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Neural ensemble coding and statistical periodicity:
Speculations on the operation of the mind’s eye

John G. Miltona,b, Michael C. Mackeyb,c*
aDepartment of Neurology, The Uni6ersity of Chicago Hospital, Chicago, USA

bCenter for Nonlinear Dynamics in Physiology and Medicine, McGill Uni6ersity, Montreal, Canada
cDepartment of Physiology, McGill Uni6ersity, 3655 Drummond Street, Montreal, Quebec, Canada H3G 1Y6

Received 28 June 2000; accepted 7 August 2000

Abstract – Statistical periodicity is a statistical property of densities which arises in the description of retarded dynamical systems. This
property is particularly attractive as a possible mechanism for the ensemble coding of information in the nervous system because it
operates rapidly and has high storage capacity. For a population of neurons which exhibits statistical periodicity, information would
not be encoded by the periodicity, but rather by the spatio-temporal distributions of neural activity. Statistical periodicity is discussed
in relation to the temporal binding hypothesis and to the occurrence of multistability in neural systems. © 2000 Éditions scientifiques
et médicales Elsevier SAS
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1. Introduction

Watching an action packed movie, participating
in a fast moving hockey game, watching children
at play. What do these tasks have in common?
They all require that the nervous system rapidly
acquire, encode, transmit, decode, and act on the
ever-evolving information presented to it. Indeed
neuro-physiological and neuro-psychological evi-
dence indicates that by 70–80 ms after light-in-
duced neural activity reaches the primary visual
cortex faces are recognized [65]; more complex
scenes within 100–200 ms [32]. How is this chal-
lenge met?

The observation that inter-spike intervals of cor-
tical neurons are typically 510–30 ms [1, 64]
strongly implies that rapid cognitive tasks must
involve populations of neurons, rather than single
neurons. Population encoding has been demon-
strated using a wide range of techniques including
simultaneous extra-cellular micro-electrode record-
ings [97], recordings using subdural EEG elec-
trodes [84], and by the use of a variety of
multimodal imaging techniques [83, 87], including
fMRI. However, it is one thing to conclude that
population encoding occurs; it is yet another to
produce a population encoding mechanism that

operates with sufficient rapidity and storage
capacity.

Time delays are intrinsic properties of the ner-
vous system and arise because axonal conduction
times and inter-neuronal distances are finite [20,
26, 61, 62, 96]. Moreover, neural populations oper-
ate in a noisy environment [2, 10]. Thus it is
natural to examine the possibilities for encoding
mechanisms in terms of the statistical properties of
dynamical systems which possess retarded vari-
ables. Here we review the current state of the
knowledge in this field and draw attention to those
results which seem to qualify as potential encoding
mechanisms by large populations of neurons.

2. Population codes

Although a variety of explanations have been
proposed to explain the nature of the coding
mechanism in large populations of neurons; e.g.
frequency coding [3, 80], temporal coincidence
coding [91], and temporal delay of spikes [36, 78],
two are particularly relevant to this discussion. In
ensemble coding [16], attention is focused on the
statistical properties of the neural activity across
an entire neural population. In temporal pattern
coding [22, 57], it is the actual timing and pattern-
ing of neural spikes which is the important vari-
able. For both mechanisms the coding is in the
form of the spatio-temporal pattern of neural ac-
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tivities. Intuitively one might anticipate that these
two notions are not that distinct, but rather lie at
opposite extremes of a continuum. Here we briefly
summarize those observations which are particu-
larly relevant for our discussion of the statistical
properties of dynamical systems with retarded
variables.

2.1. Ensemble coding

One of the first experimental studies suggesting
that neural information might be encoded in a
distribution, or density, of activity across an
ensemble of neurons is that of Werner and Mount-
castle [93]. In their study of the firing of thalamic
neurons in monkeys to sensory stimuli they found
a relationship between the mean inter-spike inter-
val, Dt, and the standard deviation, d, of the
instantaneous firing rate, i.e.

d=0.5Dt

They speculated that this relationship might be
indicative of the utilization of inter-spike interval
density coding mechanism.

Certainly changes in the inter-spike interval his-
tograms of neurons can be readily demonstrated
[64], for example, in cortical neurons between sleep
and wake [21], and in retinal ganglion cells as the
ambient light level changes [76]. However, the
clearest evidence for spatio-temporal distribution
coding comes from studies which have involved
the simultaneous recording from large numbers
(70–100) of implanted electrodes in selected neural
populations. We cite three examples.

