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We have developed a mathematical model for the peripheral regulation of neutrophil produc-
tion mediated by granulocyte colony-stimulating factor. We have used that model to show
that the pattern of neutrophil oscillations in nine grey collies is consistent with the hypothesis
that cyclical neutropenia is due to an oscillatory stem cell input to the neutrophil regulatory
system, and not due to autonomous oscillations in the peripheral neutrophil regulatory
system. In the process of interfacing our model with the laboratory data, we have estimated
parameters for the peripheral neutrophil control system consistent with higher than normal
apoptotic cell loss within the recognizable neutrophil precursors. This is in agreement with
other experimental data. Our estimated model parameters also predict that the peripheral
neutrophil production system is globally stable in the grey collies we studied. This further
supports our hypothesis that the origin of the oscillatory behavior in cyclical neutropenia is in
the stem cell population, consistent with other clinical and experimental evidence.
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1. Introduction

Some hematological diseases display a distinct
periodic nature in which one or more circulating
cell types (white blood cells, red blood cells, plate-
lets) oscillate with periods ranging from days to
months (cf. Haurie et al. (1998) for a recent re-
view). Of these periodic hematological diseases,
the most common and most studied is cyclical
neutropenia (CN) in which there is a periodic fall
in the neutrophils from approximately normal to
virtually zero and then back up again. This is
typically accompanied by identical periodicities
in the other granulocytic cells, red cell precursors,
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and platelets in both humans with CN and in the
grey collie (the only known animal model for
CN). In humans, these oscillations occur with
a period ranging from 12 to 45 days (Haurie et al.,
1999a) while in the grey collie the period is be-
tween 12 and 15 days (Haurie et al., 1999b).
Treatment of CN with granulocyte colony stimu-
lating factor (G-CSF) consistently decreases the
period of the oscillation and increases both
the mean value of the circulating neutrophils and
the amplitude of their oscillation in both humans
(Haurie et al., 1999a) and the grey collie (Haurie
et al., 1999b).

There are aspects of the neutrophil dynamics
in the grey collie that are puzzling, and these can
be clearly seen in the serial neutrophil counts
of nine untreated grey collies shown in Fig. 1.
( 2000 Academic Press



FIG. 1. Di!erential blood counts vs. time (in days) in nine grey collies. Units: cells]10~5 mm~3 for the platelets and
cells]10~3 mm~3 for the other cell types. Redrawn from Haurie et al. (1999).
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Firstly when the amplitude of the oscillation of
the neutrophil count is low (e.g. Dog 127) the
oscillation is approximately sinusoidal. However,
as the amplitude increases, the form of the oscilla-
tion changes to one in which on the falling phase
of the neutrophil counts there is a secondary
transient &&bump'' or increase in the neutrophil
count before the count "nally falls to close to
zero. This is especially evident to the eye for Dogs
126, 101, 125, 117, and 100. Secondly, the ampli-
tude of the oscillations in the platelet counts
follows the same general trend as for the neu-
trophils and the monocytes. Indeed, there is
a positive relation between both the mean values
and the amplitude of the oscillations in the neu-
trophil and platelet counts.

To further characterize the data in Fig. 1, we
used the Lomb periodogram to detect periodicity
in the blood cell counts (Lomb, 1976). This par-
ticular periodogram is tailored for unevenly sam-
pled data sets, and the statistical signi"cance
(p value) of any peak in the periodogram can
be calculated (Scargle, 1982).

Speci"cally, let x
j
be the circulating density of

a particular type of cell as measured at times t
j
,

where j"1,2,N and N is the number of data
points. As usual, the mean and variance of the
data values are given by

xN ,
1
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N
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where the constant q is de"ned implicitly by
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)
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The value of P( f ) indicates the likelihood
of a periodicity at a frequency f in the data set.
We implemented eqn (2) for a series of di!erent
frequencies f. A judgement must be made as to
whether or not there is a frequency for which the
power P( f ) is signi"cantly high. The estimation
of the signi"cance level of P( f ) is straightforward
as long as some rules are followed for the choice
of the range and the number of periods that
are scanned (Press et al., 1992; Scargle, 1982). We
implemented an adaptation of the procedure pro-
posed in Press et al. (1992) using Matlab.

