
Microscopic Dynamics

and the

Second Law of Thermodynamics

Michael C. Mackey �

Departments of Physiology, Physics, & Mathematics

Centre for Nonlinear Dynamics

McGill University

September 25, 2001

Abstract

This paper considers the origin of the thermodynamic behaviour cap-
tured by the second law of thermodynamics. It is �rst shown the Gibbs
de�nition of entropy is the unique de�nition for both equilibrium and
non-equilibrium situations when entropy is an extensive quantity. It is
then demonstrated that the invertible microscopically formulated physi-
cal laws are incapable of explaining the second law of thermodynamics.
A necessary and suÆcient condition to derive the second law of thermo-
dynamics is that we have exact dynamics at the microscopic level. Since
there is no currently known physical law that displays exact dynamics,
this result suggests at least two possibilities: (1) Either the microscopic
laws of physics are incorrectly formulated; or (2) There is another process
operating in concert with the microscopic laws to produce exact dynamics
and second law behaviour. The latter possibility is explored by looking at
coarse graining, the e�ects of noise, and the taking of a trace. All three
are rejected as likely bases for the second law of thermodynamics.
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1 Introduction

\The law that entropy always increases, the second law of ther-
modynamics, holds, I think, the supreme position among the laws
of Nature.

...if your theory is found to be against the second law of ther-
modynamics I can give you no hope; there is nothing for it but to
collapse in deepest humiliation."

Eddington [5]

This quotation{from almost 70 years ago{captures some of the feeling sur-
rounding the literature of the past century that attempts to reconcile the second
law of thermodynamics with the nature of our microscopic physical world as it
is understood.

A few years ago I wrote a review [15] followed by a small monograph [16]
in which I outlined the major issues related to the understanding the second
law of thermodynamics from microscopic dynamics. In this paper I repeat
the essential points of that argument, correcting presentation points that were
confusing to readers of [15] and [16], and emphasizing conclusions more forcefully
than previously so that there can be no confusion as to the end point of the
argument. My aim is to highlight the situation vis �a vis deriving macroscopic
thermodynamic behaviour from microscopic dynamics.

The outline of this paper is as follows. Section 2 explicitly de�nes what is
meant by the second law of thermodynamics. In Section 3 I give some back-
ground material related to thermodynamics, densities, and dynamics. Section 4
de�nes the Gibbs entropy and shows that it is the unique de�nition of entropy
for both equilibrium and non-equilibrium situations if the entropy is an exten-
sive quantity. Section 5 brie
y deals with maximal entropy principles and shows
how they can illuminate the nature of equilibrium state when conserved quanti-
ties are known{but fail to make any commentary about the way in which those
equilibrium states are reached. Section 6 considers the relation between invert-
ible and non-invertible dynamics and entropy evolution. There it is shown that
non-invertibility of dynamics is a necessary condition for second law-like behav-
iour. Since no current formulation of microscopic dynamics is non-invertible,
this is the �rst clue of the problems faced by theoretical physics in trying to
o�er microscopic insight into the second law.

Section 7 is, in a very real sense, the pi�ece de r�esistance of this paper. There
I o�er a necessary and suÆcient condition for the second law of thermodynamics
to follow from microscopic dynamics. The only problem is that the condition
that allows this to take place is not contained in any microscopically formulated
physical law in the year 2000. Section 8 treats potential resolutions of this
apparent paradox. In Section 8.1 we look at coarse graining, at the e�ects of
noise in Section 8.2 and the e�ect of taking a trace in Section 8.3. Section 8.4
is very short and mentions another alternative way out of the paradox. I have
relegated my opinions to Section 9.

I am not going to explicitly deal with the issue of the apparent unidirec-
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tionality of time since other people have gone through the arguments for one
or another source of this phenomena (cf. [4, 19, 22] for representative contribu-
tions). However, in providing a necessary and suÆcient condition (exactness) on
microscopic dynamics for the validity of the second law of thermodynamics this
issue of temporal unidirectionality is solved automatically. This follows since
the exact dynamics are, by necessity, non-invertible.

If, in the course of reading this paper, you come across results or statements
that are not proven or inadequately explained consult [15, 16] �rst. If that
doesn't work, then go to [13, 14].