First, Wu et al. [97] studied two different behav-
iors (gill withdrawal and respiratory pumping) in
Aplysia while recording from seventy neurons.
They discovered that the populations of neurons
that were active during the two behaviors were
highly overlapping, but that the pattern of activity
across the population was quite different during
the two behaviors. They interpreted these results
to indicate a distributed neuronal organization in
which virtually the entire population of neurons
participated in the two responses, but with two
different densities of activities. Second, Georgol-
poulos et al. [28] have shown that the pre-pro-
gramming of limb movements in monkeys involves
a population activity in which the direction of limb
movement is coded in terms of the vector calcu-
lated from the spatially weighted firing activities of
the distributed neurons. Finally, in olfactory cor-
tex it has been shown that odors are encoded in
the form of different ensemble responses as mani-

fested by differing oscillatory properties of the
electro-encephalogram (EEG) [27, 48].

Intimately connected with the notion of distri-
bution coding has been its association with neu-
ronal oscillations. Werner and Mountcastle [93]
found that in both spontaneously firing neurons
and neurons firing in response to a constant stimu-
lus the resulting records of neural firing rate (im-
pulses/second) showed a clear and statistically
significant ‘periodicity’ with frequencies ranging
from 0.09 to 1.4 Hz. Since that time it has also
been demonstrated that the coding of odor in the
olfactory cortex is associated with a change in the
rhythmicity of the electro-encephalogram (EEG)
[27, 48], that the hippocampus exhibits rhythmic
oscillatory fields potentials (4–12 and 40–100 Hz)
during its activated, exploration-associated state
[4, 8], and that the ‘temporal binding’ of sensory
stimuli or perceptions by the involved cortex is
accompanied by the appearance of a 40-Hz
rhythm in the EEG [30].

2.2. Temporal pattern coding

Recently emphasis has been placed on the con-
cept that the actual timing or sequence of action
potentials, and therefore the sequence of inter-
spike intervals, is important for coding. In a classic
series of experiments, Richmond and Optican [74,
75] presented black and white patterns to alert
behaving monkeys while recording from a neuron
located in the inferior temporal cortex. The stimu-
lus set was based on 64 Walsh functions which can
be used to represented any visual pattern. They
observed that the neuron exhibited a unique re-
sponse to each Walsh function, but that the re-
sponse was not represented by a change in spike
count alone. They argued that the temporal modu-
lation of the spike train carried the relevant infor-
mation and then demonstrated that a temporally
modulated code carries more information than a
code based on spike frequency alone [68].

More recently emphasis has been focused on
studies of certain neurons located in the
hippocampus, referred to as place cells [72]. Place
cells are activated sequentially while an animal
moves about in a structured environment [5, 96,
99]. It has been shown that repeating spike se-
quences, as detected by template matching and
joint probability mapping techniques, are present
both in the awake and sleeping animal. The spike
sequences recorded in the awake animal appear to
be ‘replayed’ on a faster time scale during sleep
which may serve to consolidate information [66,
82, 95].
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Middlebrooks et al. [60] examined the firing
patterns of single neurons in the auditory cortex of
cat in response to different spatial locations of
auditory stimuli. They discovered that single neu-
rons can respond to sound locations throughout
360 degrees, and even more interestingly that these
individual units responded with patterns of action
potentials that varied systematically with the loca-
tion of the auditory stimulus. They speculated
that, in contrast to a place code, an auditory
stimulus at nearly every location activates diffuse
populations of neurons. Each of the active neurons
in this population signals, with its temporal firing
pattern, the approximate location of the auditory
stimulus, and that the precise location is signaled
by the concerted activity of many such neurons.
The concept of temporal pattern coding is sup-
ported by the demonstration that spike timing in
the nervous system can be precise [38, 58], and by
the demonstration that recurrent neural loops can
readily generate temporally patterned spike trains
[24–26].

3. Statistical periodicity

It is not particularly surprising, given the exten-
sive convergence and divergence properties of the
nervous system as well as the large numbers of
neurons involved, that some form of population,
or ensemble, coding would be important for the
nervous system. If indeed population coding is of
importance, then a natural way to describe the
ensemble activity is through the density of the
distribution of activity in the ensemble. An exam-
ple of a density is the histogram of inter-spike
intervals. Typically one only thinks of density de-
scriptions of systems as being of use in the calcula-
tion of static statistical properties. However, much
is now known about the evolution of densities
(statistical properties) under the action of deter-
ministic dynamics [47], and a number of types of
convergence behavior of densities have been de-
scribed (see Appendix A). From a theoretical point
of view one of the most attractive aspects of
thinking that the nervous system might operate by
computing with densities is that the speed of con-
vergence of a sequence of densities is typically
many orders of magnitude larger than one could
expect from examining the statistical convergence
of a single neural spike train even if the underlying
dynamics were ergodic.