The unusual characteristics of the data of
Fig. 1 are re#ected in the corresponding Lomb
power spectra shown in Fig. 2. Namely, the ap-
pearance of a secondary peak on the falling phase
of the neutrophil count is associated with a
secondary peak in the power spectrum at a
frequency twice (2f, second harmonic) the funda-
mental frequency ( f ), and sometimes a third peak
at the third harmonic (3f ). Dogs 100 and 101 are
especially noteworthy in this respect since the
power at both the fundamental frequency f and
the second harmonic (2f ) are signi"cant. The
peak in the power at the third harmonic (3f ) is
also quite clear though not statistically signi"-
cant. These characteristics are mirrored in the
monocyte counts, and it should be remembered
that the monocytes are derived from the same
committed stem cell as are the neutrophils.

Many models of neutrophil production incor-
porate a peripheral negative feedback loop
(Blumenson, 1973, 1975; Fokas et al., 1991;
Rubinow, 1969; Rubinow et al., 1971; Rubinow
& Lebowitz, 1975; 1976a, b; Smeby & Benestad,
1980; Steinbach et al., 1980; Wheldon, 1975;
Wichmann & Lo%er, 1988), and an alteration of
this peripheral control has been proposed as the
origin of CN by several authors (Kazarino!
& van den Driessche, 1979; King-Smith & Mor-
ley, 1970; MacDonald, 1978; Morley et al., 1969;
Morley & Stohlman, 1970; Morley, 1970, 1979;
Reeve, 1973; Schmitz, 1988; Schmitz et al., 1993,
1994, 1995, 1990; Shvitra et al., 1983; von
Schulthess & Mazer, 1982; Wichmann et al.,
1988). However, recent modeling (Hearn et al.,
1998) has shown that a destabilization of this
feedback pathway cannot account for the onset
of oscillations seen in CN, and concluded that
CN was probably not solely due to an instability
in the peripheral feedback loop. This conclu-
sion is consistent with the majority of clinical
evidence and its interpretation (Haurie et al., 1998)



FIG. 2. Lomb periodogram P( f ) vs. frequency f of the di!erential blood counts in nine grey collies. The horizontal dotted
line corresponds to a 0.05 signi"cance level, while the dashed}dotted line is the 0.10 level. Redrawn from Haurie et al. (1999).
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implicating the hematopoietic stem cell as the
origin of the instability seen in CN.

In spite of the fact that a loss of stability in the
peripheral control of neutrophil production does
not seem to explain the origin of CN, the
modeling of Hearn et al. (1998) can be used to
understand the interesting neutrophil dynamics
displayed in Figs 1 and 2. In this paper, we show
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that the features of the neutrophil counts in grey
collies and their power spectra are consistent
with a nonlinear modi"cation (by the peripheral
control of neutrophil proliferation and matura-
tion) of a periodic stem cell in#ux into the neu-
trophil di!erentiation pathway as suggested in
Haurie et al. (1999).

Section 2 develops the speci"c version of the
model of Hearn et al. (1998) that we use in this
paper. The model di!ers from that of (Hearn et al.
(1998) in that we explicitly include the modula-
tion of apoptosis mediated by endogenous G-
CSF in the control mechanisms. In Section 3, we
analyse our model, showing in Section 3.1 condi-
tions for which the steady state is globally stable.
The near steady-state response of the model to
a periodic forcing from the hematopoietic stem
cell compartment is developed in Section 3.2 to
give a theoretical basis for parameter estimation.
There we show how the occurrence of higher-
order harmonic components in the data may be
understood. Section 4 deals with an estimation of
the parameters of the model from the time-series
data, from other sources, and from the analysis of
Section 3.2. Section 5 gives the results of our
simulations starting from these initial parameter
estimates, and shows that the association of the
second peak in the data is consistent with an
increase in the mean value of the stem cell input
to the system. The paper concludes with a brief
discussion in Section 6.

2. Model Development

Let the density of white blood cells in the
circulation be x(t) (units of cells mm~3 blood),
a the random disappearance rate of circulating
white blood cells (days~1), and M

o
the produc-

tion rate (cells mm~3day~1) of white blood cell
precursors in the bone marrow.