2 The Second Law of Thermodynamics

Before starting our examination of the dynamics of entropy behaviour, we must
�rst de�ne precisely what is meant by the second law of thermodynamics. This
is given in the following.
De�nition. [Second Law] Let STD(t) be de�ned as the time dependent ther-
modynamic entropy. Then for an isolated system

STD(t2) � STD(t1) for all t2 > t1; (1)

and there is a unique steady state

S�TD = lim
t!+1

STD(t) (2)

for all initial system preparations. The entropy di�erence satis�es

�S(t) � STD(t)� S�TD � 0 (3)

and
lim

t!+1
�S(t) = 0: (4)

In other words, the system entropy evolves to a unique maximum for all system
preparations. In what follows, analogs of STD, S

�
TD, and �S will be de�ned.

3 Starters

There are a few concepts that are well to have stated at the outset, and this
section collects those together.

3.1 Densities and Thermodynamics

We assume that a thermodynamic system has states distributed in a phase space
X . The distribution of these states is characterized by a (time dependent) density
f(t; x). A thermodynamic equilibrium is characterized by a stationary (time
invariant) density f�(x). Remember that f is a density if

f(x) � 0

Z
X

f(x) dx = 1: (5)
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Given a phase space X we will denote the space of all densities on X by D(X )
or by D if X is understood.

3.2 Dynamics and Densities

We also consider a dynamics St operating on the phase space X

St : X ! X : (6)

The usual way of thinking about the evolution of the dynamics (6) is through
the evolution of a trajectory in the phase space X . However, because we wish to
examine the approach of systems to thermodynamic equilibrium, we will study
how system dynamics alter densities of initial conditions rather than considering
trajectories emanating from a single initial condition.

With a dynamics S and initial density f0(x) = f(0; x) of states, the evolution
of the density f(t; x) is given by

f(t; x) = P t
Sf0(x); (7)

wherein PS is the transfer operator corresponding to S.
To illustrate the notion of the transfer operator governing the density evo-

lution, consider the following examples.

1. If the dynamics are described by a system of ordinary di�erential equations

dxi
dt

= Fi(x) i = 1; : : : ; d; (8)

then the evolution of f(t; x) � P tf0(x) is governed by the generalized
Liouville equation

@f

@t
= �

X
i

@(fFi)

@xi
: (9)

2. For dynamics described by a system of stochastic di�erential equations

dxi
dt

= Fi(x) + �(x)�i; i = 1; : : : ; d; (10)

f(t; x) � P tf0(x) satis�es the Fokker-Planck equation

@f

@t
= �

X
i

@(fFi)

@xi
+

1

2

X
i;j

@2(�2f)

@xi@xj
: (11)

3. If the dynamics are described by a discrete time map xt+1 = S(xt) then
the evolution operator is given by the Frobenius-Perron operator

PSf(x) =
d

dx

Z
S�1([0;x])

f(u) du: (12)
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4. Finally, for dynamic evolutions governed by a stochastically perturbed
discrete time map xt+1 = S(xt) + ��t then the evolution operator is a
Markov operator 1

PSf(x) =

Z
X

f(u)g(x� �S(u)) du: (13)

g is the density of the distribution of the stochastic perturbation �.

All of these evolution operators are speci�c examples of Markov operators.

3.3 Stationary Densities

We de�ne a �xed point f� of the transfer operator as a stationary density with
P tf� � f� for all t. A stationary density is important since it corresponds to a
state of thermodynamic equilibrium. Note in particular that there is absolutely
no requirement for a stationary density to be uniform across the phase space X .

To illustrate how the stationary density would be determined in particular
cases consider the following.

1. For the system of ordinary di�erential equations (8), f� is given by the
solution of X

i

@(f�Fi)

@xi
= 0: (14)

Note that the uniform density f� � 1 is a stationary density of Equation
9 if and only if X

i

@Fi
@xi

= 0: (15)

2. For the system of stochastic di�erential equations (10), f� is the solution
of

�
X
i

@(f�Fi)

@xi
+

1

2

X
i;j

@2(�2f�)

@xi@xj
= 0: (16)

4 Entropy

Having postulated that a thermodynamic system has a state characterized by
a density f , we are now in a position to develop the physically useful concept
of entropy.

