we are consider-

ing. In Section 3, we define our notion of stability and discuss how to parametrically
determine the region of stability of a simple DDE for three particular distributions
of delay: when the delay is a single discrete delay, a uniformly distributed delay
and a distribution with the gamma density. In Section 4 we introduce a sufficient
condition to have stability based on the expected delay and the symmetry of the
distribution of delays. In Section 5 we give some examples again turning to the
single delay, and the uniformly and gamma distributed cases. In Section 6 we apply
our results to a recently published model for the peripheral regulation of neutrophil
production.

2. Preliminaries. In this paper we study the stability of the linear differential
Equation

ẋ(t) = −αx(t) − β

∫ ∞

0

x(t− τ)f(τ) dτ (1)

where α and β are constants. We show that the symmetry of the distribution f
plays an important role in the stability of the trivial solution, and our first result
considers the characteristic equation of the DDE (1) if the density f is symmetric.
If f is skewed to the left (meaning that there is more weight to the left of the
expectation) then stability is stronger (i.e. holds for a wider range of parameter
values) than for a single delay.
We restrict the values of α and β to β ≥ |α| because we are interested in the

influence of the distribution f on the stability properties of (1). It is straightforward
to show that if β ≤ −α then the trivial solution of Equation (1) is not stable.
Moreover if α > |β|, Equation (1) is stable for all values of τ . The interesting
parameter values are therefore located in the cone β ≥ |α|.
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Consider the general differential delay equation

dx(t)
dt

= F(x(t), x̃(t)), (2)

where x̃(t) is x(t− τ) weighted by a distribution of maturation delays. x̃(t) is given
explicitly by

x̃(t) =
∫ ∞

τm

x(t− τ)f(τ)dτ ≡
∫ t−τm

−∞
x(τ)f(t− τ)dτ. (3)

τm is a minimal delay and f(τ) is the density of the distribution of maturation
delays. Since f(τ) is a density, f ≥ 0 and∫ ∞

0

f(τ)dτ = 1. (4)

To completely specify the semi-dynamical system described by Equations (2) and
(3) we must additionally have an initial function

x(t′) ≡ ϕ(t′) for t′ ∈ (−∞, 0). (5)

Steady states x∗ of Equation (2) are defined implicitly by the relation

dx∗
dt

≡ 0 ≡ F(x∗, x∗). (6)

Definition 2.0.1. If there is a unique steady state x∗ of Equation (2) it is globally
asymptotically stable if, for all initial functions ϕ,

lim
t→∞x(t) = x∗. (7)

The primary consideration of this paper is the stability of the steady state(s),
defined implicitly by Equation (6), and how that stability may be lost. Though we
would like to be able to examine the global stability of x∗ to perturbations, one
must often be content with an examination of the local stability of x∗.

Definition 2.0.2. A steady state x∗ of Equation (2) is locally asymptotically stable
if, for all initial functions ϕ satisfying |ϕ(t′)− x∗| ≤ ε, 0 < ε	 1,

lim
t→∞x(t) = x∗. (8)

3. Local Stability. To examine its local stability, we linearize Equation (2) in
the neighborhood of any one of the steady states defined by (6), and define z(t) =
x(t) − x∗ as the deviation of x(t) from that steady state. The resulting linear
equation is

dz(t)
dt

= −αz(t)− βz̃(t), (9)

where

z̃(t) =
∫ ∞

τm

z(t− τ)f(τ)dτ ≡
∫ t−τm

−∞
z(τ)f(t− τ)dτ, (10)

and α and β are defined by

α ≡ −∂F(x, x̃)
∂x

|x=x∗ β ≡ −∂F(x, x̃)
∂x̃

|x̃=x∗ . (11)
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If we make the ansatz that z(t) 
 est in Equation (9), the resulting eigenvalue
equation is

s+ α+ βe−sτm f̂(s) = 0, (12)

where

f̂(s) =
∫ ∞

0

e−sτf(τ)dτ (13)

is the Laplace transform of f .

3.1. The single delay case. The “usual” situation considered by many authors
is that in which there is a single discrete delay. The density f is then given as a
Dirac delta function, f(τ) = δ(τ − τ̄). In this case the eigenvalue Equation (12)
takes the form

s+ α+ βe−sτ̄ = 0. (14)

If s = µ + iω, then the boundary between locally stable behaviour (µ < 0) and
unstable behaviour (µ > 0) is given by the values of α, β, and τ̄ satisfying

iω + α+ βe−iωτ̄ = 0, (15)

which has been studied by Hayes [12]. Isolating the real

α+ β cos(ωτ̄) = 0, (16)

and imaginary

ω − β sin(ωτ̄) = 0 (17)

parts of (15) it is straightforward to show that µ < 0 whenever

1. α > |β|, or if
2. β ≥ |α| and

τ̄ < τcrit ≡
arccos

(
−α

β

)
√
β2 − α2

. (18)

The stability boundary defined by Equation (18) is shown in Figure 2 in Section 5
where we have parametrically plotted

β(ω) =
ω

sin(ωτ̄)
(19)

versus

α(ω) = −ω cot(ωτ̄). (20)

When τ̄ = τcrit there is a Hopf bifurcation [8] to a periodic solution of (9) with
Hopf period

THopf =
2π√

β2 − α2
. (21)
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3.2. The uniform (rectangular) density. Suppose we have the simple situation
wherein there is distribution of delays with a uniform rectangular density given by

f(τ) =



0 0 ≤ τ < τm
1
δ τm ≤ τ ≤ τm + δ
0 τm + δ < τ.