Hearn et al. (1998) assumed that the rate of
change of the peripheral (circulating) white blood
cell density is made up of a balance between the
loss of white blood cells (!ax) and their produc-
tion [M

o
(xJ )], so

dx

dt
"!ax#M

o
(xJ ), (4)
wherein xJ (t) is x(t!¹) weighted by a distribu-
tion of maturation delays. xJ (t) is given explicitly
by

xJ (t)"P
=

Tm

x (t!u)g (u) du

,P
t~Tm

~=

x (u)g (t!u) du. (5)

¹
m

is the minimal maturation delay and g(¹) is
the density of the distribution of maturation de-
lays as speci"ed below. Since g(¹) is a density,

P
=

0

g (u) du"1. (6)

To completely specify the semi-dynamical system
described by eqns (4) and (5) we must additionally
give an initial function

x(t@),u(t@) for t@3 (!R, 0). (7)

In Hearn et al. (1998) it was shown that the
density of the gamma distribution
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(8)

with a, m*0, was able to give an excellent "t to
the existing data on neutrophil maturation times.
The parameters m, a, and ¹

m
in the density of the

gamma distribution can be related to certain
easily determined statistical quantities. Thus, the
average of the unshifted density is given by

¹
2
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¹g (¹) d¹"
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a
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so the average maturation delay is
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TABLE 1
Distribution of maturation time parameters deduced from published data on normal dogs and grey collies.

See Hearn et al. (1998) for details

Condition S¹T (d) p2 (d2) ¹
m
(d) a (d~1) m Reference

Normal dog 3.68 0.198 3.0 3.43 1.33 Deubelbeiss et al. (1975)
Grey collie apogee 3.21 0.042 2.6 14.52 7.86 Patt et al. (1973)
Grey collie nadir 3.42 0.157 2.6 5.22 3.28 Patt et al. (1973)
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and the variance (denoted by p2) is

p2"
m#1

a2
. (11)

Using eqns (9) and (11) the gamma distribution
parameters m and a are

a"
¹
2

p2
(12)

and

m"

¹2
2

p2
!1. (13)

Table 1 gives the values of S¹T, p2, ¹
m
, a,

and m consistent with the available data
on the maturation time of neutrophils in normal
dogs and grey collies as obtained in Hearn et al.
(1998).

To write out the explicit form for the output
#ux M

o
(xJ , t), the following considerations are

important. It is assumed that the maximal ampli-
"cation A

m
of cells entering the recognizable neu-

trophil precursor pool is modi"ed by apoptosis
at a rate c that is under the control of the number
of circulating neutrophils xJ

T
so c"c (xJ ). The

maximal ampli"cation is thereby modi"ed to be-
come A

m
exp(!c (xJ )¹), and if the input #ux into

the recognizable compartment of neutrophil pre-
cursors is M

i
(t) then the e%ux corresponding to

the cells with transit time ¹ is

M
o
(xJ , ¹)"M

i
A

m
e~c(xJ )T. (14)

To take into account the distribution of transit
times we must integrate over the entire range of
available transit times to give the "nal form for
M
o
(xJ ):

M
o
(xJ ),P

=

Tm

M
o
(xJ , ¹)g(¹) d¹

"M
i
A

m
e~c(xJ )TmC

a

a#c(xJ )D
m`1

. (15)

In keeping with the known inverse relation
between apoptosis and the levels of circulating
G-CSF (Koury, 1992; Park, 1996; Williams et al.,
1990; Williams & Smith, 1993) and the inverse
relation between circulating G-CSF levels and
the peripheral neutrophil count (Kearns et al.,
1993; Mempel et al., 1991; Takatani et al., 1996;
Watari et al., 1989), we have taken a form for
c given by

c(xJ )"c
m

xJ
h#xJ

(16)

so M
o
will be a monotone decreasing function of

xJ . Thus, the control of neutrophil production has
the characteristics of a negative feedback system
with distributed delay. The constants c

m
(the

maximum rate of apoptosis) and h (the value of
xJ at which apoptosis reaches half maximal
values) in eqn (16) will be estimated in Section 4.

3. Analysis

3.1. STEADY STATES

The equilibrium solution for the functional dif-
ferential equations (4) and (5) occurs when

dx

dt
"0"!ax#M

o
(xJ ) (17)
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so the steady state x
*

is de"ned implicitly by the
solution of the equation

ax
*
"M

o
(x

*
),M

o*
. (18)

Given the monotone decreasing nature of the
negative feedback production rate M

o
(xJ ) inferred

from the biology, there can be but a single unique
value for the steady-state white blood cell density
x
*
. The value of M

o*
"ax

*
is equivalent to the

granulocyte turnover rate (GTR).
Let f (x)"M

o
(x)/a. Then x

*
is the unique root

of the equation f (s)"s in the interval [0,R). Let
f 2"f

3
f. Then x

*
is also a root of the equation

f 2(s)"s. Now we give a su$cient condition for
the global asymptotic stability of eqn (1).