First we de�ne an observable O(f) to be a functional of the thermodynamic
state characterizing some aspect of a system, for example the energy, pressure,
or temperature. As such, an observable corresponds to a map O : D(X ) ! R.
The expected, or average, value of the observable O(f) is given by weighting

1Any linear operator P : D ! D that satis�es P tf � 0 and k P tf k=k f k for all t 2 R

and f 2 D is called a Markov operator. jj � jj denotes the L1 norm, and the second condition
simply means that any Markov operator P operating on a density again yields a density.
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O(f) with the system state density f and integrating over the entire phase
space:

E(O) =< O >=

Z
X

O(f(x))f(x) dx: (17)

In his seminal work Gibbs [7], assuming the existence of a system state
equilibrium density f� on the phase space X , introduced the concept of the index
of probability given by log f�(x) where \log" denotes the natural logarithm. He
then identi�ed � log f� with the entropy. We identify the entropy H in an
equilibrium situation with the average of the index of probability

H(f�) = �

Z
X

f�(x) log f�(x) dx; (18)

and call this the Gibbs entropy. It can be shown that �1 < H(f) � 0 for all
densities f .

If entropy is to be an extensive quantity (in accord with practical expe-
rience) then this de�nition is unique up to a multiplicative constant [11, 20].
Furthermore, (18) has repeatedly proven to yield correct results when applied
to a variety of equilibrium situations. This is why it is the gold standard for
equilibrium computations in statistical mechanics and thermodynamics. It is
for this reason that we

Identify the equilibrium Gibbs entropy H(f�) with the thermody-
namic entropy S�TD .

Other contenders for the de�nition of entropy, such as one version of the Boltz-
mann entropy [9], fail to give proper answers for equilibrium calculations unless
all particles are non-interacting.

The uniqueness of the entropy de�nition (18) (under the assumption that
the entropy is an extensive quantity) is so important that it is worthwhile to
give the proof. It is short.

Consider two systems A and B operating in the phase spaces XA and XB
respectively, and each having the densities of states fA and fB. We combine
the two systems to form a new system C operating in the product space XC =
XA � XB , so system C will have a density of states fC(x; y) = fA(x)fB(y) if
A and B do not interact. On experimental grounds we require that when the
two systems are combined into a larger system C, then the entropy of system C
should equal the sum of the individual entropies of A and B, since entropy is an
extensive (additive) system property. We wish to show that the Gibbs choice
for the index of probability is the only choice (up to a multiplicative constant)
that will ensure this.

Assume that the index of probability is left as an unspeci�ed observable
O(f). If the observable O(f) is such that it transforms products to sums,
O(fC) = O(fAfB) = O(fA)+O(fB), then the relationH(fA)+H(fB) = H(fC)
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holds. It is clear that picking O(w) = d logw, where d is any arbitrary non-
zero constant, will work but are there any other functions O with the requisite
property?

Assume there exists a second continuous observable ~O(f) such that

~O(fAfB) = ~O(fA) + ~O(fB): (19)

De�ne two new functions vA(a) and vB(b) through

fA(a) = evA(a) and fB(b) = evB(b): (20)

Then we have
~O(evA+vB ) = ~O(evA) + ~O(evB ); (21)

or with h(w) � ~O(ew) this becomes

h(vA + vB) = h(vA) + h(vB): (22)

This is the Cauchy functional equation that has the unique solution h(w) = Æw
with Æ an arbitrary constant [12]. This implies that ~O(ew) = Æw so

~O(w) = Æ logw: (23)

Thus the observable that gives the requisite additive property for the Gibbs
entropy is the logarithmic function and it is unique up to a multiplicative con-
stant.

The question of how a non-equilibrium entropy should be de�ned has plagued
investigators for over a century. However, what is clear is that

The de�nition of non-equilibrium entropy must agree with the
Gibbs de�nition at equilibrium.

An examination of the proof of the uniqueness of the Gibbs de�nition of entropy
shows that the proof applies equally well in equilibrium and non-equilibrium sit-
uations. It is for this reason that we extend the de�nition of the equilibrium
Gibbs entropy to non-equilibrium situations and say that

The non-equilibrium Gibbs entropy of a density f(t; x) is de�ned by

Ht(f) = �

Z
X

f(t; x) log f(t; x) dx: (24)

We identify Ht(f) with the non-equilibrium thermodynamic entropy
STD(t).
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Finally, we extend these notions and de�ne the non-equilibrium conditional
entropy of the density f(t; x) with respect to a stationary density f�(x):

Hc
t (f jf�) = �

Z
X

f(t; x) log

�
f(t; x)

f�(x)

�
dx: (25)

As before it is the case that �1 < Hc
t (f jf�) � 0 for all densities f and f�.