(22)

The expected value E of the delay is

E =
∫ ∞

0

τf(τ)dτ =
δ

2
, (23)

so the average delay is

< τ >= τm + E = τm +
δ

2
(24)

and the variance (denoted by V ) is

V =
δ2

12
=
E2

3
. (25)

The Laplace transform of f as given by (22) is easily computed to be

f̂(s) =
eδs − 1
δs

, (26)

so the eigenvalue Equation (12) takes the form

δs(s+ α) + βe−sτm
[
eδs − 1] = 0. (27)

This may be rewritten in terms of the expectation E as

2Es(s+ α) + βe−sτm
[
e2Es − 1] = 0. (28)

Taking s = iω and proceeding as before we obtain parametric equations for α(ω)
and β(ω) as follows:

α(ω) = −ω sin[(δ − τm)ω] + sin(ωτm)
cos[(δ − τm)ω]− cos(ωτm) , (29)

and

β(ω) =
δω2

cos[(δ − τm)ω]− cos(ωτm) . (30)

Refer to Figure 3 to see a graphical representation of the region of stability.

3.3. The gamma density. The density of the gamma distribution with parame-
ters (a,m)

f(τ) =
{

0 0 ≤ τ < τm
am

Γ(m) (τ − τm)m−1e−a(τ−τm) τm ≤ τ
(31)

with a,m ≥ 0, is often encountered [10] in applications. The parameters m, a,
and τm in the density of the gamma distribution can be related to certain easily
determined statistical quantities. Thus, the average of the unshifted density is given
by

E =
∫ ∞

0

τf(τ)dτ =
m

a
, (32)

so the average delay is

< τ >= τm + E = τm +
m

a
(33)
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and the variance is

V =
m

a2
. (34)

Using (32) and (34) the parameters m and a can be expressed as

a =
E

V
(35)

and

m =
E2

V
. (36)

Using the Laplace transform of (31) the eigenvalue Equation (12) becomes

(s+ α)
[
1 +

s

a

]m

+ βe−sτm = 0. (37)

Equation (37) can be used to give a pair of parametric equations in α and β
defining the local stability boundary (µ ≡ Re s ≡ 0). We start by setting s = iω
and

tan θ =
ω

a
. (38)

Using de Moivre’s formula in Equation (37) with s = iω gives

(α+ iω)(cos[mθ]) + i sin[mθ]) = −β cosm θ(cosωτm − i sinωτm) (39)

Equating the real and imaginary parts of Equation (39) gives the coupled equations

α+ βr cosωτm = ω tan[mθ], (40)

and

α tan[mθ]− βr sinωτm = −ω, (41)

where

r =
cosm θ

cos[mθ]
. (42)

Equations (40) and (41) are easily solved for α and β as parametric functions of ω
to give

α(ω) = − ω

tan[ωτm +m tan−1(ω/a)]
(43)

and

β(ω) =
ω

cosm[tan−1(ω/a)] sin[ωτm +m tan−1(ω/a)]
(44)

respectively. Refer to Figure 4 to see the region of stability.

3.4. General density case. The method employed above can be generalized for
any density. Consider Equation (12) and let s = iω. Separating the real and
imaginary parts leads to

α+ β

∫ ∞

0

cos(ωτ)f(τ)dτ = 0 (45)

ω − β

∫ ∞

0

sin(ωτ)f(τ)dτ = 0. (46)
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Define

C(ω) ≡
∫ ∞

0

cos(ωτ)f(τ)dτ (47)

and

S(ω) ≡
∫ ∞

0

sin(ωτ)f(τ)dτ . (48)

Then we can solve for α and β to obtain them as parametric functions of ω:

α(ω) = −ωC(ω)
S(ω)

(49)

and

β(ω) =
ω

S(ω)
. (50)

4. Stability Conditions. One method to study the stability is to find condi-
tions for which the eigenvalue equation (or characteristic equation) has no roots
with positive real part. The difficulty with Equation (1) is that the characteris-
tic equation often involves a transcendental term. A noticeable exception is the
unshifted gamma distribution for which the characteristic equation [Equation (37)
with τm = 0] is a polynomial. This term, the Laplace transform of the density
of the distribution of delays, can be expressed as C(ω) + iS(ω) [Equations (47)
and (48)] on the imaginary axis. The first Lemma gives a bound on the term
C(ω) =

∫ ∞
0
cos(ωτ)f(τ)dτ when the density f is symmetric.