Theorem 3.1. Suppose that M
o
is a continuous and

decreasing function. Assume that x
*

is the unique
root of the equation f 2(s)"s in the interval [0,R).
¸et u : (!R, 0]P[0,R) be a bounded function
and x (t) be the solution of eqn (1) satisfying the
initial condition x (t)"u(t) for t3(!R, 0]. ¹hen
x(t) converges to x

*
as tPR.

The proof of Theorem 3.1 is given in the Ap-
pendix. If DM@

o
D(a, then D f @D(1 and x

*
is the

unique root of f 2(s)"s. However, if the function
M

o
is of the form (15) then both analytic and

numerical results indicate that x
*

is the unique
root of f 2(s)"s if and only if DM@

o
D)a. Thus, a

su$cient condition for the global stability of x
*

is

DM@
o*

D)a. (19)

3.2. RESPONSE TO FORCING

To develop the theoretical background for pre-
liminary parameter estimates, we consider the
response of this system to a periodic cellular
in#ux coming from the hematopoietic stem cell
compartment when we are near to a steady state.
Throughout this analysis, an important para-
meter that will appear is the slope of the produc-
tion function M

o
evaluated at the steady state,

denoted by M@
o*

. Because of our arguments con-
cerning the negative feedback nature of the peri-
pheral control mechanisms acting on neutrophil
production, we know that this slope must be
non-positive (i.e. negative or zero).
To examine the response to a periodic input,
we assume that the production of neutrophils can
be written in the form

M
o
(xJ , t)"M

i
(t)A (xJ ), (20)

where A(xJ ) is the ampli"cation within the neu-
trophil precursor compartment, and

M
i
(t)"M

i*
[1#eI(uN )e*uN t], e3[0, 1] (21)

is the assumed oscillating hematopoietic stem
cell in#ux with mean value M

i*
, amplitude

eM
i*

Re[I(uN )], and period 2n/uN . The term
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a

iuN #aB
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e~*uN Tm (22)

accounts for the distribution of maturation times.
With these assumptions, we can write out eqn

(4) for small deviations of x from x
*
. In the "rst

approximation this gives

dx
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K!ax#M
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*
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wherein

M
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and
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,

LM
o
(xJ )

LxJ K
xJ /x*

. (25)

Utilizing eqn (18) and de"ning the deviation from
equilibrium as z(t)"x (t)!x

*
, we can rewrite

eqn (23) in the form

dz

dt
#az!M@

o*
zJ"eI(uN )e*uN t[M

o*
#M@

o*
zJ ]. (26)

To use the existence of the "rst-, second-, and
sometimes third-harmonic components evident



TABLE 2
¹he results of ,tting the ANC data for 9 grey
collies to eqn (32). ¹he periods are given in
days, and the units of the coe.cients a are
103 cellsmm~3 blood, or 103 cells kg~1 body
weight. ¹he average circulating neutrophil level in
a normal dog is about 7.5]108 cells kg~1 (Deubel-

beiss et al., 1975)

Dog uN Period a
0

a
1

a
2

127 0.465 13.5 1.06 0.99 0.09
113 0.470 13.4 1.80 1.47 0.70
128 0.464 13.5 2.44 2.15 1.54
118 0.500 12.6 2.89 2.69 0.58
126 0.463 13.6 3.01 2.70 1.67
101 0.426 14.7 4.49 2.94 2.12
125 0.421 14.9 4.49 3.80 3.08
117 0.438 14.3 5.79 5.05 3.60
100 0.418 15.0 6.26 6.04 5.95
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in the Lomb periodograms of Fig. 2 and re#ected
in the "ts of eqn (32), we assume that the devi-
ation z of the circulating neutrophil numbers
from their steady-state value can be expanded in
the series representation

z(t)"
=
+

k/0

c
k
(uN )e*kuN t. (27)

Substituting eqn (27) into eqn (26) and equating
the coe$cients of the terms exp(ikuN t) for
k"0, 1, 2 yields c

0
(a!M@

o*
)"0 as expected, so

c
0
,0,

c
1
(uN )"

eM
o*

I(u6 )

a#iuN !M@
o*

I(uN )
, (28)

and

c
2
(uN )"c

1
(uN )

eM@
o*

[I(u6 )]2

a#i2uN !M@
o*

I(2uN )
. (29)

In the general case, the relation is

c
k`1

(uN )"c
k
(uN )

eM@
o*

I(u6 )I(kuN )
a#ikuN !M@

o*
I(kuN )