Notice that if the phase space X is �nite and the stationary density is uniform
on X so f�(x) = 1=�(X ) for all x 2 X [this is a generalization of the density of
the microcanonical ensemble], then (25) reduces to Hc

t (f jf�) = H(f)�log�(X ).
If the space X is normalized then f� = 1 and Hc

t (f j1) = Ht(f) as de�ned in
(24). Furthermore, we can write (25) in the form

Hc
t (f jf�) = H(f)�H(f�) +

Z
X

[f(t; x)� f�(x)] log f�(x) dx: (26)

Thus it is clear that if there is a convergence limt!1 f(t; x) = f�(x) in some
sense (which we will make totally precise in Section 7) then limt!1Hc

t (f jf�) =
0. It is for this reason that:

We identify the convergence of Hc
t (f jf�) to zero [limt!1Hc

t (f jf�) = 0]
with the convergence of the entropy di�erence �S(t) to zero.

5 Maximal Entropy Principles

Maximal entropy principles are interesting since they allow us to understand the
origin of equilibrium thermodynamics. This approach [8, 10] is best illustrated
by the following sample theorem that captures the essence of this point of view.

Theorem 1 Given an observable �(x) and

< � >�

Z
X

�(x)f(x)dx; (27)

the maximum entropy occurs for the density given by

f�(x) =
1

Z
e���(x) (28)

where

Z =

Z
X

e���(x) (29)

The entropy corresponding to this density (28) is

H(f�) = logZ + � < � > : (30)
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The choice of notation in Theorem 1 was deliberate, and meant to be evoca-
tive of concepts from equilibrium thermodynamics in spite of the fact that the
statement of the theorem has absolutely no thermodynamic content. Namely
if we identify Z with the partition function, < � >= U with the energy, take
� = 1=kT and H(f�) = STD (the thermodynamic entropy) as we have pos-
tulated in Section 4, then we immediately obtain a fundamental relation of
equilibrium thermodynamics. Namely,

Gibbs function = U � TSTD

= �kT logZ

= F

= Helmholtz free energy

Although maximal entropy principles allow us to comprehend a vast body of
equilibrium thermodynamic phenomena by a proper identi�cation of < � >, �,
etc. they make no reference to the dynamics leading to these maximal entropy
states. This clearly highlights the fact that

It is essential to understand the dynamics constraints necessary
for the evolution of entropy to a maximum as required by the
second law of thermodynamics (Section 2).

6 Invertible and Non-invertible Dynamics

In trying to uncover the nature of the dynamics responsible for the behaviour
embodied in the second law of thermodynamics, it is necessary to consider some
fundamental properties of the dynamics. That is the subject of this section.
We start with a consideration of invertible dynamics and then proceed to non-
invertible dynamics.

6.1 Invertible Dynamics

A dynamics St is invertible if a trajectory evolving under the action of St may
be run forward and backward in time unambiguously, i.e. S�t applied to any
point is unique. As examples of invertible dynamics we have:

1. Any system of autonomous ordinary di�erential equations like (8).

2. Any invertible map like xt+1 = 
xt, X = R, so

S(x) = 
x and S�1(x) =
x



: (31)
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3. All of the fundamental (microscopic) laws of physics as currently formu-
lated, e.g. Newton's laws, Hamiltonian dynamics, quantum mechanics.

Most importantly for our considerations here, the conditional entropy of any
invertible system is constant and uniquely determined by the method of system
preparation. This is formalized in

Theorem 2 If P t is the transfer operator for an invertible system with station-
ary density f�, then the entropy is constant for all time t, and equal to the value
determined by f� and the choice of the initial density f0. That is,

Hc(P tf0jf�) � Hc(f0jf�) (32)

for all t.

Proof. Since P is invertible, by Voit's theorem 2 [21] with g = f� it follows
that

Hc(P
t+t0f0jf�) = Hc(P

t0P tf0jf�) � Hc(P
tf0jf�) � Hc(f0jf�) (33)

for all times t and t0. Pick t0 = �t so

Hc(f0jf�) � Hc(P
tf0jf�) � Hc(f0jf�) (34)

and therefore
Hc(P

tf0jf�) = Hc(f0jf�) (35)

for all t.
In particular, for the system of ordinary di�erential equations (8) whose

density evolves according to the Liouville equation (9) we can assert that the
entropy of the density P tf0 will be constant for all time and will have the value
determined by the initial density f0 with which the system is prepared. This
result can also be proved directly by noting that from the de�nition of the
entropy we may write

Hc(f jf�) = �

Z
Rd

f(x)

�
log

�
f

f�

�
+
f�
f
� 1

�
dx (36)

when the stationary density is f�. Di�erentiating with respect to time gives

dHc

dt
= �

Z
Rd

df

dt
log

�
f

f�

�
dx (37)

or, after substituting from (9) for (@f=@t), and integrating by parts under the
assumption that f has compact support,

dHc

dt
=

Z
Rd

f

f�

X
i

@(f�Fi)