Lemma 4.0.1. Let f be a probability density such that:

1. f : R −→ R+

2. E =
∫ ∞
−∞ τ f(τ) dτ ,

3. f(E − τ) = f(E + τ)

(The third property implies that f is symmetric about its expectation). Then

1. for all ω, ∣∣∣∣
∫ ∞

−∞
cos(ωτ) f(τ) dτ

∣∣∣∣ ≤ |cos(ωE)| ; (51)

2. if ω < π/2E, ∫ ∞

−∞
cos(ωτ) f(τ) dτ > 0. (52)

Proof. For the first part of the Lemma, assume that f is piecewise constant and
given by

f(τ) =
N∑

i=1

Ciχ[Ai,Bi](τ)

where χ[Ai,Bi] denotes the indicator function on the interval [Ai, Bi]:

χ[A,B](τ) =
{
0 τ /∈ [A,B]
1 τ ∈ [A,B] . (53)
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Then

∣∣∣∣
∫ ∞

−∞
cos(ωτ)f(τ)dτ

∣∣∣∣ =

∣∣∣∣∣
∫ ∞

−∞
cos(ωτ)

N∑
i=1

Ciχ[Ai,Bi](τ)dτ

∣∣∣∣∣
=

∣∣∣∣∣
N∑

i=1

Ci

∫ Bi

Ai

cos(ωτ) dτ

∣∣∣∣∣
=

∣∣∣∣∣
N∑

i=1

Ci

ω
(sin(ωBi)− sin(ωAi))

∣∣∣∣∣ ,

which must be less than |cos(ωE)| as we now show.
Using the trigonometric identity

sin(x+ y)− sin(x− y) = 2 cos(x) sin(y),

we have

∣∣∣∣∣
N∑

i=1

Ci

ω
(sin(ωBi)− sin(ωAi))

∣∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

Ci

ω
2 cos(ω

Bi +Ai

2
) sin(ω

Bi −Ai

2
)

∣∣∣∣∣ .

By the symmetry of f , we know that Ci = CN−i+1, and the distance between the
expectation E and the middle of the ith interval is equal to the one between E and
the middle of the (N − i+ 1)th interval. That is,

∣∣∣∣E − Ai +Bi

2

∣∣∣∣ =
∣∣∣∣E − AN−i+1 +BN−i+1

2

∣∣∣∣ .

Set Ei =
∣∣E − 1

2 (Ai +Bi)
∣∣. For 1 ≤ i ≤ N/2, we have 1

2 (Ai + Bi) = E − Ei,
1
2 (AN−i+1+BN−i+1) = E +EN−i+1 and Ei = EN−i+1. Substitute these values in
the summation:

∣∣∣∣∣
N∑

i=1

Ci

ω
2 cos(ω

Bi +Ai

2
) sin(ω

Bi −Ai

2
)

∣∣∣∣∣ =

∣∣∣∣∣∣
N/2∑
i=1

2
Ci

ω
sin(ω

Bi −Ai

2
)(cos(ω(E − Ei)) + cos(ω(E + Ei))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N/2∑
i=1

2
Ci

ω
sin(ω

Bi −Ai

2
)(2 cos(ωE) cos(ωEi)

∣∣∣∣∣∣

The last equality is obtained by the trigonometric identity

cos(x+ y) + cos(x− y) = 2 cos(x) cos(y).
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Apply the triangle inequality and bound |cos(ωEi)| by 1 and the sine by its argu-
ment to obtain∣∣∣∣∣∣

N/2∑
i=1

2
Ci

ω
sin(ω

Bi −Ai

2
)(2 cos(ωE) cos(ωEi)

∣∣∣∣∣∣ ≤

N/2∑
i=1

∣∣∣∣4Ci

ω
sin(ω

Bi −Ai

2
)
∣∣∣∣ |cos(ωE)| |cos(ωEi)| ≤

N/2∑
i=1

∣∣∣∣4Ci

ω
sin(ω

Bi −Ai

2
)
∣∣∣∣ |cos(ωE)| ≤

N/2∑
i=1

∣∣∣∣4Ci
Bi −Ai

2

∣∣∣∣ |cos(ωE)| =
N∑

i=1

|Ci(Bi −Ai)| |cos(ωE)|

Since f is a probability density,∫ ∞

−∞
f(τ)dτ =

N∑
i=1

∫ Bi

Ai

Cidτ =
N∑

i=1

Ci(Bi −Ai) = 1.

So
N∑

i=1

|Ci(Bi −Ai)| |cos(ωE)| = |cos(ωE)| .

Then ∣∣∣∣∣
N∑

i=1

Ci

ω
(sin(ωBi)− sin(ωAi))

∣∣∣∣∣ ≤ |cos(ωE)| .

We thus have (51) when f is piecewise constant. If f is any symmetric probability
density, we can approximate it by a sequence of functions {fn}∞n=1, when fn is a
piecewise constant symmetric probability density, with fn → f as n → ∞ and∫ ∞
−∞ τfn(τ)dτ =

∫ ∞
−∞ τf(τ)dτ = E. Note that∣∣∣∣

∫ ∞

−∞
cos(ωτ) fn(τ) dτ

∣∣∣∣ ≤ |cos(ωE)|

for every n, so

lim
n→∞

∣∣∣∣
∫ ∞

−∞
cos(ωτ)fn(τ)dτ

∣∣∣∣ =
∣∣∣∣
∫ ∞

−∞
cos(ωτ) lim

n→∞ fn(τ)dτ
∣∣∣∣

=
∣∣∣∣
∫ ∞

−∞
cos(ωτ) f(τ) dτ

∣∣∣∣ ≤ |cos(ωE)| .

To prove the second part of the Lemma, observe that

|cos(ω(E − τ))f(E − τ)| ≥ |cos(ω(E + τ))f(E + τ)| ,
so the integral over the positive part is greater than the one over the negative
part.