. (30)

From the above considerations, in the neigh-
borhood of the steady state we can write

x (t)Kx
*
#Re[z (t)]

"x
*
#ReA

=
+

k/0

c
k
(uN )e*kuN tB. (31)

We took all of the ANC of the nine grey collie
dogs (see Fig. 1) and did a least-squares "t of the
data to the equation

x (t)"a
0
#

3
+

k/1

a
k
cos(kuN t#p

k
)

"a
0
#

3
+

k/1

a
k
Re(e*kuN t`pk). (32)

The values of the constants uN , a
0
, a

1
and a

2
resulting from these determinations are given in
Table 2. The value of a

0
gives the average value of

the circulating neutrophil number over several
cycles in a given dog.
If we write the coe$cients c
k
(uN

k
) in polar form

c
k
(uN )"Dc

k
(uN ) De*!3'(ck(uN k)) (33)

then we can identify a
0
"x

*
and

a
k
"Dc

k
(uN )D, k"1, 2,2. (34)

4. Parameter Estimation

a: The easiest parameter to estimate is a.
Labeled neutrophils disappear from the circula-
tion with a half-life t

1@2
of about 7 hr in both

normal dogs (Deubelbeiss et al., 1975) and grey
collies (Dale et al., 1972) with a range of
6.7}7.6 hr. The decay coe$cient a of eqn (4) is
related to the t

1@2
by

a"
ln 2
t
1@2

(35)

so a3[2.18, 2.48] (days~1). We will take
a"2.4 days~1 corresponding to t

1@2
"7 hr~1.

e and M@
o*

: To obtain estimates of e and M@
o*

,
use eqns (28) and (29) in eqn (34) to give

a
1
"K

eM
o*

I(uN )
a#iuN !M@

o*
I(uN ) K , (36)



TABLE 3
Derived ,rst estimates of the parameter values for the 9 grey collies of this study as determined by the
methods described in Section 4. ¹he values of e and M@

o*
are the average of the values determined for each

using the parameters of ¹able 1 for the grey collie apogee and nadir distributions. ¹he units of M@
o*

, c
*
,

and c
m

are days~1, h is 103 cells mm~3 or 108 cells kg~1 body weight, and c@
*

is (days 103 cellsmm~3)~1 or
(days 108 cells kg~1 body weight)~1

C"8 C"16

Dog e M@
o*

c
*

c@
*

c
m

h c
*

c@
*

c
m

h

127 0.95 !0.20 0.65 0.02 0.68 0.04 0.87 0.024 0.90 0.03
113 0.85 !0.91 0.65 0.06 0.56 0.28 0.87 0.065 1.01 0.28
128 0.93 !1.09 0.65 0.057 0.56 0.51 0.87 0.057 1.01 0.51
118 0.93 !0.48 0.65 0.021 0.56 0.72 0.87 0.021 1.01 0.72
126 0.94 !1.00 0.65 0.042 0.56 0.78 0.87 0.043 1.01 0.78
101 0.75 !1.24 0.65 0.035 0.56 1.73 0.87 0.035 1.01 1.73
125 0.96 !1.15 0.65 0.033 0.56 1.73 0.87 0.033 1.01 1.73
117 0.95 !1.05 0.65 0.023 0.56 2.88 0.87 0.023 1.01 2.88
100 1.09 !1.20 0.65 0.025 0.56 3.37 0.87 0.025 1.01 3.37
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and

a
2
"K

eM
o*

I(uN )
a#iuN!M@

o*
I(uN )

)
eM@

o*
[I(uN )]2

a#i2uN!M@
o*

I(2uN ) K .
(37)

All of the quantities in these two equations are
known from previous estimates except for e and
M@

o*
, and the result of solving for these two

unknowns are tabulated in Table 3.
Two points are noteworthy.