The statistical property which we emphasize in
this review is referred as to ‘statistical periodicity’

and arises in dynamical systems with retarded
variables [39, 47, 54]. To illustrate what the term
‘statistical periodicity’ means we will use the one-
dimensional map

xt+1=S(xt)=
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(1)

where a is a constant, 1Ba52, and xt, xt+1 are,
respectively, the values of x at times t and t+1.
This map is referred to as the tent map because of
its graphical appearance [98]. The variable x could
be taken to represent, for example, the instanta-
neous neural firing rate or the inter-spike interval.
Models of the nervous system in which time is
discrete arise in the description of pulse-coupled
neural networks [26, 41]. The term ‘pulse coupling’
refers to the fact that when neurons are physically
separated, interactions between them are in the
form of discrete synaptic potentials driven by
spikes. The dynamics of pulse-coupled neural net-
works are particularly relevant to temporal pattern
coding since the critical parameter in these net-
works is spike timing [26].

We recognize that Eq. (1) is not neuro-physio-
logically motivated. However, this map is simple
enough that it can be readily be programmed into
a computer so that the reader can study the phe-
nomena we discuss themselves. More importantly
we emphasize that the same types of statistical
properties generated by Eq. (1) also occur in other
examples of dynamical systems, including discrete
maps which incorporate noisy fluctuations [46, 70],
in models expressed in terms of continuous time
differential delay equations [50, 52, 55, 56], and in
neuro-physiologically motivated models of spa-
tially extended excitable systems [53, 62].

Let us pretend that Eq. (1) describes the inter-
spike intervals of a neural spike train from a single
neuron. It is known from previous studies that this
map exhibits statistical periodicity when a=
2
[40, 70]. There are two ways that we could plot the
data obtained from this artificial neuron. First, we
could display the values of x as a function of time.
This type of plot is shown in figure 1a and corre-
sponds to the same type of information recorded
in a neural spike train. The dynamics are obvi-
ously complex. A second way that we could plot
the data is in the form of a histogram. Here the
analogy is to an inter-spike histogram. Figure 1b
shows the ‘inter-spike histograms’ prepared from
the corresponding time series of figure 1a. This
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histogram approximates the stationary density of
the distribution of x (see Appendix A).

Now let us suppose that instead of monitoring
the activity of one neuron, we simultaneously
monitor a very large number of non-interacting
neurons. We can do this with Eq. (1) by a picking
a large number of initial conditions and assigning
each initial condition to a separate version of Eq.
(1) having the same a. At each time step we use the
values obtained from the large number of neurons
to plot the histogram, or density, of the neural
activity and follow this density as a function of
time. Figure 1c shows the succession of densities
calculated in this manner. In contrast to the den-
sity obtained from a single neuron (map) (figure

1b), in this case the density itself cycles with period
2! Moreover, by changing the value of the parame-
ter, a, cycling of densities can be observed with
periods 2n, n=1,2,3,… [70].

The density shown in figure 1c is the density
calculated when the observations made from all of
the neurons are pooled together. We refer to a
density measured in this way as the collapsed
density. A collapsed density only accurately cap-
tures the dynamics of an ensemble in the special
case when all of the neurons are uncoupled. In the
general case of a neural ensemble we can expect
that there will be coupling between the activity of
the different neurons in the network. In this case it
is necessary to take into account the spatial-tem-

Figure 1. Comparison of different representations of the dynamics generated by Eq. (1) for a=
2. (a) Time series representation
obtained for N=1 maps; (b) density distribution of the time series shown in (a) obtained by iterating N=1 maps for 40 000 time
steps; (c) the period 2 cycling of the densities characteristic of statistical periodicity. (c) was prepared by iterating N=40 000 maps and
at each time step combining the output of each map to construct the density. The solid horizontal line represents the interval between
0.3 and 0.7. The initial condition for each map was chosen randomly from the initial density distribution shown for t=1 (it is the
uniform density on [0.3, 0.7]). Note that for all densities the area is equal to 1.
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Figure 2. Comparison of the (a) collapsed density and (b) the spatio-temporal distribution of activity for a 60×60 coupled map lattice
of tent maps (N=3 600). The lattice was iterated for a total of 100 time steps, the densities calculated from the last 6 time steps are
shown. In (a), the solid horizontal line indicates the interval from 0 to 1. The initial conditions were chosen from a uniform
distribution over the interval from 0 to 1. Parameters: a=
2, x=0.45. For all densities the area is equal to 1.