Remark 4.0.2. We can also prove, under the same hypothesis of Lemma 4.0.1,
that ∣∣∣∣

∫ ∞

−∞
sin(ωτ) f(τ) dτ

∣∣∣∣ ≤ |sin(ωE)| . (54)
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The stability of Equation (1) depends on all moments of f about its mean. The
expectation obviously plays an important role in stability; Anderson [1, 2] also
showed the importance of the variance (second moment about the mean) in these
stability considerations.
We now study the location of the first root of C(ω). Lemma 4.0.1 states that

the first root of C(ω) is at ω = π/2E whenever the density f is symmetric. It
is of primary interest to see how this root changes when the distribution is not
symmetric. Around ωτ = π/2, the cosine in C(ω) =

∫ ∞
0
cos(ωτ)f(τ)dτ can be

expanded in Taylor series,

C(ω) =
∫ ∞

−∞

∞∑
n=0

(−1)n+1 (ωτ − π/2)2n+1

(2n+ 1)!
f(τ)dτ , (55)

leading to the integral of a sum of terms with odd power (odd because we expand
around a root). The higher moments about the mean do not necessarily converge
and for this reason we can not usually switch the sum and the integral. The first
term of this expansion is

− π

2E

∫ ∞

0

(τ − E)f(τ)dτ = 0 (56)

since the mean E is precisely the value for which this relation hold. The second
term is the third moment about the mean (up to a multiplicative factor).

π3

(2E)33!

∫ ∞

0

(τ − E)3f(τ)dτ . (57)

The third moment is in general the first nonzero term of the Taylor expansion and
so the sign of this term has a great importance in determining the position of the
root of C(ω). The skewness of a distribution is usually defined as the third moment
about the mean divided by the third power of the standard deviation. If the density
f is symmetric, all moment about the mean are zero. So a symmetric density has
a skewness equal to zero, which is coherent with intuition. But a third moment
equal to zero does not imply that the density is symmetric. We require a definition
in which a skewness equal to zero means that the density is symmetric. For the
purpose of the paper, we will use the following definition of skewness.

Definition 4.0.3. Let f be a probability density with expectation E. The skewness
of f , B(f), is defined as

B(f) = (−1)k+1
∫ ∞

0

(τ − E)2k+1f(t+ E)dτ (58)

where

k = min
{
n

∣∣∣∣
∫ ∞

0

(τ −E)2n+1f(t+ E)dτ �= 0
}
. (59)

The density f is said to be skewed to the left if B(f) > 0 and skewed to the right
if B(f) < 0. In the case where k =∞ we define B(f) = 0.

Remark 4.0.4. It is clear that f is symmetric if and only if all the moments about
its mean are zero, i.e. f is symmetric if and only if B(f) = 0. In general, for a non-
symmetric density, the third moment about the mean is nonzero, so the definition
of B(f) reduces to the standard case (up to a positive multiplicative factor).

We can now look for sufficient conditions for stability of Equation (1).
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Theorem 4.0.5 (Sufficient Conditions). Let f be a probability density defined on
[0,+∞) with expectation ∫ ∞

0
τf(τ)dτ = E. Suppose β > |α|. Then in Equation (1)

1. The solution x∗ = 0 is asymptotically stable (a.s.) if

E <
π

(
1 + α

β

)
c
√
β2 − α2

(60)

where c = sup {c| cos(x) = 1− cx/π, x > 0} ≈ 2.2764.
2. If the skewness B(f) = 0 we have the stronger sufficient condition for asymp-
totic stability:

E <
arccos

(
−α
β

)
√
β2 − α2

. (61)

3. If the skewness is positive (B(f) > 0), then there is a δ > 0 such that condition
(61) holds for |α| < δ.

Proof. The characteristic equation of (1) is

s+ α+ β

∫ ∞

0

e−sτf(τ)dτ = 0. (62)

If E = 0, (62) reduces to s + α + β = 0 which trivially has no root with positive
real part so x∗ = 0 is asymptotically stable. If an increase in E leads to instability
of x∗ = 0, then a root s of (62) must intersect the imaginary axis, i.e. there exists
E such that (62) has pure imaginary roots. We seek roots of the form s = iω, and
because the roots come in conjugate pairs, we can restrict our search to ω > 0. In
this case Equation (62) splits into a real part

α+ β

∫ ∞

0

cos(ωτ)f(τ)dτ = 0, (63)

and an imaginary part

ω − β

∫ ∞

0

sin(ωτ)f(τ)dτ = 0. (64)

First note that ω ≤
√
β2 − α2 since:

[∫ ∞

0

cos(ωτ)f(τ)dτ
]2
+

[∫ ∞

0

sin(ωτ)f(τ)dτ
]2

≤
∫ ∞

0

cos2(ωτ)f(τ)dτ +
∫ ∞

0

sin2(ωτ)f(τ)dτ =
∫ ∞

0

f(τ)dτ = 1.

and thus, by Equations (63) and (64), α2 + ω2 ≤ β2.
To show condition (60), notice that∫ ∞

0

cos(ωτ)f(τ)dτ ≥
∫ ∞

0

1− cωτ

π
f(τ)dτ

=
∫ ∞

0

f(τ)dτ − cω

π

∫ ∞

0

τf(τ)dτ = 1− cω

π
E.
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If 1 − cωE/π > −α/β, Equation (63) thus has no root. However, ω ≤
√
β2 − α2

so a sufficient condition for (63) to have no root is

E <
π

(
1 + α

β

)
c
√
β2 − α2

.