First, in every case our analysis indicates that
the amplitude e of the oscillatory input (rela-
tive to the steady-state in#ux M

i*
) is close to

one (for dog 100 it is 1.09, which is impossible)
indicating that, if the model is correct, the
in#ux from the stem cell compartment always
cycles with a minimum close to zero.
Secondly, in every case the values of M@

o*
con-

sistent with the data are well above the Hopf
bifurcation values of M@

Hopf
K!2.47 as cal-

culated in Hearn et al. (1998). This indicates
that the neutrophil control loop modeled in
this paper would have a locally stable steady
state in the absence of any periodic stem cell
inputs. This is consistent with the notion that
the peripheral control of neutrophil produc-
tion is not the origin of CN, a conclusion
reached in Hearn et al. (1998) and elsewhere
(Haurie et al., 1998) based on other evidence.
This further supports the idea that the hema-
topoietic stem cell population may be the
source of the oscillations seen in cyclical neu-
tropenia.

c
*
: Finally, two further relations can be de-

rived from the steady-state relation (18) that will
be of use in estimating the parameters c

m
and

h. Namely, at the steady state we have more
explicitly

ax
*
"M

o*
"M

i*
A

*
"M

i*
A

m
e~c*TmA

a
a#c

*
B
m̀ 1

,

(38)

where c
*
,c (x

*
). Recognize that eqn (38) can be

rewritten in the form

C,

A
m

A
*
"ec*TmA

a#c
*

a B
m`1

, (39)

where A
*

is the steady-state ampli"cation. In
humans and normal mice, it is estimated that C is
of the order of 8}16 (Hearn et al., 1998), so with
these values we can determine c

*
since all of the

other parameters are known and tabulated in
Table 1.
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Additionally, at the steady state we have

M@
o*
"!c@

*
M

o*C¹m
#

m#1
a#c

*
D . (40)

Given an estimate of the G¹R, M
o*
"ax

*
, eqn

(38) gives an estimate of the maximum steady
state G¹R

max
"M

i*
A

m
since c

*
, a, m and ¹

m
are

all known. Thus, given an estimate of c
*
, eqn (40)

gives a direct estimate of c@
*

and M@
o*

has been
estimated.

To see how this can be used to determine
values of the parameters c

m
and h in eqn (16), note

that

c@
*
"c

m

h

(h#x
*
)2

(41)

so it is easy to derive

c
m
"

c2
*

c
*
!c@

*
x
*

and h"
x2
*
c@
*

c
*
!c@

*
x
*

. (42)

The results of our preliminary parameter estima-
tions for the grey collies is contained in Table
3 for C"8 and 16.

5. Simulation Results

With the model development of Section 2 and
the preliminary parameter estimations of Section
4, we are now in a position to see if the full
nonlinear simulation of our model is capable of
reproducing the behavior seen in the data of
Figs 1 and 2.

The full model as developed above can be
written in the form

dx

dt
"!ax#M

i
(t)A

m
e~c(xJ )TmC

a

a#c(xJ )D
m`1

, (43)

by combining eqns (4) and (15), with an assumed
periodic input of the form

M
i
(t)"M

i*
M1#eRe[I(uN )e*u6 t]N, e3[0, 1]

(44)
and xJ de"ned by eqn (5), and c(xJ ) an I(uN ) given
by eqns (16) and (22), respectively. Combining
eqns (43) and (44) we have

dx

dt
"!ax#M

i*
A

m
e~c(xJ )TmC

a

a#c(xJ )D
m`1

]M1#eRe[I(uN )e*uN t]N. (45)

The parameter a is known from the previous
section, while a, ¹

m
, and m are given in Table 1.

From eqn (38), and remembering that x
*
"a

0
from the previous section, we can write

M
i*

A
m
"aa

0
ec*TmA

a#c
*

a B
m`1

(46)

so given an estimate of c
*

we have an estimate of
the coe$cientM

i*
A

m
. Further, given an estimate

of M@
o*

along with c
*

we can immediately esti-
mate c

m
and h.

We have simulated the solution behavior of the
full model using xpp4w95, written by Prof. Bard
Ermentrout. This freeware, for either Unix or
Windows, is available at http://www.pitt.edu/
&phase/. Selecting values of M@

o*
and c

*
, we

found that we were able to get the closest "t (as
determined by visual examination) of the nine
data sets using the "nal parameter values of
Table 4, and the results of our numerical simula-
tions are shown in Fig. 3. In every case, in order
to mimic the approach of the ANC numbers to
zero at the nadir of each oscillation it was neces-
sary to take e"1. Comparison of the data of
Fig. 1 and the Lomb analysis of Fig. 2 with the
simulations of Fig. 3 indicates that there is a close
correspondence.