poral distribution of the neural activity. To illus-
trate how these distributions appear in a coupled
population which exhibits statistical periodicity,
consider the results shown in figure 2. This figure
shows the dynamics of a 2-dimensional coupled
network of tent maps in which the dynamics of
each element in the lattice are given by

xt+1
i, j = (1−o)S(xt

i, j)+

o

4
[S(xt

i−1, j)+S(xt
i, j−1)+S(xt

i+1, j)+

S(xt
i, j+1)] (2)

where i, j=1, …, N, S is given by the right hand
side of Eq. (1), o is the coupling coefficient, and
there are periodic boundary conditions. Figure 2
compares the collapsed density for this 2-D cou-
pled map lattice (figure 2a) to the spatio-temporal
distribution of activity (figure 2b). The coupling
coefficient (o=0.45) and the value of a=
2 are
chosen from the range of parameters for which
statistical periodicity is known to occur in a lattice
of coupled tent maps [51]. The collapsed density
reflects the period two cycling of statistical period-
icity. However, it is clear on examining the spatio-
temporal distribution of activity that there is more
going on. In particular, spatio-temporal patterns
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are apparent. These patterns arise because of
phase transitions [53]. A necessary, but not suffi-
cient condition, for the appearance of these pat-
terns is that the ensemble exhibit statistical
periodicity [51, 53].

This cycling of densities is referred to as statisti-
cal periodicity [39, 47, 54]. By comparing the ob-
servations in figures 1 and 2, we see that statistical
periodicity is an ensemble property, i.e. its exis-
tence can not be easily inferred by measurements
of the dynamics of a single element in the ensem-
ble. In the next section we discuss those features of
statistical periodicity which make this phenomena
particularly attractive as a potential candidate for
a neural encoding mechanism. Following this we
discuss the relationship between statistical period-
icity and multistability and finally possible analo-

gies between statistical periodicity and the
temporal binding hypothesis.

4. Statistical periodicity and neural coding

From the examples cited in the Introduction it is
clear that a plausible mechanism for neural coding
must possess two properties: (1) it must be capable
of rapid convergence (e.g. B70–200 ms); and (2)
it must have high information storage capacity.
We discuss these issues from the point of view of
statistical periodicity.

Figure 3 shows the evolution of the collapsed
density for a large number of tent maps when
a=
2. It can be seen that the limiting sequence
of densities becomes clearly recognizable within

Figure 3. Convergence of densities for a 60×60 lattice of coupled tent maps (N=3 600) as a function of the time step. The initial
distribution (t=1) is the uniform density on [0.3, 0.7]. The solid horizontal line indicates the interval from 0 to 1. Parameters: a=
2,
x=0.45. For all densities the area is equal to 1.
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Figure 4. Dependence of the limiting spatio-temporal distribution of a 40×40 coupled map lattice of tent maps (N=1 600) on the
choice of initial spatial patterns (left-hand panel). In all cases the background for the initial pattern was formed from values chosen
randomly from a uniform distribution on [0, 1]. In (a) the cross is the value x=0.3 and in (b) the square was constructed from points
chosen randomly from a uniform density on [0.3, 0.7]. The square-cross pattern in (c) was formed by constructing the cross (x=0.3)
and then randomly choosing values from a uniform density on [0.3, 0.7] to construct the square. As can be seen the limiting
spatio-temporal pattern of the lattice obtained for the cross-square pattern is not simply the linear combination of the limiting patterns
obtained for cross and square. The values of the parameters for the tent map and the coupling strength are the same as in figure 3.

7–8 time steps. The fluctuations in the densities
observed for subsequent iterations largely reflect
statistical fluctuations since only 3600 neurons are
used to estimate the density. This rapid conver-
gence to the limiting densities is seen for most
initial densities [54]. Thus ensemble coding mecha-
nisms based on statistical periodicity are fast.

Figure 4 shows the dependence of the spatio-
temporal properties of the 2-D coupled map lattice
of tent maps as a function of the initial spatial
pattern (left hand side of figure). Clearly each
different input leads to a different cycling of spa-

tio-temporal patterns. However, in all cases the
period of the cycling is two. In general it can be
shown that the nature of the limiting oscillations
of the densities is continuously dependent on the
initial dynamics [39, 54]. Thus if statistical period-
icity were used as a dynamic mechanism for stor-
ing patterns or memories, one could have a
virtually continuous relationship between the
ensemble response and the stimulus. The ability to
discriminate between the continuous array of re-
sponses would be only limited by our ability to
discern ‘tiny’ differences.
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5. Multistability and statistical periodicity

There is a consensus in the neural network
literature that there is an intimate connection be-
tween associative memory and multistability [34,
100]. From a mathematical point of view, multi-
stability refers to the co-existence of multiple at-
tractors. This implies that there is a dependence
of the eventual behavior on the input that the
dynamical system initially received. Moreover it
is possible to rapidly switch between two attrac-
tors as a result of small perturbations.

