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Treating one dimensional maps as dynamical systems, we examine their evolution in terms of density flow. In particular, 
a type of density evolution known as asymptotic periodicity is studied. Unlike statistically stable (or exact) systems, 
asymptotically periodic systems do not in general evolve to an invariant density, even though they possess one. Consequently, 
a nonequilibrium formalism, using several metastable states rather than one invariant density, is examined as an alternative 
to study the physical properties of asymptotically periodic systems. Asymptotic periodicity is demonstrated for the hat map 
and the quadratic map at the parameters where these maps generate banded chaos or quasiperiodicity. Using the ergodic 
properties of asymptotic periodicity, a compact expression for the time correlation function is obtained that does not make 
any assumptions about decoupling the periodic and stochastic components of C(t). Finally a generalization to the 
Boltzmann-Gibbs entropy, known as the conditional entropy, is studied as an index characterizing the asymptotic density 
sequence that emerges in asymptotically periodic systems. 

1. Introduct ion  

Following the numer ica l  (computer  genera ted)  

demons t ra t ion  of the existence of highly i r regular  

dynamical  behavior  in relatively simple non l i nea r  

systems, the study of so-called "chaot ic"  systems 

has captured  the a t t en t ion  of scientists in the 

physical, mathemat ica l ,  biological and  social sci- 

ences. Since the evolut ion of a system is most  

na tura l ly  envis ioned through a t ime series in 

phase space, it is na tura l  that  many  investigators 

have focused attention on the irregular behavior 
displayed by the trajectories of these nonlinear 
systems. 

However,  the i r regular  and  apparent ly  unpre-  

dictable na tu re  of trajectory evolut ion in many  

non l i ne a r  dynamical  systems can be greatly sim- 

plified if one looks at their  behavior  in terms of 

density evolut ion [19]. This a l ternat ive viewpoint  

(densi ty vs. trajectory) has par t icular  appeal  when  

applying the concepts  of non l i ne a r  dynamics to 

many  problems in statistical physics [22], and  
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offers an immediate connection with the mathe- 
matical discipline of ergodic theory which devel- 
oped from questions raised by the early work of 
Boltzmann and Gibbs. 

The development of the measure theoretic tools 
used in the study of density evolution of dynami- 
cal systems has seen a steady progression over the 
past century starting with the work of Gibbs and 
Boltzmann up to the past decade with work on 
the properties of invariant measures of one- 
dimensional systems [3, 9-11, 14, 15, 17, 19, 23]. 
The work of Gibbs and Boltzmann has been 
interpreted and extended to lay the foundations 
of equilibrium statistical mechanics, as well as 
some of nonequilibrium statistical mechanics. 

In the study of complex physical systems, it is 
sometimes convenient to reduce these to smaller 
systems with a few degrees of freedom, such as 
one-dimensional mappings. This type of reduc- 
tion (where applicable) endows these mappings 
with a dynamical role analogous to that of the 
equations of motion of the systems of classical 
mechanics. Often, like systems in the thermody- 
namic limit, systems with few degrees of freedom 
evolve to equilibrium, and their asymptotic prop- 
erties can be statistically described by their in- 
variant density alone. 

Often, however, low-dimensional systems such 
as one-dimensional mappings do not approach a 
statistical equilibrium, even though they may pos- 
sess an invariant density. For such systems the 
conventional techniques used in statistical physics 
(averaging over one invariant density) cannot be 
used to determine physical properties. Indeed a 
method by which to infer the physical properties 
of low-dimensional nonequilibrium systems, is not 
totally clear from the existing body of results in 
ergodic theory. 

This paper studies the property of asymptotic 
periodicity [15, 17, 18, 20, 26] in the density 
evolution of one-dimensional maps. By appropri- 
ate interpretation of measure theoretic results, 
we present a formalism in which these systems 
can be viewed as nonequilibrium dynamical sys- 
tems whose physical properties must be directly 

associated with the statistical dynamics of several 
metastable states, rather than one invariant den- 
sity. In so doing a methodology is developed that 
associates the mathematical language of measure 
theory to direct physical properties of asymptoti- 
cally periodic transformations. 