6. Discussion

The simulations shown in Fig. 3, using para-
meters appropriate for the apogee distributions
of maturation times as given in Table 1, are in
good agreement with the data of Fig. 1 and with
the spectral behavior shown in Fig. 2. When we
used values of a and m derived from the nadir
distributions, we found no appreciable change in
the parameter values giving a good "t. Thus,
from these model simulations we conclude that



TABLE 4
Parameter values for the 9 grey collies of this study that were used to produce the
simulation results of Fig. 3. e,1 in every case, a, m, and ¹

m
were taken from the apogee

values of ¹able 1, and uN was taken from the determinations of ¹able 2. Once M@
o*

and c
*

are determined, the values of c@
*
, c

m
, and h, given in the next three columns, are

determined by eqns (40) and (42). In the last two columns, C is computed from eqn (39)
and M

i*
A

m
(which is the maximal G¹R) comes from eqn (46). ¹he units of M@

o*
, c

*
, and

c
m

are days~1, h is 103 cells mm~3 or 108 cells kg~1 body weight, c@
*

is (days
103 cellsmm~3)~1 or (days 108 cell kg~1 body weight)~1, and M

i*
A

m
is 103 cellsmm~3

day~1 or 108 cells kg~3 body weight day~1

From data "t Eqns (40) and (42) Eqns (39) and (46)

Dog M@
o*

c
*

c@
*

c
m

h C M
i*

A
m

127 !0.10 0.20 0.0120 0.2136 0.071 1.90 4.95
113 !0.05 0.20 0.0035 0.2066 0.0590 1.90 8.41
128 !2.00 0.50 0.1045 1.0199 2.5370 4.95 29.73
118 !0.50 0.10 0.0219 0.2732 5.0055 1.38 9.80
126 !1.80 0.25 0.0760 2.9299 32.2660 2.23 16.50
101 !1.50 0.40 0.0437 0.7652 3.9903 3.60 38.69
125 !2.20 0.30 0.0623 4.4248 61.7350 2.62 28.88
117 !1.70 0.25 0.0373 1.8363 36.7390 2.23 31.74
100 !1.80 0.25 0.0365 2.9299 67.1047 2.23 34.32
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the grey collie data are consistent with the hy-
pothesis that there is a periodic in#ux of cells
from the stem cell compartment. Further, since
the model gives a reasonable representation of
the secondary peak on the descending limb of the
neutrophil counts we conclude that this phenom-
enon is simply due to the nonlinear "ltering of
a periodic stem cell input by the peripheral neu-
trophil control system mediated by G-CSF.

It is very important to note that the estimates
of M@

o*
all satisfy the global stability condition of

DM@
o*

D)a as given in eqn (19). This supports the
notion that the origin of the dynamic instability
characterizing CN is not in the peripheral control
of neutrophil production, and lends further
weight to the central hypothesis of this paper.
Namely, CN is due to a dynamic instability at the
stem cell level.

Though the preliminary estimates of M@
o*

in
Table 3 are not too di!erent from the "nal values
of Table 4, there is quite a di!erence between the
other preliminary parameter estimates and the
actual values that were arrived at in the "t.
The origin of this discrepancy is primarily due to
the fact that the actual value of C as given in
Table 4 ranges from about 2 to 5, values well
below the previously estimated values of 8}16.
Though we have no data that would allow us to
estimate the value of C in normal dogs, if they
have hematopoietic systems similar to humans
and the mouse, the low values of C calculated
here would suggest that the grey collie has much
less &&elasticity'' available in their neutrophil con-
trol system to respond to increased demands for
neutrophils. This decreased elasticity in the grey
collie translates to between two and three fewer
potential divisions within the neutrophil produc-
tion system.

In the normal dog, the steady-state neutrophil
production rate (GTR) is about 16.5]108
cells kg~1day (Hearn et al., 1998). If indeed,
8(C(16 normally, then we should expect that
the maximal normal GTR values are given by
132]108(M

i*
A

m
(264]108 cells kg~1day.

The maximal grey collie GTR values of M
i*

A
m

tabulated in Table 4 are much less than one-
quarter of the minimum of this range. This sug-
gests that in the grey collie there is not only an
alteration within the stem cell compartment giv-
ing rise to the oscillatory dynamics, but that there
is also a signi"cant depression of the e%ux from
the stem cell population into the recognizable



FIG. 3. Simulation results of "t of the model to the absolute neutrophil counts (ANC, top) and the Lomb periodogram of
the ANC (bottom) in the nine grey collies. The units are as in Fig. 1. In the top panels, the x's are the data points, the dotted
points correspond to the "t of the data to eqn (32), and the solid lines are the simulation results using the parameters of Table
4. In the bottom panel of nine "gures, the dotted lines indicates the Lomb periodogram calculated for the best "t of the data by
eqn (32), and the solid lines are the computed Lomb periodograms for the simulation results of the top panels.
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neutrophil line. Taken together with the low
values of C, we tentatively conclude that cyclical
neutropenia is a hematopoietic defect in which
there is abnormal cell loss within the stem cell
compartment that is also expressed in the
progeny committed to the production of neu-
trophils.