For the proof of the second part of Theorem 4.0.5. suppose that f is symmetric
about its mean and α ≥ 0. We want

∫ ∞
0
cos(ωτ)f(τ)dτ > −α/β for 0 < ω ≤√

β2 − α2. By Lemma 4.0.1, we know that
∫ ∞
0
cos(ωτ)f(τ)dτ > 0 for ω < π/2E.

For ω ≥ π/2E, ∣∣∣∣
∫ ∞

0

cos(ωτ) f(τ) dτ
∣∣∣∣ ≤ |cos(ωE)| .

This implies that ∫ ∞

0

cos(ωτ)f(τ)dτ ≥ cos(ωE)

whenever
∫ ∞
0
cos(ωτ)f(τ)dτ < 0. If cos(ωE) > −α/β then E < ω−1 arccos(−α/β)

and ∫ ∞

0

cos(ωτ)f(τ)dτ > −α/β.

A sufficient condition for (62) with α ≥ 0 to have no root with positive real part is
therefore:

E <
arccos

(
−α
β

)
√
β2 − α2

.

If α < 0, compare the boundary of region of stability (α(ω), β(ω)) defined by
Equations (49) and (50) and the curve (αE(ω), βE(ω)) defined by the boundary of
region of stability of the single delay at E. These two curves intersect for ω = 0 at
the point (−1/E, 1/E):

lim
ω→0

α(ω) = lim
ω→0

−ωC(ω)
S(ω)

= lim
ω→0

−ω
S(ω)

= − lim
ω→0

β(ω)

This limit is 1 over the slope of S(ω) at 0, which is E. This is true for all dis-
tributions with expectation E and this is their only intersection point. To have
intersection we must get

−ωC(ω)
S(ω)

=
−ω cos(ωE)
sin(ωE)

and
ω

S(ω)
=

ω

sin(ωE)

which imply, for ω �= 0, that C(ω) = cos(ωE) and S(ω) = sin(ωE). These equalities
can not occur until ω = π/2E. Moreover, when ω = π/2E, both curves cross the
β-axis and at this point β(ω) > βE(ω) = π/2E. These facts imply that the curve
(α(ω), β(ω)) lies always above the “sufficient” curve (αE(ω), βE(ω)) and condition
(61) holds for α < 0.
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Now we have to show that if B(f) ≥ 0, no root crosses the imaginary axis when
α is sufficiently small. Consider any density f with positive skewness. Let p ∈ [0, 1],
and define

fp = pf(τ) + (1− p)f(2E − τ).

The function f1/2 is a symmetric density and we have shown that:∣∣∣∣
∫ ∞

−∞
cos(ωτ)f1/2(τ)dτ

∣∣∣∣ ≤ |cos(ωE)| .

Moreover we have that∫ ∞

−∞
cos(ωτ)fp(τ)dτ =

∫ ∞

−∞

∞∑
n=0

(−1)n+1 (ωτ − π/2)2n+1

(2n+ 1)!
fp(τ)dτ .

By Definition 4.0.3 the first nonzero term of the series evaluated at ω = π/2E is
∫ ∞

−∞

(−1)k+1 (ωτ − π/2)2k+1

(2k + 1)!
fp(τ)dτ =

( π

2E

)2k+1 1
(2k + 1)!

∫ ∞

−∞
(−1)k+1(τ − E)2k+1fp(τ)dτ .

For p > 1/2, it is clear that B(fp) > 0 so( π

2E

)2k+1 1
(2k + 1)!

∫ ∞

−∞
(τ − E)2k+1fp(τ)dτ =

( π

2E

)2k+1 1
(2k + 1)!

B(fp) > 0.

This means that for p = 1/2 + ε, with small ε > 0,∫ ∞

−∞
cos(ωτ)fp(τ)dτ > 0

for ω in a neighborhood of π/2E. This implies that∫ ∞

0

cos(ωτ)f(τ)dτ > 0.

Thus, we have shown that

B(f) ≡
∫ ∞

0

(τ −E)2k+1f(τ)dτ > 0

implies ∫ ∞

0

cos(ωτ)f(τ)dτ > 0

around ω = π/2E.
The first root of C(ω) is thus to the right of ω = π/2E (If this is were not true,

there would be a (continuous) family of densities fµ, µ ∈ [0, 1], with B(f0) = 0,
B(fµ) > 0 for µ > 0 and f1 = f . There would then exist µ = µ0 > 0 where a
root of Cfµ0

(ω) appears before π/2E. This would mean that at µ = µ0, a root of
the characteristic equation could suddenly appear in the right half complex plane,
which is impossible (see Lemma 1.1 in [17])).
Thus, an increase in p increases∫ ∞

−∞
cos(ωτ)fp(τ)dτ ,
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and ∫ ∞

0

cos(ωτ)f(τ)dτ >
∫ ∞

−∞
cos(ωτ)f1/2(τ)dτ .

This means that a positive skewness increases the stability of Equation (1) when
|α| is small.

Remark 4.0.6. We can apply condition (61) to any density with a (small) positive
skewness. By the last part of the proof, a small perturbation which increases the
skewness of a symmetric density will not cause roots of characteristic equation to
cross the imaginary axis.

Conditions (60) and (61) differ only when α is small or negative. If α is of the
same order of magnitude as β, the conditions are equivalent. When α = 0 we get
for conditions (60) and (61) respectively:

E <
π

cβ

and

E <
π

2β
.