In this section we briefly discuss the trajectory 
versus density approach and introduce the 
Frobenius-Perron operator, a linear integral 
(Markov) operator that governs the flow of densi- 
ties. Section 2 reviews the dynamical concept of 
asymptotic periodicity, deriving a general formu- 
lation of the autocorrelation function for systems 
displaying asymptotic periodicity. Using this for- 
mulation a general form for the autocorrelation 
function of the quadratic map is obtained that 
does not presuppose the decomposition of trajec- 
tories into periodic and stochastic components. 
There  we also introduce a generalization of the 
Boltzmann-Gibbs entropy, known as the condi- 
tional entropy, and use it as an index to describe 
the degree of information required to localize a 
system in phase space. In sections 3 and 4 we 
illustrate the behavior of asymptotically periodic 
systems using two maps which give rise to "banded 
chaos" [8, 21, 29] for certain parameter values. 

The first map we study (section 3) is the hat 
map 

So(x ) =ax, 0 < x _ <  l 3,  

I = a ( 1 - x ) ,  5 < x _ < l ,  (1) 

where 0 < a < 2 .  For 2 7 / 2 " + ' < a < 2  z/z" ( n =  
0, 1 . . . .  ), it has been shown [29] that (1) generates 
banded chaos of period 2 n. The second map 
(section 4) is the quadratic map 

S ( x ) = r x ( 1 - x ) ,  0 < r _ < 4 ,  (2) 

which has been extensively studied because of its 
wealth of dynamical properties. Jacobson [14] has 
recently studied the properties of the invariant 
densities of this map for r near r = 4. The 
quadratic map (2) has also seen extensive use in 
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physics, either as a dynamical system in its own 
right [2], or as approximations to Poincar6 sec- 
tions of low-dimensional strange attractors of dis- 
sipative systems. Examples include Couette flow, 
B6nard instability [12], and a truncated approxi- 
mation of the Navier-Stokes equations [6]. For 
the quadratic map there exists a set of parame- 
ters, {r,}, where banded chaos of period 2 n 
emerges [8]. 

Qualitatively the phenomenon of banded chaos 
in (1) and (2) is characterized by the emergence 
of a phase space attractor on [0, 1] comprising 2 n 
bands. A trajectory of the time series of (1), (2) 
periodically visits each band. However, the mo- 
tion within each band is chaotic, possessing a 
positive Lyapunov exponent. More precisely, de- 
noting the ith band by Ji, the trajectory of $2": 
Ji ~ Ji is chaotic. Lorenz [21] called this phe- 
nomenon noisy periodicity. The construction of 
the bands J~ and the maps $2": J, ~ J~ are given 
in refs. [29, 8], for the hat map and the quadratic 
map, respectively. 

Finally in section 5 we numerically examine the 
parameter  dependence of the limiting conditional 
entropy of the hat and quadratic maps in the 
asymptotically periodic regime. 

1.1. Trajectory versus density evolution 

Knowing the phase space attractor of a chaotic 
dynamical system, but not the actual solution of 
the trajectory through it, is reminiscent of the 
situation encountered when dealing with the N- 
body problem. To make the study of the evolu- 
tion of a chaotic dynamical system more tractable, 
we may argue that a macroscopic state of a sys- 
tem, at a time t, is not in general given by a single 
point in phase space, but rather a collection, or 
ensemble of points. This ensemble is distributed 
according to some density, ft. The evolution of a 
system, in this formalism, is therefore given by 
the evolution (or flow) of densities. In this ap- 
proach, exact values are replaced by ensemble 
averages or expectations weighted by the phase 
space density ft. 

For systems of statistical mechanics in the ther- 
modynamic limit (number of particles N ~ oo), it 
is assumed that the evolution of densities attain 
the density f~ of the canonical ensemble, i.e. 
i i m t ~ f t  =fz. All equilibrium properties of sys- 
tems in the thermodynamic limit can, in principle, 
be derived from the stationary density fz. In a 
similar fashion one dimensional maps whose den- 
sity sequence ft attains an invariant density f *  
can be physically described using f * .  The proper- 
ties of invariant densities of one-dimensional 
maps has been the subject of considerable study 
in recent years. Haufbauer and Keller [9-11, 15] 
have rigorously dealt with the properties of in- 
variant densities of piecewise monotonic transfor- 
mations as well as the rates of convergence to this 
invariant density. Also Mackey [22] has examined 
dynamical systems in a physical context, with the 
aim of understanding and classifying the condi- 
tions under which these systems may display a 
strong convergence to an equilibrium density and 
the consequences of this for the evolution of their 
entropy. 