This same point has been emphasized experi-
mentally by Avalos et al. (1994), who showed that
normal dogs and grey collies had the same num-
ber of G-CSF receptors on neutrophil precursors,
and that the binding constant of G-CSF with the
receptor was unaltered between the two. They
further found that grey collies required a seven-
fold higher concentration of G-CSF to achieve
half maximal colony growth compared to normal
dogs, and concluded that the defect in cyclical
neutropenia is &&2 due to a defect in the signal
transduction pathway distal to G-CSF receptor
binding2''. Within the context of the model that
we have presented and analysed, we provisionally
interpret this experimental "nding to imply that
the values of c

m
tabulated in Table 4 are of the

order of seven times the values that will be found
in normal dogs. If this is correct, then we would
expect that normally c

m
is between about 0.03

and 0.63 day~1. Con"rmation of this estimate
must await further experimental work.
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APPENDIX

Proof of Theorem 1

First, observe that any solution x (t) of eqn (1) is
a bounded and nonnegative function. Since
0)M

o
(x))M

o
(0), a solution x(t) of eqn (1)

satis"es the inequalities

!ax(t))x@ (t))!ax(t)#M
o
(0) for t*0.
As x(0)*0 from the "rst inequality it follows that
x(t)*0 and the second inequality implies that
x(t) is a bounded function. Now we check that if

0)A)lim inf
t?=

x (t)

)lim sup
t?=

x (t))B(R (A.1)

then

1

a
M

o
(B))lim inf

t?=

x(t)

)lim sup
t?=

x (t))
1

a
M

o
(A). (A.2)

Fix e'0. Then there exists t
0
'0 such that

A!e)x (t))B#e for t*t
0
. (A.3)

We have

xJ (t)"P
t~t0

Tm

x (t!u)g (u) du#P
=

t~t0

x(t!u)g (u) du

for t*t
0
#¹

m
. From eqn (49) it follows that

xJ (t))(B#e)P
t~t0

Tm

g(u) du#c P
=

t~t0

g (u) du, (A.4)

where c"supMDx(t)D : t3RN. Since g is a density
there exists t

1
't

0
#¹

m
such that :=

t~t0
g(s) ds)e

for t*t
1
. Consequently,

xJ (t))B#e#ce for t*t
1
.

Since M
o

is a decreasing function we have

M
o
(xJ (t))*M

o
(B#e#ce) for t*t

1
.

This leads to the following di!erential inequality:

x@(t)*!ax(t)#M
o
(B#e#ce) for t*t

1
.

Let y (t) be the solution of the equation

y@ (t)"!ay(t)#M
o
(B#e#ce) (A.5)
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with the initial condition x (t
1
)"y (t

1
). Then

x(t)*y(t) for t*t
1
. Since the constant solution

y
0
,M

o
(B#e#ce)/a of eqn (A.5) is asymp-

totically stable we have lim
t?=

y (t)"y
0
. The in-

equality x(t)*y(t) implies that

lim inf
t?=

x (t)*M
o
(B#e#ce)/a. (A.6)

Let eP0. Then from eqn (A.6) we get

lim inf
t?=

x (t)*
1

a
M

o
(B).

In a similar way, we obtain

lim sup
t?=

x(t))
1

a
M

o
(A).

Since the solution x (t) of eqn (1) is a bounded
function there exist constant A and B such that
0)A(x (B and A)x (t))B for all t3R.
*

From eqns (A.1) and (A.2) it follows that:

f 2n(A))lim inf
t?=

x (t))lim sup
t?=

x (t))f 2n(B) (A.7)

for n"1, 2,2. Since f is a decreasing function,
the function f 2 is increasing. The assumption that
x
*

is the unique "xed point of the function f 2 in
the interval [0,R) implies that

x(f 2(x)(x
*

for x(x
*

and

x
*
(f 2(x)(x for x'x

*
.

Hence,

lim
n?=

f 2n(A)"x
*

and lim
n?=

f 2n(B)"x
*

and we "nally obtain that

lim
t?=

x(t)"x
*
,

which completes the proof.
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