There is an extensive theoretical [23] and ex-
perimental [31, 37] literature which demonstrates
that two attractors can co-exist in isolated neu-
rons; recent work indicates that more than two
attractors can co-exist in some neurons [11, 12,
49]. Moreover, there is nearly 25 years of theo-
retical [33, 35, 42, 79, 94, 100] and experimental
[42, 44, 45] work demonstrating that neural pop-
ulations can exhibit multistability. Finally, evi-
dence obtained from the perception of
ambiguous sensory stimuli [45], postural sway
[19], and seizures in patients with epilepsy [63]
suggest that the human nervous systems exhibits
multistability as well.

Multistability can arise in populations of
pulse-coupled oscillators with time-delayed in-
hibitory connections [17, 18, 89]. Recently it has
been demonstrated that multistability can arise in
a single recurrent inhibitory neural loop simply
due to the fact that a conduction delay has be-
come sufficiently long [26]. The multistability in
delayed recurrent loops can lead to attractors
which take the form of qualitatively different
temporal patterns of spiking [24–26]. This obser-
vation is of interest given the growing number of
observations which have drawn attention to the
importance of temporal patterns of spikes for en-
coding (see Section 2.2).

With respect to neural coding, one of the
strengths of multistable dynamical systems is the
multiple solutions that exist as a consequence of
the dynamics, i.e. they need not be generated by
training. However, there is a more important as-
pect of multistable dynamical systems with ‘re-
tarded variables’ that is often overlooked. In the
multistability that occurs in systems of ordinary
differential equations, a single suitably timed
stimulus (initial condition) of the proper magni-
tude and timing is capable of switching between
attractors. In contrast, for multistable differential
delay equations, an entire history of the stimulus

pattern for some finite interval of time is re-
quired to determine the eventual behavior. This
property of differential delay equations fits in
very nicely with experimental observations which
indicate that temporal spiking patterns may be
important for coding.

The cycling of the statistical properties of a
dynamical system which exhibits statistical stabil-
ity is reminiscent of a multistable dynamical sys-
tem subjected to noisy fluctuations: each
distribution reflects statistical fluctuations in one
of the basins of attraction, the cycling reflecting
switching between the attractors. It has been
shown that a stochastic resonance-like phenom-
ena can arise in dynamical systems with retarded
variables and its occurrence depends on the cor-
relation time of the noisy fluctuations [9, 67].

The strongest connection between multistability
and statistical periodicity comes from studies of
high dimensional coupled map lattices of [52, 53].
On the analytic side [52] and [53] have given
sufficient analytical conditions for the existence of
statistical periodicity of densities in large N×N
coupled map lattices, so they are in fact high
dimensional discrete time dynamical systems of
dimension N2. However, on the numerical side
they have also shown that starting from two ran-
dom initial conditions in these N2 dimensional
systems the eventual patterns of activity in the
system corresponding to the two realizations were
different both to the eye, and as evaluated by the
less subjective index of the ‘collapsed density’
which also showed clear behavior indicative of
statistical periodicity. Thus there is a clear corre-
spondence in the coupled map lattices between
the occurrence of multistability on the one hand,
and statistical periodicity on the other.

Similar links between multistability and statis-
tical periodicity are found in the lattice represen-
tations for differential delay equations presented
in Losson and Mackey [52]. Thus it is highly
likely that there is a strong connection between
the occurrence of multistability in high dimen-
sional dynamical systems (of which differential
delay equations are but one example since they
are effectively infinite dimensional) and the prop-
erty of statistical periodicity.

The nervous system is now well recognized to
be a noisy environment. What are the statistics
of large populations of multistable elements? We
conjecture that these networks may in general
exhibit statistical periodicity.
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6. EEG and statistical periodicity

The demonstration that a large population of
neurons exhibits statistical periodicity is problem-
atic since it pre-supposes the existence of technol-
ogy capable of independently monitoring the
activity of a very large number of neurons with a
time resolution approaching 1 ms [62]. This ap-
proach would be necessary in order to construct
the spatio-temporal distribution of neural activity.
This is technically not possible at present.

A technique which does record the activity of a
large population of neurons is the electro-en-
cephalogram (EEG). The potential measured by a
single electrode represents a weighted-average of
the synchronous activity of neurons located in a
:6 cm2 area of cortex located within the solid
angle subtended by the scalp electrode [14]. Thus
the activity measured by an EEG electrode is
related to an average based on the ‘collapsed
density’ of a large neural population. If the under-
lying population of neurons exhibited statistical
periodicity, then this weighted mean should also
oscillate periodically.