In general, however, for low-dimensional sys- 
tems such as (1) and (2) the evolution of densities 
can display several types of behavior, three of 
which we will review below. In all three types of 
behavior an invariant density, denoted f * ,  exists 
but f t  need not approach it, i.e. limt_~=f t ~ f * .  
Asymptotically periodic systems are one such class 
of systems that do not in general attain their 
invariant density. Hence the properties of their 
invariant density cannot be used to infer the 
physical properties of these systems, even after an 
infinite period of time. As a result, a central 
question that arises is how one can statistically 
describe the physical properties of asymptotically 
periodic systems given that their flow of densities 
never equilibrates to a stationary density f * .  

1.2. Markou operators and the evolution of 
densities 

The evolution of densities under the action of a 
dynamical system, S, is described by a Markov 
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opera tor  which we denote by P. Formally any 
linear operator  P q  L t ~ L ~ that satisfies 

P'f>O and f xP t f ( x )dx= f / ( x ) d x  

is called a Markov operator [19], where X denotes 
the phase space on which S operates.  Through- 
out this paper  we deal with a subset of L 1 func- 
tions which are everywhere nonnegative and 
normalized to one. This is the set of densities and 
is denoted by D. It is clear that when a Markov 
operator  acts on a density it yields another  den- 
sity. Beginning with an ensemble of phase space 
points representing some macroscopic state of a 

system, and distributed according to a density f0, 
one unit of time (iteration) later the new density 
State of the system, f j ,  is given by f l  = Pro. For 
deterministic systems P is also known as the 
Frobenius-Perron operator,  and if S is one di- 
mensional it is given by 

d f ( y ) d y .  If(x) = aS  fs_,~to,,l ) (3) 

as t ~ ~, for all initial densities f0. Exactness 
may be considered as the analog of an approach 
to equilibrium from all initial preparat ions of a 
system. 

Mixing implies a weaker form of convergence 
of {P'fo}. In particular for any function 3- a 
mixing system satisfies 

lim <P'fo, ,~> = < f * ,  ,~->, 
l -+ m 

for all initial densities f0. Mixing systems spread 
densities throughout the accessible phase space, 
as determined by the support  of f * .  

Ergodicity implies the weakest form of conver- 
gence of {Ptfo}. For ergodic systems 

1 t - I  

lira - ~ (P"fo,,~'} = ( f * , ~ )  
t--~oo I n ~ l  

for all f0 ~ D and any function ~ .  Exactness 
implies mixing which in turn implies ergodicity. 
However ergodicity alone does not constrain the 
sequence {Ptfo} to become asymptotically equal 

t o  f * .  

Markov operators  may also possess a stationary 
density f*. This density satisfies Pf* = f *  and 
may be associated with a state of thermodynamic 
equilibrium of a dynamical system. 

The evolution of densities under (3) character- 
izes P as well as the dynamical map S [19]. Three 
general behaviors may be displayed by the se- 

quence {P'fo}, where f0 represents the density of 
initial preparat ion of the system. These are er- 
godicity, mixing, and exactness. In all three cases 
the system possesses an invariant density f * .  
However, the three behaviors differ in the way 
the sequence {P'L~} converges to f * .  

Of  the three, exactness implies the strongest 
form of convergence of {P'f0}. Mathematically a 
system is said to be exact if and only if 

lira I I P ' f 0 - f * { [  = 0 

2. Asymptotic  periodicity 

Asymptotic periodicity is a type of density evo- 
lution that may be displayed by one-dimensional 
maps. Without loss of generality the phase space 
of these maps will be taken as [0, 1]. For asymp- 
totically periodic systems the sequence {P'fo} sat- 
isfies a spectral decomposition theorem [18]. This 
theorem states that when P is asymptotically 
periodic, then for any initial density f0, 