@xi
dx: (38)

2Voigt's theorem [21] says that if P is a Markov operator, then Hc(P tf0jP tg) � Hc(f jg)
for all f; g 2 D.
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However, since f� is a stationary density of P t, it is clear from (9) that

dHc

dt
= 0; (39)

and we conclude that the conditional entropy Hc(P
tf0jf�) does not change from

its initial value when the dynamics evolve in this manner.
The consequences of Theorem 2 in conjunction with the fact that all of the

microscopic laws of physics are formulated in terms of invertible dynamics are
far reaching. Namely

The behaviour of thermodynamic systems, as embodied in the second
law of thermodynamics, does not and cannot have an explanation in
terms of the microscopic laws of physics as currently formulated.

6.2 Non-invertible Dynamics

We say that a dynamics St is non-invertible if a trajectory evolving under the
action of St may not be unambiguously run forward and backward in time (S�t
is not unique). Examples of non-invertible dynamics are

1. Stochastic di�erential equations like (10).

2. Di�erential delay equations

dx(t)

dt
= F(x(t); x(t � �)): (40)

3. Non-invertible maps xt+1 = S(xt) like the dyadic map

S(x) = 2x (mod 1) (41)

on X = [0; 1].

The importance of systems with non-invertible dynamics is that their entropy
can increase. That is:

Theorem 3 If P t is the transfer operator for a non-invertible system with sta-
tionary density f�, then the conditional entropy satis�es

Hc(f0jf�) � Hc(P tf0jf�) � Hc(f�jf�) � 0 (42)

for all t > 0.
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Proof. The demonstration is a trivial application of Voigt's theorem in con-
junction with the observation that the conditional entropy is maximized by f�.

Where have we gotten? We have shown that the Gibbs entropy de�nition is
unique if entropy is to be an extensive quantity (Section 4). We have also shown
that the Gibbs entropy of a system cannot change if the underlying dynamics are
invertible (Section 6.1, Theorem 2). Further, the Gibbs entropy may increase
if the dynamics are non-invertible (Section 6.2, Theorem 3). This summarizes
the point that matters were at when the following words were written in 1967:

\It is not very diÆcult to show that the combination of the re-
versible laws of mechanics with Gibbsian statistics does not lead to
irreversibility but that the notion of irreversibility must be added as
a special ingredient ...

... the explanation of irreversibility in nature is to my mind still
open."

Bergmann [2]

The result from Theorem 3 that non-invertibility is necessary, though not
suÆcient, for entropy to increase is well known. It has been used implicitly or
explicitly over the past century (or more) in almost every attempt to reconcile
the observation at the end of Section 6.1 with the indisputable thermodynamic
behaviour of systems as embodied in the second law of thermodynamics. Thus
(for example) to achieve non-invertibility one can \coarse grain" the phase space
(cf. Section 8.1) which is a fancy name for throwing away information, one
can add \noise" (cf. Section 8.2), or one can take the \trace" of the system
(cf. Section 8.3) which is another fancy name for throwing away a LOT of
information.

All of these attempts have their basis in the implicit rejection of the possi-
bility that the fundamental laws of physics might, in fact, be improperly for-
mulated. Clearly, these formulations could not be grossly in error since we see
excellent agreement between them and experimental measurements in almost all
situations. The one obvious exception is in the behaviour of entropy as systems
approach equilibrium.

However, before turning our attention to these various ways of trying to deal
with the obvious problem that we have highlighted up to this point, we can do
more. Namely, we can specify exactly what conditions the dynamics St must
satisfy in order for the second law of thermodynamics to be satis�ed.

7 Pi�ece de r�esistance

We have now arrived at the point where we can state necessary and suÆcient
conditions for the operation of the second law of thermodynamics{and that is
the subject of this section. This involves de�ning a new type of non-invertible
dynamics.
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7.1 Exact Dynamics

We now consider exact dynamics. These types of dynamics have profoundly
important properties for our investigation of the origins of the second law of
thermodynamics. More precisely:
De�nition. A dynamics St on a phase space X with transfer operator P t

S and
unique stationary density f� is exact if and only if

lim
t!1

jjP t
Sf(x)� f�jjL1 = 0 (43)

for every initial density f 2 D.
Exact systems have a number of interesting properties that we will merely

mention (cf. [13, 14, 16] for more complete details). First, exact systems are non-
invertible. Secondly, they always have a unique stationary density f�. Finally
exactness of system dynamics also implies that they are mixing and, hence,
ergodic:

Exact ) Mixing ) Ergodic: (44)

It is important to emphasize that the reverse implications do not hold (consult
Section 8.1 for the de�nitions of ergodicity and mixing).