The difference is a factor of 2/c ≈ 0.88, and the difference decreases when α in-
creases. These two bounds are asymptotic to the line β = α so the difference
vanishes asymptotically.

5. Specific Examples. When we know the distribution of the delay in (1), we
can find the region S of stability in the plane of the parameters α and β. Theorem
4.0.5 gives sufficient conditions to have stability in a region R, which must therefore
be included in S. A crucial question is: how does R approach S? In case of a
symmetric density, the approximation of the real bound is good if α in Equation
(1) is small. In any case the stability of (1) tends to increase when the variance
of f increases or the expectation decreases as discussed by Anderson in [1]. If we
consider the relative variance R defined [1, 2] by

R =
V

R2
,

we can see that (in general) R → S as R → 0. For an example in which this is not
the case see Boese [3]. When R = 0, the distribution is a Dirac delta f = δE(τ),
and it is well known [4] that for a discrete delay, Equation (1) is stable if and only
if

E <
arccos

(
−α
β

)
√
β2 − α2

when |α| < β. Moreover, suppose that the distribution has a minimal delay τm
(f(τ) = 0 for τ < τm). This distribution has an expectation greater than τm. Then
one could suppose that this distribution is strictly less stable than the single delay
at τ = τm because all information comes after this time. Generally, increasing the
expectation of the delay decreases the stability. But other factors also influence the
stability. If the variance and skewness are large enough, the stability is improved.
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1

2

3

β

±1 1 2 3α

Figure 1. Comparison of stability boundaries for different distri-
butions of delays. In all cases, the stability region is bounded above
by the curve displayed. The solid curve is the boundary of the re-
gion of stability with the two discrete delay distribution defined by
(65). The curve with crosses is the sufficient condition computed
using condition (61) of Theorem 4.0.5 and the middle one (circle)
defines the stability region of the single delay with τ = 1. The
dotted line is the cone β = |α|.

Consider for instance the single delay distribution δτ̄ with delay τ̄ = 1 and the
distribution with two delays at τ = 1 and 3.1:

f(τ) =
9
10
δ1(τ) +

1
10
δ3.1(τ). (65)

Then the density f is more stable than the single delay at 1! This shows the
sometimes non-intuitive nature of the necessary conditions for stability of (1) [See
Figure 1 for details].
Let us now compare the stability regions S andR for some common distributions:

a single delay, a uniform delay and a gamma distribution.

5.1. The single delay. The single delay density takes the form δτ̄ = δ(τ − τ̄)
which is the Dirac delta function at the fixed time τ̄ . With f(τ) = δτ̄ (τ), Equation
(1) take the simple form

ẋ(t) = −αx(t) − βx(t− τ̄), (66)
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1
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4

5

6

β

1 2 3 4 5 6
α

Figure 2. Upper bound (solid line) of the region of stability for
Equation (66). Here S = R and the delay τ̄ = 2. Note that the
boundary is asymptotic to the line β = α (dashed line).

and the characteristic equation is

s+ α+ βe−sτ̄ = 0. (67)

This density is symmetric and by Theorem (4.0.5), we know that Equation (66) is
stable if

τ̄ <
arccos

(
−α
β

)
√
β2 − α2

.

In this case, this condition is also necessary . Figure 2 shows the region of stability,
plotted with the method outlined in Section 3.1.

5.2. Uniform density. When the delay is uniformly distributed, the density can
be written

f(τ) =




0 0 ≤ τ < τm
1/δ τm ≤ τ ≤ τm + δ
0 τm + δ < τ

(68)

The expectation is E = τm + δ/2. We can apply Theorem 4.0.5, since f is
symmetric, to obtain Figure 3 when τm = 2 and δ = 2.
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Figure 3. Stability region for a density uniform on the interval
[2,4]. The solid line is the boundary of S, the one with circles is
the sufficient condition [Equation (61)] for stability and the dotted
line is the cone β = |α|.

5.3. Gamma density. The shifted gamma distribution with parameters (m,a) is

f(τ) =
{

0 0 ≤ τ < τm
am

Γ(m) (τ − τm)m−1e−a(τ−τm) τm < τ.
(69)

This distribution has expectation E = τm + m/a. The third moment about the
mean is ∫ ∞

0

am

Γ(m)
τm−1e−aτ (τ −m/a)3dτ =

2m
a3

> 0. (70)

Note that the skewness is independent of τm because the third moment is taken
about the mean which varies with τm. The skewness B(f) is positive, so we can
apply Theorem 4.0.5. Figure 4 shows the difference between the real boundary of
S and the boundary of R. The characteristic equation is

s+ α+ βf̂(s) = 0. (71)

where f̂ denoteS the Laplace transform of f . For the unshifted distribution (τm =
0),

f̂(s) =
(
1 +

s

a

)−m

, (72)
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Figure 4. Region of stability (solid line) for a gamma distribution
with parameters m = 3, a = 1 and τm = 5. The curve with
circles is the sufficient condition(61) of Theorem 4.0.5. The upper
curve was computed with Equations (43) and (44). The asymptote
(crosses) comes from Equation (79).

so that we can write Equation (71) as

(s+ α)
(
1 +

s

a

)m

+ β = 0. (73)