Pfo( x) = ~ Ai(f0) gi( x) + Qfo( X), 
i = 1  

(4) 

where the functions gi form a sequence of r 
densities satisfying gigj = 0 if i 4=j, i,j = 1 . . . . .  r. 
This condition implies that the supports of the gi 
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densities, denoted supp g~, are disjoint. Also the 
gi satisfy Pg~ = g~o), where a( i )  is a permutation 
of the numbers {1,2 . . . . .  r}. For ergodic systems 
a( i )  must be a cyclic permutation [19]. The scal- 
ing coefficients ag(f0) are linear functionals of 
the initial density f0 given by 

f,,) = f0 zg(x) f,,( x) dx, 

where {Zi(x)} is a sequence of L * functions. The 
symbol Q is called the transient operator,  and 
satisfies IIQ'foLl~ 0 as t ~ ~. The t th iterate, 
Ptfo, may be written as 

P ' L , ( x )  = ~ a~(f0) g~'(i)( x) + QtL,( x ). 
i = l  

(5) 

Allowing the transient operator  to decay and 
noting that the permutation a( i )  is invertible we 
may write 

P ' f 0 ( x )  = ~ A,-,(i)(f0) gi(x). (6) 
i = l  

From (6), it is easy to verify that the (necessarily 
unique) invariant density of ergodic asymptoti- 
cally periodic systems is given by 

1 ~ gg(x). (7) f * ( x )  = r 
i = 1  

Eq. (6) describes a density evolution that is 
periodic in time. At a given time Ptfo may be 
visualized as a linear combination of the basis 
states gg, each scaled by a probabilistic weighting 
factor A~-,o)(f0). Since we are dealing with densi- 
ties, the Ai(f0) sum to 1. Moreover (6) shows that 
asymptotically periodic systems will generally not 
evolve to the stationary density f * .  Rather  Ptfo 
will indefinitely cycle through an entire set of 
densities, each of which depend functionally on 
the initial density f0. 

Physically we associate the densities in decom- 
position (6) with a set of metastable states, each 
transformed into another of the sequence under 
the operation of P, which defines the mechanism 
by which the system evolves. A real system can 
only be prepared to be in some state of its phase 
space distributed according to a density, f0. If the 
underlying dynamics of this system are asymptoti- 
cally periodic however, the question of which 
density state will asymptotically describe this sys- 
tem is not defined. Physically therefore an asymp- 
totical}y periodic system must be treated as a 
purely nonequilibrium system, periodically alter- 
nating among the metastable states described in 
the expansion (6), with some characteristic pe- 
riod. The measurable properties of these dynami- 
cal systems can be statistically determined only at 
discrete times of a cycle of {Ptfo}, using as an 
appropriate weighting density the metastable state 
in the expansion (6) corresponding to the particu- 
lar time in the cycle. In particular, the coefficient 
A,~ '(i) gives a measure of the probability of an 
asymptotically periodic system, described by the 
map S, being in a basis state gi at the time t. 
Scaling of more than one basis state implies that 
the system has a probability of being in more 
than one basis state. When only one term is 
present in the sum of (6), the system will be 
found in one gi state at all times. 

Expectation values of a measurable quantity, 
O, at a time t are given by weighting over the 
density P1fo. It is clear from (6) that ( O )  will 
generally be periodic in time. The time depen- 
dence of the oscillation is found from (6) to be 

(O)(t) = ~ A.-,(i)(fo)( O(x))i, (8) 
i=1  

where 

( O(x))i = f upp gO(x) gi(x) dx. 

From (8) it is clear that the A,-,(i)(fo) define the 
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measurab le  p roper t ies  associated with the 
metastable state P'fo. 

2.1. The autocorrelation function in asymptotically 
periodic systems 

From the stochastic as well as the periodic 
propert ies  of the metastable states {P'fo} defined 
by (6), it is possible to calculate all nonequilib- 
rium propert ies  of the system represented by an 
asymptotically periodic map S. In this section the 
time correlation function is calculated for asymp- 
totically periodic systems using the propert ies of 
the decompositions (5) and (6). We assume that 

we are dealing with an ergodic asymptotically 
periodic system, so the permutat ion a(i) is cyclic 
[19], i.e. a(i) = (i + 1) rood r, where r is the num- 
ber of  elements in the sum of (5) or (6). 