Classically the background activity of the hu-
man EEG is interpreted in terms of the spatial
distribution of its frequency content. For example,
alpha rhythms (8–12 Hz) are typically recorded
from posterior head regions, and theta rhythms
(4–8 Hz) are found more anteriorly. There is
regional coherence in the EEG [6, 7, 85, 86] and
the spatial patterns of coherence change in re-
sponse to cognitive tasks [29]. Although to an
experienced reader the EEG is most easily thought
of as a signal composed of distinct bands of peri-
odic components, modern methods of time series
analyzes have emphasized that it may have a
‘chaotic’ structure [69, 77].

It is of interest to interpret these observations
from the point of view of populations of neurons
which exhibit statistical periodicity. Time-delayed
negative feedback dynamical systems amplify fre-
quencies of 0.5/t and their integer multiples (for
positive feedback 1/t and integer multiples) [73]. In
the nervous system time delays range from 1–2 ms
at the level of the synapse to 100–200 ms intro-
duced by the very small diameter unmyelinated
inter-hemispheric axons [61, 92] to even longer [90,
96]. Since the period of statistical periodicity de-
pends on the delay, this range of time delays
would introduce a range of frequencies in the
EEG.

Although the regionality of EEG coherence has
been interpreted as a reflection of the histological

regionality of the human cortex [86], the observa-
tions in figures 2 and 4 clearly demonstrate that
this heterogeneity can arise dynamically as a result
of phase transitions. Indeed multimodal imaging
techniques involving an array of SQUIDs (Super-
conducting QUantum Interference DeviceS) of
subjects performing a syncopation task have
shown that the complex changes which occur in
the spatio-temporal distributions of neural activity
most closely resemble phase transitions [43]. Fi-
nally it is likely to be very difficult to distinguish
between chaotic dynamics, i.e. dynamics which
reflect the co-existence of multiple unstable attrac-
tors [13], from the dynamics of a multistable dy-
namical system in which the noise level is so high
that noise-induced switches between attractors oc-
cur rapidly. Thus the findings obtained from EEG
recordings strongly support the idea that statistical
periodicity is occurring in the underlying neural
populations.

Recently evidence has accumulated that the tem-
poral binding of sensory stimuli or perceptions by
the involved cortical regions is accompanied by the
appearance of a 40-Hz rhythm in the EEG [30, 81].
A 40-Hz rhythm would require time delays of the
order of 5–20 ms which are consistent with the
time delays introduced by the larger axons in the
central nervous system. Thus, the observation of a
40-Hz rhythm could reflect a statistical periodicity
encoding mechanism. Indeed the observation that
the period of this EEG rhythm is independent of
the nature of the sensory stimulus that is tempo-
rally bound [30, 81] is exactly what would be
anticipated if statistical periodicity is involved. In a
network which exhibits statistical periodicity, the
information is not stored in the period of the
cycling, but rather in the spatio-temporal distribu-
tions of neural activity.

7. Discussion

The complex, intertwined recurrent loop organi-
zation of the nervous system has been emphasized
previously [26, 62]; the visual system is no excep-
tion [59, 88]. Given this anatomical arrangement it
is tempting to assume that coding might be related
to the dynamics of information flow through and
within the layers of organization of the central
nervous system [15]. Passing neural information
from one level of neural organization to the next
(e.g. from retina to lateral geniculate to primary
visual cortex and so on) clearly involves the activ-
ity of very large numbers of neurons. Since this
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information flow must necessarily be associated
with a time delay, it is tempting to draw analogies
to the evolution of statistical densities of dynami-
cal systems possessing retarded variables. One type
of statistical behavior which can arise in this situa-
tion is statistical periodicity.

Statistical periodicity has two properties which
make it attractive as a potential coding mecha-
nism: (1) it converges rapidly, and (2) it has a high
capacity for recognizing the complexity of the
external world. The rapidity of the encoding is
evidenced by the fact that within a few time steps
(say 7–10) the limiting densities are obtained to
good approximation. If we choose a delay time of
a living neural network as 5–20 ms (i.e. the delay
introduced by the larger diameter myelinated ax-
ons), this means that a pattern could be dynami-
cally encoded in a recognizable form within
35–200 ms. This time is well within the time
estimated from neuro-psychological experiments to
recognize a scene. Since there is a continual rela-
tionship between the input to a network which
exhibits statistical periodicity and the shape of the
cycling distributions, the storage capacity is techni-
cally infinite. Of course there are limits that arise
because of the firing characteristics of the neurons,
such as the length of the relative refractory period.
However, since the upper limit of neural spiking
approaches 500–700 Hz, it is clear that the poten-
tial for a time-delayed noisy neural network to
serve as a rapid, high capacity pattern recognition
device is considerable.