For large β, there should exist K such that the boundary of the region of stability
is asymptotic to β = Kα. This boundary is implicitly expressed by Equation (71)
when s = iω. Moreover, when β is large, ω should be near π/E. The reason for
this is that the imaginary part of f̂(iω), S(ω), takes its first zero near this point,
so S(π/E) ≈ ω/β ≈ 0. Remember that in the parametric representation of the
boundary of S, β(ω) = ω/S(ω). If β is very large, since ω is bounded, S(ω) must
be very small. Substituting s = iπ/E = iπa/m in Equation (71), we obtain(

iπa

m
+ α

) (
1 +

iπ

m

)m

+ β ≈ 0. (74)

Thus

β ≈ −α
(
1 +

iπ

m

)m

− iπa

m

(
1 +

iπ

m

)m

. (75)
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When α is large enough, the second term in Equation (75) is negligible and β is
asymptotic to

α

∣∣∣∣1 + iπ

m

∣∣∣∣
m

. (76)

This term only depends on m. If m increases to infinity, for fixed E, f converges
weakly to a Dirac delta function. In this case the asymptote is β = α and we see
that (

1 +
iπ

m

)m

→ eiπ = −1 (77)

as m → ∞, which is consistent with the case of the single delay with density given
by the Dirac delta function. Thus, for large β and large m, we obtain an informal
condition for the stability for the unshifted gamma density:

β ≤ Kα =
∣∣∣∣1 + iπ

m

∣∣∣∣
m

α. (78)

For the shifted gamma density, we must evaluate S(ω) at π/E = π/(τm +m/a).
This leads to the condition

β ≤ Kα =
∣∣∣∣1 + iπ

aτm +m

∣∣∣∣
m

α. (79)

In our example (Figure 4), m = 3, a = 1 and τm = 5 so K = 1.24.

6. Neutrophil Dynamics. As mentioned in the Introduction, in some diseases
a normally approximately constant physiological variable changes its qualitative
dynamics and displays an oscillatory nature. This is the case of cyclical neutropenia
(CN) in which there is a periodic fall in the neutrophil count from approximately
normal to virtually zero and then back up again [9, 10, 11]. Haurie et al. [10]
developed a model for the peripheral regulation of neutrophil production. Their
results and other evidence strongly suggest that the origin of the oscillatory behavior
in CN is not due to an instability in the peripheral neutrophil regulatory system.
Rather, the oscillations are probably due to a pathological low level oscillatory
stem cell input to the neutrophil regulatory system, caused by a destabilization
of the hematopoietic stem cell compartment [18, 19]. Haurie et al. analyzed the
data from nine grey collies and found different dynamics between dogs. When the
amplitude of the oscillation of the neutrophil is low, the oscillation is approximately
sinusoidal. However, when the amplitude increases, a small “bump” appears on the
falling phase of the oscillation which increases the neutrophil count before the count
falls to zero. Many models of neutrophil production incorporate a negative feedback
with delay. However, in a recent modeling study Hearn et al. [13] have shown that
this feedback alone cannot lead to the oscillations seen in CN. The principal source
of oscillation of the neutrophil count comes from the oscillation of the stem cell
input which is exterior to the neutrophil regulatory system.
A regulatory model for neutrophil dynamics with delayed negative feedback can

be written as

ẋ(t) = −αx(t) +Mo(x̃(t)) (80)

where

x̃(t) =
∫ ∞

τm

x(t− τ)f(τ)dτ . (81)
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The function Mo(x̃(t)) is the feedback control and is a decreasing function. The
constant α is the rate of elimination of neutrophil and f is the distribution of
maturation delay. This model, proposed by Haurie et al in [10], can be expressed
in linearized form as

ż(t) = −αz(t) + εI(ω̄)eiω̄tMo∗ +M′
o∗[1 + εI(ω̄)eiω̄t]z̃(t). (82)

The distribution f is taken to be the shifted gamma defined in Equation (31) since
it offers an excellent fit to the data [13]. The term εI(ω̄)eiω̄t accounts for the
oscillation of the stem cell input. The constant Mo∗ is the granulocyte turnover
rate defined by

αx∗ =Mo(x∗) ≡ Mo∗. (83)

where x∗ is the unique stable steady state of Equation (80). The other parameters
are the period of oscillation of the stem cell input 2π/ω̄, ε which is assumed to be
1 and M′

o∗, the slope of the feedback function at the steady state x∗. The term
I(ω̄) depends on a and m:

I(ω̄) =
(

a

iω̄ + a

)m+1

e−iω̄τm . (84)

The value of a is 14.52, m is 8.86 and ω̄ is around 0.45. The maximum value of the
oscillation factor ε�I(ω̄) is nearly one, so

max
∣∣M′

o∗[1 + εI(ω̄)eiω̄t]
∣∣ ≈ 2 |M′

o∗| . (85)

Now if we look at the autonomous part of Equation (82), we get

ż(t) = −αz(t) +M′
o∗[1 + εI(ω̄)eiω̄t]z̃(t). (86)

When the amplitude of the stem cell input reaches its maximum, we can approxi-
mate Equation (86) using Equation (85) by

ż(t) = −αz(t) + 2M′
o∗z̃(t). (87)

Since we suppose thatMo(z̃(t)) is a decreasing function, we know thatM′
o∗ is non-

positive. We can therefore apply Theorem 4.0.5 to study the stability of Equation
(87). If 2M′

o∗ ≤ α, Equation (87) is always stable. In this case, oscillation in the
neutrophil count is due only to the oscillation of the stem cell input in the neutrophil
regulatory system and the behavior of the neutrophil count is sinusoidal.
However, in some cases, even if M′

o∗ ≤ α, we may have that 2M′
o∗ ≥ α. Then

to study the stability, we can use condition (61) which gives

E <
arccos(α(2M′

o∗)
−1)√

(2M′
o∗)2 − α2

. (88)