Using the propert ies of the Markov operator,  
the autocorrelation function can be written as 
Rx~(~) =- (xtx~+~}, so the time correlation func- 
tion is written as C(~-)=Rx~(r )  - ( x )  2. The au- 

tocorrelation function can be written using the 
propert ies  of the Markov operator  as 

Hence,  

P~[ xg,( x)] -- hi(xgi) g~(i)(x) + O~[ xg,( x)] .  
(12) 

Since Markov operators satisfy IIWfoll--Ilfoll, and 
IlQ'(f~)ll-- '  0 as t --* oo, we have 

A,(xg,) = (x ) , .  (a3) 

Substituting (13) into (12), using the definition (9) 
of the autocorrelation, and noting that 

1 L (x)~ ( x ) =  7 
i--I 

and 

1 
L (x ) i ( x ) / ,  (14) (x} 2= 7~ 

i , j = l  

the time correlation function, C(r) ,  takes the 
form 

& x ( ~ )  = f , ) 'xe~[xf*(  ~)] dx .  (9) c ( ~ )  = r ( x L ~ ( , ) -  r (x)~ (x ) ,  
i = l  j = l  

From the invariant density (7) we have + ~ x~(~), (15) 
i = 1  

I E e~[xg,(x)]. (lo) P ' [ x f * ( x ) ]  = r  
i = 1  

where the Xi(~-) are defined by 

Also, by (4) we may write if,, Xi('c) = r xQ~[xgi(x)]  dx. (16) 

P[ xgi( x ) ] = Xi( xgi) g,(i)( x ) + Q[ xgi( x ) ] , 

where only one term appears  since 

Ai(xgi) = f Z i (x ) [xgi(x) ]  dx. 
" s • upp  gi(x) 

(ll) 

By the propert ies of the transient operator  Q the 
terms ~:i(7) -~ 0 as ~- ~ oo. 

The first term of (15) is periodic due to the 
cyclicity of the permutat ion a(i). To see this 
recall that o~ ( i )=  (i + r )  rood r. Extract the j = 
(i + ~-) rood r term of the sum in the second term 
of (15) and add it to single term (x)~(i) .  The first 
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term of (15) can then be rewritten as 

(L rl 1 <x>j)<x>, 71 < x - 7 " 
i=1  j,j#=i+r 

(17) 

With the aid of the identity 

n - I  

}--" exp(2" r r fTT mz ) = n  - 1 ,  (18) 
r n = l  

where n and z are integers, with z nonzero, (17) 
can be written as 

i = i  j=1  

× 
Irl } 

]~ exp 2"rrvr71 r- <x)i. 
r n = l  

(19/ 

The sum i + r in the exponent of (19) is under- 
stood to be modulo r. We make the substitution 
k = m  + 1 in (19) and use the fact that 
exp[2~v/-S- 1 ( I  mod r)/r] = e x p ( 2 r r f -  1 l /r) ,  
hence dropping the "modulo"  notation. Also, we 
define the discrete frequencies ooj =--2rr(j- 1)/r. 
With these substitutions in (15) the time correla- 
tion function becomes 

= I~b( wm) }Zexp[ fZ-T w,,r] 
m = 2  

+ E x ( , ) ,  
i=1  

(20) 

An interesting property of asymptotically peri- 
odic systems becomes apparent  from (20). 
Namely, the correlation function C(r) naturally 
decomposes into periodic and stochastic compo- 
nents. This decoupling of the time correlation 
function into two independent components can 
be understood as follows. Asymptotically periodic 
systems have r disjoint attracting regions of their 
phase space X whose union is given by 

supp gg. 
g = l  

Each of the regions supp gg map onto each other 
cyclically according to a(i). All ensembles of ini- 
tial conditions will asymptotically map into these 
regions (i.e. all densities will decompose). Thus a 
time series will also visit these supports periodi- 
cally, and we expect a periodic component in the 
time correlation function. However, iterates of 
the time series which return into any one of the 
supp{gi}, are described by a density gi, and so 
there must exist a stochastic component of the 
correlation function (the second term of (20)). 

2.2. The conditional entropy for asymptotically 
periodic systems 

Assuming the existence of a density f describ- 
ing a thermodynamic state of a system at a time t, 
Gibbs introduced the concept of the index of 
probability, given by - l o g f ( x ) .  Weighting the 
index of probability by the density f ,  he intro- 
duced what is now known as the Boltzmann- 
Gibbs entropy, given by 

where 

1 ~ <x>,exp[vr- -_ 1 w~(k- 1)]. ~ / ( 0 ) m  ) m_ 7 
k = l  

(21) 

Note that with the substitution k = m + 1 in (19) 
the periodic part of (20) begins at m = 2. 