Population encoding mechanisms leave unan-
swered many intriguing questions. For example,
which parts of the nervous system have access to
the spatio-temporal distribution of neural activity,
what does it mean to read the population code,
and how is this done? Clearly there are an equally
great number of mathematical and technical ques-
tions to be addressed. Can the properties of dy-
namical systems with statistical periodicity be
formulated so that empirical tests of the hypothe-
sis can be made with existing experimental tech-
niques? Can techniques be developed which have
the required spatial and temporal resolution?

We anticipate that the thoughts we have ex-
pressed in this article will open doors towards
exciting new directions in neuroscience and to
heated debates! We hope that out of this chaos will
emerge a clear understanding of how the human
brain rapidly and reliably encodes information.
After all, there is always another hockey game to
watch!
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Appendix A. Mathematical Details

In this appendix, we briefly review some of the
relevant mathematical background that forms the
basis of the ideas presented in this paper. These
come from modern developments in ergodic the-
ory. We give here only a telegraphic outline of the
ideas, and further details along with the precise
mathematical formulations can be found in [47,
54].

Central to the notions presented in this paper is
that of a ‘density’. By density we mean a non-neg-
ative normalized function f (i.e. f]0 and 	 f=1.
Common examples are the density of the Gaussian
distribution, and inter-spike interval histograms
(when normalized).

Though it is clear from Eq. (1) how successive
temporal points x are computed to form the trajec-
tory {xt}t=0

� we must introduce an analogous con-
cept for how densities evolve. Any linear operator
P: L1�L1 that satisfies: (1) Pf]0; and (2) Pf =
 f  for all densities f is called a Markov operator
(the notation  f  denotes the L1 norm of the
function f ). Any density f that satisfies Ptf�= f�
for all t is said to be a stationary density of the
Markov operator P.

If S is a nonsingular transformation, then the
unique Markov operator P defined by&

A

Pf(w)dw=
&

S−1(A)

f(w)dw

is called the Frobenius-Perron operator corre-
sponding to S. The Frobenius Perron operator P
describes the evolution of densities under the ac-
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tion of a dynamics S. The equation defining the
Frobenius-Perron operator has a simple intuitive
interpretation. Start with an initial density f and
integrate this over a set B that will evolve into the
set A under the action of the transformation S.
However, the set B is S−1(A). This integrated
quantity must be equal, since S is nonsingular, to
the integral over the set A of the density obtained
after one application of S to f. This final density is
Pf.

We next turn to a consideration of the dynami-
cal properties of maps S as manifested through the
behavior of sequences of densities {Ptf } where P is
the Frobenius Perron operator corresponding to S
with stationary density f�.

First, a nonsingular transformation S is said to
be ergodic if

lim
t��

1
t

%k=0
t−1 �Pkf,g�=� f�,g�

(Here, the scalar product of two functions is de-
noted in the usual way:

� f,g�=
&

X

f(x)g(x)dx

where f�L1 and g�L�.) Ergodicity is completely
equivalent to the existence of a ‘unique’ stationary
density f�. Secondly, let S be an f� measure pre-
serving transformation operating on a finite nor-
malized space. Then S is called mixing if

lim
t��

�Ptf,g�=� f�,g�,

i.e. the sequence {Ptf } is weakly convergent to the
density f� for all initial densities f.

Third, S is said to be statistically stable if

lim
t��

Ptf− f�=0

i.e. {Ptf } is strongly convergent to f�, for all initial
densities f. Statistical stability implies mixing
which, in turn, implies ergodicity.

Now we turn to a discussion of one of the
central concepts of this paper-statistical periodic-
ity. Let P be a Markov operator. Then if there is
an integer r\0, a sequence i=1,…,r of densities
gi and bounded linear functionals li, and an opera-
tor Q:L1�L1 such that for all densities f, Pf has
the form

Pf(x)= %
r

i=1

li( f )gi(x)+Qf(x) (3)

we say that the operator P is statistically periodic.
The densities gi and the transient operator Q have
the following properties:

– The gi have disjoint support (i.e. are mutually
orthogonal and thus form a basis set), so
gi(x)gj(x)=0 for all i" j.
– For each integer i there is a unique integer a(i )
such that Pgi=ga(i ). Furthermore, a(i )"a( j ) for
i" j. Thus the operator P permutes the densities gi.
– ��PtQf ���0 as t��, t�N

Notice from Eq. (3) that Pt+1f may be immedi-
ately written in the form

Pt+1f(x)= %
r

i=1

li( f )g
a t(i )(x)+Qt f(x), t�N, (4)

where Qt=PtQ, Qtf �0 as t��, and a t(i )=
a(a t–1(i ))=…. The density terms in the summa-
tion of Eq. (4) are just permuted by each
application of P. Since r is finite, the series

%i=1
r li( f )g

a t(i )(x) (5)

must be periodic with a period T5r ! Further,
since {a t(1),…,a t(r)} is just a permutation of {1,
…, r} the summation in Eq. (4) may be written in
the alternative form

%t=1
r l

a -t(i )( f )gi(x)

where a– t(i ) is the inverse permutation of a t(i ).
This rewriting of the summation portion of Eq.