The decay rate α is between 2.18 and 2.48 (days−1), and the expected delay E is
between 3.21 and 3.42 days. From data fitting [10], we obtain M′

o∗ ranging from
-0.05 to -2.20. Taking α = 2.4, we see that |M′

o∗| ≥ 1.20 can destabilize Equation
(87). From Table 4 of Haurie et al. (reproduced in Table 1) the smallest slope
|M′

o∗| greater than 1.20 is 1.50. WithM′
o∗ = −1.50, a sufficient condition to have

stability is

E <
arccos(−0.80)√

3.24
= 1.39.

However, since E is far greater than 1.39 (at least 3.21), we expect that Equation
(87) will not be stable for values of |M′

o∗| ≥ 1.50. This implies that Equation (82)
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Dog M′
o∗ M′

o∗ fit ω̄ Tins

127 -0.20 -0.10 0.465 0
113 -0.91 -0.05 0.470 0
128 -1.09 -2.00 0.464 5.39
118 -0.48 -0.50 0.500 0
126 -1.00 -1.80 0.463 4.70
101 -1.24 -1.50 0.426 3.27
125 -1.15 -2.20 0.421 6.55
117 -1.05 -1.70 0.438 4.49
100 -1.20 -1.80 0.418 5.20

Table 1. Data for nine grey collies. The computations for Tins

were made usingM′
o∗ fit. Note that withM′

o∗, only Dog 101 has a
slope high enough to destabilize the peripheral regulatory system.
This suggests that the fitted values are close to the real ones. The
units ofM′

o∗,M′
o∗ fit and ω̄ are days

−1 and Tins is in days. From
Haurie et al. [10].

will be destabilized when the amplitude of the stem cell input reaches a threshold
which depend on M′

o∗. From Table 1, we can estimate the interval of time during
which Equation (87) will be destabilized. The expected delay E must satisfy

E�arccos[α{M
′
o∗(1 + �(εI(ω̄)))}−1]

[{1 + ε�(I(ω̄))}2M′
o∗
2 − α2]

1/2
. (89)

At worst this condition becomes

E�π[{1 + ε�(I(ω̄))}2M′
o∗
2 − α2]−1/2. (90)

We can approximate �(I(ω̄)) with Equation (84) by
�(I(ω̄)) 
 0.96 cos[ω̄(t− τm)]. (91)

Equation (90) becomes, with α = 2.4,

cos[ω̄(t− τm)]� 2.71
|M′

o∗|
− 1.04. (92)

Given that the density of the maturation delays is concentrated around its expec-
tation (the variance is 0.042), we can replace in our approximation the symbol �
by the usual >. Solving for t gives that t must lie in an interval of length

Tins ≡ 2
ω̄
arccos

(
2.71
|M′

o∗|
− 1.04

)
(93)

The value of Tins for each dog is given in Table 1. We find that the peripheral
neutrophil regulatory system is destabilized during an average of 4.93 days each
period of stem cell input which is of length between 12.6 and 15 days. The effect
of this is the small bump seen after the spikes of the neutrophil count.
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Figure 5. Simulation results of the model to the absolute neu-
trophil count (ANC,top) and the Lomb periodogram (bottom).
The units for ANC are cells×10−3mm−3. The x’s are the data
points and the solid lines are the simulation results of Equation
(80). Note the existence of a second harmonic in the Lomb peri-
odogram for all but three dogs (127,113 and 118), which is consis-
tent with the theorical computation done in Table 1.

7. Conclusion. We have analysed the influence of the distribution of delays on
the stability properties of the null solution of Equation (1). In general, distributed
delays seem to increase the stability of the steady state of a DDE when compared to
a discrete delay. With a gamma distribution of the delay, if α and β are sufficiently
large, then the steady state will be stable for more values of the parameters than
with any equation with a discrete delay.
Theorem 4.0.5 shows that even limited properties of the distribution of delay

provide a good indication for the stability when α is relatively small. In many cases,
the study of the stability of a differential equation with distributed delays can be
reduced to the problem of stability with a discrete delay. When the distribution
of delays is known, results of Section 3 gives a way to find the boundary of the
stability region even if it is not always possible to find an explicit bound in term of
intrinsic parameters of the distribution.
In a modeling context, it is often difficult to precisely determine the distribu-

tion of delays in the description of a delayed regulated process. Results such as
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those presented here thus have great interest since they provide general bounds on
stability regions, irrespective of the particulars of these distributions.
We end this paper with a conjecture which we have found to hold in all cases of

distributions of delays that we have studied. Proving it would be very useful and
would make the results of Section 4 obsolete. In words, it amounts to stating that
the most destabilizing distribution of delays is a single Dirac δ function. If true,
it could provide, by consideration of simplified models containing single discrete
delays, uniform upper bounds on regions of stability in parameter space.

Conjecture 7.0.1. In the notation of Section 4, let f be a probability density
defined on R+ with expectation E. Suppose that ω∗ is the first root of C(ω), then

β(ω∗) ≡ ω∗

S(ω∗)
≥ π

2E
. (94)
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