H ( f )  = - f f ( x )  log f ( x )  dx. 

It can be shown [16, 25] that the Bol tzmann-  
Gibbs entropy is the only entropy definition satis- 
fying the property of being an extensive quantity, 
which a mathematical analog of the thermody- 
namic entropy should have. 
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The Boltzmann-Gibbs entropy can be general- 
ized by introducing the conditional entropy. If f 
and g are two densities such that supp f c supp g, 
then the conditional entropy of the density f with 
respect to the density g is defined as 

Hc(flg ) = - f f ( x ) 1 o  - / f ( x )  gl  g - ~ )  dx .  (22) 

tropy as 

Hc(P'folf* ) = - l o g  r - k Ai(f0) log Ai(f0 ) . 
i = 1  

(27) 

Noting that the 0 < A~(fo) __< 1 for all i we obtain 

As H~(flg)= 0 when f=g ,  this implies that the 
conditional entropy is a measure of how close the 
functional form of f is to g. Moreover, using an 
identity known as the Gibbs inequality it can be 
shown [19] that the conditional entropy satisfies 

H~(ffg) <_0. (23) 

When dealing with asymptotically periodic sys- 
tems the limiting conditional entropy takes on a 
particularly transparent form, clearly expressing 
that lim, ~H~(P'folf*) is dependent  on the ini- 
tial preparation of the system through f0. To see 
this, use the invariant density (7) along with the 
asymptotic decomposition (6), and the orthogo- 
nality of the g~, to obtain 

lira H~( PtfoJ f * ) 

= ~ fxa.-, ,)(fo)gi(x)log[ra.-, , i ,(fo)]dx 
i = 1  

= ~ fxA. 'o)(fo) gi(x)log A~ '¢i,(f0) 
i = 1  

+ log( r )  dx.  (24) 

Also since the permutation pc(i) is invertible we 
have 

- l o g  r <_ H~(P'foif* ) <_ O. (28) 

When an initial density f0 is localized over one 
of supp gi then {Ptfo} will asymptotically cycle 
through the sequence {gj}. In this case there is 
only one component to the spectral decomposi- 
tion (5) at any time t. According to (27) this 
situation is one of lowest conditional entropy and 
H~(P'fobfo) = - log r. Physically this implies that 
the initial ensemble of phase space points, de- 
scribed by f0, will evolve through supp gi in the 
most localized manner possible. At any time 
t, only a "pure  state" gi is needed to describe 
the statistical properties of the system. The 
metastable states of the expansion (6) are then 
just the sequence {gi} itself. 

In general any f0 whose support runs over the 
boundary of some gi will cause P'fo to decom- 
pose into a linear combination of several densi- 
ties gi. At a time t the members of an ensemble 
are now less localized, and more information is 
required to determine their distribution through 
the phase space. As a result the conditional en- 
tropy of a linear combination of several densities 
gi is higher than for a single pure state gi. 

It has been shown [27] that if P is a Markov 
operator then the condition entropy must satisfy 

A,-,¢i)(f0 ) = ~ Ai(f0 ). (25) 
i = 1  i = l  

Thus, defining 

H~( P' f  ol f* ) =- lira Hc( P' f  ol f* ), (26) 
t ---4 ~ 

we may re-express the limiting conditional en- 

i-ic(e'folf*) ->  /c(f01f*). (29) 

By the decomposition (5), the density sequence 
{Ptfo} settles onto a periodic cycle after a suffi- 
ciently long transient. The rate at which the tran- 
sient decays is controlled by the transient term 
Qtfo in the expansion (5). As a result, since 
I[Qtfoll ~ 0 as t ~ ~, the conditional entropy of 
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asymptotically periodic systems is a nondecreas- 
ing function with an upper bound given by (27), 
and satisfying 

aH ( e'k, lf* ) >_ O, (30) 

where A denotes the temporal change in H~. In 
the special case when )Co is a linear combination 
of the states g~ there is no transient term in the 
expansion (5). In that case the equality in (30) 
holds. 

Eq. (27) shows that the limiting conditional 
entropy of an asymptotically periodic system ap- 
proaches a value uniquely determined by the 
density of the initial preparation of the system, 
while the iterates Ptfo  remain asymptotically pe- 
riodic. This implies that all density states within 
the cycle to which {Ptfo} converges are of the 
same entropy with respect to the stationary den- 
sity (7). 