(4) makes the effect of successive applications of P
completely transparent. Each application of P sim-
ply permutes the set of scaling coefficients associ-
ated with the densities gi(x).

One of the interesting interpretations of Eq. (4)
is that if t is large enough, which simply means
that we have observed the system longer than its
relaxation time so Qtf  is approximately zero,
then

Pt+1f(x)$%i=1
r li( f )ga t(i )(x)

Asymptotically, Ptf is either equal to one of the
basis densities gi of the i-th pure state, or to a
mixture of the densities of these states, each
weighted by li( f ). It is important to also realize
that the limiting sequence {Ptf } is, in general,
continuously dependent on the choice of the initial
density f because the li( f ) are functionals of the
initial density f.

How would the property of asymptotic periodic-
ity be manifested in a continuous time system? If t
is continuous then for every t we can find a
positive integer m and a number u� [0, 1] such that
t+1=m+u. Then, asymptotically
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Pt+1f(x)=Pm(Puf )$%i=1
r la m(i )(P

uf )gi(x)

Now, in the continuous time case we expect that
there will be a periodic modulation of the scaling
coefficients l dependent on the initial density f,
and the asymptotic limiting density will continue
to display the quantized nature characteristic of
the discrete time situation. This behavior has been
studied in a first order differential delay equation
with and without noise [50].

Statistically periodic Markov operators always
have at least one stationary density given by

f�(x)=
1
r

%i=1
r gi(x) (6)

where r and the gi(x) are defined above. It is easy
to see that f�(x) is a stationary density, since we
also have

Pf�=
1
r

%i=1
r ga(i )(x)

and thus f� is a stationary density of Pt. Hence,
for any Markov operator the stationary density
Eq. (6) is just the average of the densities gi. It is
important to note that if one were dealing with a
statistically periodic system and constructed a den-
sity from the iterates along a trajectory, as we have
done in figure 1, then the resulting density is the
‘stationary density’ and ‘not one of the cycling
densities’.

To illustrate these concepts, consider the tent
map (Eq. (1)). In [70], the statistical periodicity of
the tent map with period T=n+1 has been
shown for 21/2(1/n+1)

Ba521/2(1/n)
. Thus, for exam-

ple, {Ptf } has period 1 for 21/2Ba52, period 2
for 21/4Ba521/2, period 4 for 21/8Ba521/4, etc.
Further, the Frobenius Perron operator corre-
sponding to the tent map (Eq. (1)) is [71]

Pf(x)=
1
a
!

f
�x

a
�

+ f
�

1−
x
a
�"

When a=2 the stationary density is uniform for
all x� [0, 1], f�=1 and the tent map is statistically
stable, i.e. for all initial densities f we have Ptf�
f�=1. When a=
2 then the stationary density is
given by

f�(x)=u1J1
(x)+61J2

(x) (7)

where u= [3+2
2]/2, 6= [4+3
2]/2, and the
sets J1 and J2 are defined by

J1= [
2−1,2−
2], J2= [2−
2,
1
2


2],

respectively. The notation 1A(x) denotes the indi-
cator function defined by

1A(x)=
!1 x�A

0 xQA

It is easy to show that S maps the set J1 into J2 and
‘vice versa’. It is also easy to show analytically that
picking f�(x) given by Eq. (7) as an initial density
simply results in a sequence of densities all equal
to the starting density.

However, this is quite different from what hap-
pens with an initially uniform density

f(x)= (2+
2)1J1@J2
(x)

In this case, the first iterate f1(x) is given by

f1(x)= (1+
2)1J1
(x)+2(1+
2)1J2

(x)

and iteration of f1(x) leads, in turn to an f2(x)=
f(x) and thus the cycling of densities repeats in-
definitely with period two.

This effect of the choice of the initial density on
the sequence of subsequent densities can be made
even more dramatic, as illustrated by choosing an
initial density

f(x)= [3+
2]1J1
(x),

totally supported on the set J1. In this case,

f1(x)=Pf(x)= [4+3
2]1J2
(x),

and f2= f, f3= f1,…, so once again the densities
cycle between f and f1 with period 2.
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