As an example, the dyadic map (41) is exact with unique stationary density

f�(x) = 1 for all x 2 [0; 1] (45)

Another example is the quadratic map xt+1 = S(xt) with S(x) = 4x(1� x) on
X = [0; 1], which has a unique stationary density

f�(x) =
1

�
p
x(1� x)

x 2 [0; 1]: (46)

Is exactness enough to o�er the explanation that Bergmann found missing?
Indeed so.

7.2 Exact Dynamics and Entropy Evolution

The core of this section, and indeed this entire paper, is contained in the fol-
lowing theorem.

Theorem 4 (Lasota & Mackey) [13, 14]The conditional entropy evolves to
its maximum value of zero for all system preparations f0 2 D,

lim
t!1

Hc
t (f0jf�) = 0 (47)

if and only if St is exact.

Proof. The proof is too long and would require the introduction of too many
other details to make a presentation here sensible. If you are interested you can
consult ([16], Theorem 7.7, pp. 98-100).

Thus:
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In constructing a microscopic explanation of the second law of thermo-
dynamics Theorem 4 directs our attention solely to systems with exact
dynamics.

7.3 Implications

Since the second law of thermodynamics requires (non-invertible) exact system
dynamics and none of the currently formulated microscopic dynamics in physics
have this property, there is clearly a major problem. What are the possible
solutions? There are at least two:

� Possibility 1. Some other process, in combination with the microscopic
laws of physics, makes them exact and produces non-invertible (irreversible)
thermodynamic behaviour.

� Possibility 2. The microscopic laws of physics are incorrectly formulated.

We will explore Possibility 1 in the next section, considering three ways out of
the box that Theorem 4 has put us in. None of these three are new{indeed
they were grasped at early on as a way out of the problems that physics had
justifying the second law. However, what was not recognized was that they can,
under certain circumstances, provide that element of exactness that Theorem 4
requires. I give all three of these without editorial comment. Possibility 2 will
be dealt with even more brie
y in Section 8.4.

8 Potential Resolutions

In this section we consider the e�ects of coarse graining, noise, and taking a
trace on the behaviour of entropy and their possible bearing on the origin of the
second law of thermodynamics.

8.1 Coarse Graining

Coarse graining was introduced by Boltzmann [3] in his search for a mechanism
whereby entropy behaviour could be made to conform to the second law. It was
later considered by Gibbs [7] and the Ehrenfests [6].

Coarse graining is carried out by �rst partitioning the phase space X into
cells Ai that satisfy

[
i

Ai = X and Ai

\
i6=j

Aj = ;: (48)

There is no unique way this partition may be formed, but we require that each
cell of the partition have positive measure, �L(Ai) > 0. For every density f ,
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within each cell of this partition we denote the average of f over Ai by < f >i,

< f >i=
1

�L(Ai)

Z
Ai

f(x) dx; (49)

so the density f coarse grained with respect to the partition Ai is given by

fcg(x) =
X
i

< f >i 1Ai(x): (50)

Thus, fcg is constant within each cell Ai. Clearly
P

i < f >i �L(Ai) = 1.
Given this partition, a density f , and a coarse grained density fcg then the
Gibbs entropy of the coarse grained density fcg is given by

H(fcg) = �
X
i

< f >i �L(Ai) log < f >i; (51)

and it is easy to show ([16], Theorem 8.1) that H(f) � H(fcg).
It is also easy to show that the conditional entropy of fcg with respect to a

stationary density f�, also coarse grained with respect to the same partition is
given by

Hc(f
cgjfcg� ) = �

X
i

< f >i �L(Ai) log

�
< f >i

< f� >i

�
; (52)

and that H(f jf�) � Hc(f
cg jfcg� ) [16].

Thus, coarse graining will either increase the entropy or leave it unchanged.
Is there any circumstance in which we can assert something stronger about the
behaviour of the entropy after coarse graining? Indeed there is, and this leads
us to consider mixing systems which appeared brie
y and without de�nition in
Section 7.1.

Mixing is a dynamical property stronger than ergodicity and weaker than
exactness, and it is equivalent to a weak convergence property [13, 14]. Namely:
De�nition. A dynamics St on a phase space X with transfer operator P t

S and
unique stationary density f� is mixing if and only if

lim
t!1

< P t
Sf0; g >=< f�; g >; (53)

where g is any bounded measurable function and

< f; g >=

Z
X

f(x)g(x)dx (54)

denotes the scalar product.
As an example of a mixing dynamics, consider the baker transformation:

S(x; y) =

�
(2x; 12y) 0 � x � 1

2
(2x� 1; 12 +

1
2y)

1
2 < x � 1:

(55)

The baker transformation has a unique stationary density that is uniform,

f�(x; y) � 1 for all x; y 2 [0; 1]� [0; 1]; (56)
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is mixing, and is invertible. Thus we know from Theorem 2 that the entropy
Hc(P tf0jf�) is absolutely constant and equal to the entropy with which the
system is prepared. However, coarse graining the baker transformation does
wonderful things for the entropy behaviour, and this is why it has been so pop-
ular ever since Boltzmann [3] �rst introduced the concept (Ruelle [18] has an
especially lucid description of Boltzmann's approach which is far more com-
prehensible that much of what is written about Boltzmann's ideas). These
wonderful things are shown in the next theorem.

Theorem 5 If P t is the transfer operator corresponding to an invertible mixing
dynamics with a unique stationary density f�, then for all non-trivial coarse
graining of the phase space

lim
t!�1

Hc
t (f

cg
0 jf

cg
� ) = 0 (57)

for all initial densities f0.

As long as we have gotten as far as de�ning exactness and mixing, we might
as well �nish the job and de�ne ergodicity.
De�nition. A dynamics St on a phase space X with transfer operator P t

S and
unique stationary density f� is ergodic if and only if fP tf0g is Ces�aro convergent
to f� for all initial densities f0, i.e., if

lim
T!1

1

T

Z T

0

< P tf0; g > dt =< f�; g > (58)

where g is any bounded measurable function.
Note that:

� The property of ergodicity is weaker than the property of mixing; and

� There are no known formulations of microscopic physical laws that are
ergodic, much less mixing.

8.2 Noise

Because of the diÆculty of dealing with stochastic systems, I'm not going to
go into the details of the e�ects of noise. I simply point out that the injection
of noise into a system with continuous or discrete time invertible dynamics can
induce second law like behaviour [16].

8.3 Traces

As an alternative to coarse graining or the addition of noise, I now turn to
the consequences of having an invertible dynamics in which not all dynamical
variables are observable. This means that we have a dynamical system operating
in an n-dimensional space, but are able to observe onlym < n of these variables.
That is, we observe only a trace of its operation in an m-dimensional space
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because (n�m) of the variables are hidden to us, e.g. because either we do not
know about them, or do not have the technology to measure them. Here I give
just two illustrations, and [16] can be consulted for more details.

8.3.1 x Trace of the Baker Transformation

The baker transformation was introduced in Equation 55 as an example of an
invertible dynamics that was mixing. Suppose we cannot measure the y variable
in the baker transformation. Then we just measure a sequence of x values given
by the dyadic map de�ned in Equation 41. This is an example of taking a trace.

In Section 7.1 I asserted that the dyadic map was exact with a uniform
stationary density. Therefore by Theorem 4 we know that the Gibbs entropy
will smoothly approach zero. Thus by taking a trace in this fashion we have
passed from a situation in which the entropy is absolutely constant (the full
baker transformation) to one in which the entropy evolution has second law
behaviour.

8.3.2 y Trace of the Baker Transformation

Now suppose we cannot measure the x variable in the baker transformation
(55). Then we have a sequence of y values given by

yt+1 =
1

2
yt + �t (59)

where

�t =
1

2
1[ 1

2
;1](xt) (60)

and
xt+1 = 2xt (mod 1): (61)

This trace system is mathematically equivalent to adding noise to the stable
system yt+1 = 1

2yt, and in this case �t can be interpreted as playing the role
of a hidden variable. From ([16], Theorem 10.9) the entropy will monotonically
approach zero in this case. Thus, if we lived in a y universe we would conclude
that the entropy always goes to zero regardless of how we prepare the system.

8.3.3 Two Amusing (but true) Asides Concerning Traces

Theorem 6 (God Theorem [13, 14, 16]) Every trajectory in a space X is the
trace of a single system operating in another space Y.

Theorem 7 (Rochlin's Theorem [13, 14, 16, 17]) Every \sub-universe" in which
the second law of thermodynamics holds is the trace of a \master universe" in
which the entropy is constant.
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8.4 Possibility 2

The other possibility I raised at the end of Section 7.3 was that all of the
microscopic laws of physics are incorrectly formulated. If true, then the violation
of these laws is very minute. I don't have much to say on this matter except to
point out that experimentally the dynamics of the neutral kaon system are not
invertible [1]. However we have no evidence one way or the other concerning
the possibility that they are exact.

9 Opinions

In keeping with my attempt to relegate all opinions (as opposed to what can be
proven) to a separate section I have collected them here. As far as I know there
is no scienti�c evidence to validate or invalidate my opinions any more or less
than contrary opinions held by others.

9.1 Coarse Graining is Not the Origin of Second Law Be-

haviour

Notice in Theorem 5 that the entropy approach to a maximum occurs for t !
�1. Thus coarse graining an invertible mixing system causes the entropy to
go to zero independent of the direction of the time. Hence, the entropy increase
induced by coarse graining:

� Fails to single out any preferred direction of time;

� May not be monotone [16]; and

� Has a rate of convergence that depends on the way the coarse graining is
carried out.

This latter feature implies that if entropy increases to a maximum because we
have invertible mixing dynamics but there is coarse graining then the rate of
convergence of the entropy (and all other thermodynamic variables) to equilib-
rium should become slower as measurement techniques improve. This behaviour
has not been observed to the best of my knowledge.

9.2 Noise is Not the Origin of Second Law Behaviour

If we attribute second law behaviour to the presence of noise, we must inquire
about the origin of the noise.

� If the dynamics of the universe are a composition of both deterministic
and stochastic elements, then there is no further discussion.

� However I believe that the universe dynamics are deterministic.
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{ If universe dynamics are purely deterministic, then we must inter-
pret this \noise" as the signature of the deterministic dynamics of a
portion of the universe, which we do not observe, impinging on the
portion we are studying.

{ If the universe dynamics are not only deterministic but also invertible,
then the entropy of the universe should be constant.

{ However, if the entropy of the universe is constant but we measure an
entropy increase in an observed portion, then we must conclude that
there is a corresponding entropy decrease in the unobserved portion.

{ If we continue to see second law type behaviour as we expand the size
of the observed portion of the universe, we arrive at a contradiction.

9.3 Second Law Behaviour is Not the Result of a Trace as

Discussed Here

If second law like behaviour were to be the result of taking a trace, what would
the most likely requirements be? I would insist that the entropy of the master
system dynamics obey the second law of thermodynamics. I take this position
because I �nd it inconceivable that the behaviour we observe in our everyday
world is only induced by taking a trace{and that the entropy of the entire
universe is constant (cf. the argument in Section 9.4 below). Thus although
Rochlin's theorem is true I don't think it's applicable.

Rather I think that if traces are important to understanding second law
behaviour then:

� The dynamics that we think are operating should appear to be invert-
ible within experimental error just as our own microscopically formulated
dynamics appear to be.

� However there would have to be some tiny and minute process (experimen-
tally undetected at the moment) that renders these apparently invertible
dynamics noninvertible and exact. Thus, for example, we would be
looking for a situation somewhat like the y trace of the baker transforma-
tion that was considered in Section 8.3.2.

� These dynamics should be the trace of a universal dynamics that are also
non-invertible and exact so that the entropy under the in
uence of the
universal dynamics also obeys the second law.

I would also apply precisely the same arguments against the possibilities raised
in the previous Sections 9.1 and 9.2 on coarse graining and noise respectively.

9.4 A Thought Experiment

Consider the following thought experiment. Put a cat in a completely sealed
box one meter on a side without food or water (Schulman [19] has remarked
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that cats seem to often be the target of bizarre thought experiments). After one
month, return and open the box. What will you �nd? The cat will, of course,
be dead. The processes that led to this state of a�airs are completely in accord
with the operation of the second law of thermodynamics.

Are we seriously to believe that this death was a consequence of coarse
graining? Of a noisy environment? Of taking a trace? To me this is so patently
ridiculous that I reject it out of hand. Animals do not die in such circumstances
because of our ignorance of dynamics (coarse graining or traces) or because of
noise.

9.5 What Do I Think Is REALLY Going On?

I think that the microscopic laws of physics are incorrectly formulated in the
following sense.

� They omit something so minute that it is experimentally undetected (at
the moment) but that nevertheless forces second law of thermodynam-
ics compliance which is manifested daily in our observation of the world
around us.

� If this opinion is correct, then identifying the nature and source of this
deviation is a major challenge for the physics of the future.
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