3. Asymptotic periodicity in the hat map 

While much work has been done on the hat 
map (1), it has rarely been studied from the point 
of view of density evolution. In this section it is 
shown that the hat map is in fact asymptotically 
periodic, possessing a spectral decomposition of 
the form (5). Thus it fails within the formalism 
developed above. 

Using eq. (3) it is easy to show that the 
Frobenius-Perron operator  corresponding to the 
hat map is given by 

conditions are satisfied: 
(1) There  exists a partition 0 = b  0 <bj  < . . .  < 

b m = l  of [0,1] such that for each integer i - -  
1 , . . . , m  the restriction of S ( x )  to [b i_l ,bfl  is a 
C 2 function. 

(2) IS'(x)l >_ 0 > 1, x 4~ b i. 
(3) There exists a real constant c such that 

IS"(x)[ / IS ' (x)]  2 < c < oo, x ~ bi, i = O, 1 , . . . ,  m.  

It is clear that for 1 < a < 2, and for the parti- 
1 tion b 0 = 0 < b ~ = y < b  2 = 1 ,  (1) satisfies these 

conditions. Thus, the hat map is asymptotically 
periodic and the evolution of densities via the 
operator  (31) can be expressed through the spec- 
tral decomposition (5). 

The hat map is also ergodic [13], possessing a 
unique invariant density f *  of the form (7). Its 
form has been derived in the parameter  window 

= 2t/2 "+) 2t/2" an + 1 < a _< a n = [29]. 
To develop the form of f *  consider [an+ r, an], 

n = 0,1,2 . . . . .  In each of these there exist 2 n 
subspaces Jt of the unit interval [0,1]. The Jt 
themselves contain an interval X t c J~, 1 = 
1, 2 . . . .  ,2 n. On each of the subspaces Jt the map 
Sff": Jt-+ Jz, l = 1 . . . . .  2 n, is conjugate to the map 
S,2,: [0,1] ~ [0,1], where a ~ < a  2°<ao .  (Two 
functions f ( x )  and g ( x )  are conjugate if there 
exists a transformation F ( x )  such that g ( x ) =  
F -1o f o F ( x ) ,  where the " o" denotes composi- 
tion.) 

The mapping S~": Jt ~ Jt conjugate to S S :  
[0, l] ~ [0, 1] is given by 

SZ~"(x)=~-loS,~2°o~t,,,(x),,, , 1 = 1 , . . . , 2  n. 

The transformation ~l,a(x) is given by 

qtt, a(x ) =F, , . , z , - ,  o / ] ,  ,,,2,-2 o . . .  o F . , ,  (32) 

To show that the sequence {Ptfo}, where P is 
defined by (31), is asymptotically periodic we 
use a result from ref. [19; theorem 6.4.1], which 
guarantees that the Frobenius-Perron  operator  
corresponding to a map S displays asymptotic 
periodicity when the following set of (sufficient) 

where 

l =  1 +i~ + 2 i 2 +  . . .  +2n-~in,  

i k = 0 , 1 ,  k = 1 , 2  . . . . .  n, 
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and 

X - -X*  
F/.a(X ) m i ,  i = 0 , 1 ,  (33) 

with 

m0=61--x* and m l = - ( 3 ' l - x *  ). (34) 

The constants 6 t , y  I are solutions of S 2 ( x ) = x *  
where x* is the nonzero fixed point of (1). The Ji 
represent miniature replicas of [0, 1] and are given 
by the set 

J /=  {0 < ~l .o(x)  < 1}, (35) 

while the union of the X t define the attracting 
basin of phase space, as t ~ ~, and are given by 

2 1 x , =  {x: _< _< 

I = 1 . . . . .  2". (36) 

Further,  the X t are invariant under the map $2": 
Jz--" Jt and satisfy S~: X t ~ X/+ I, l = 
1 mod 2" , . . .  2" mod 2 ". 

2" Each of the submaps S o : J / ~  J/ possesses an 
invariant density which is just a reduced copy of 
the invariant density of the hat map Soy,: [0, 1] --+ 
[0, 1], i.e. 

f,*(x,X,: s £ ) =  d'V,7"(.)}dx J 

× f * ( q t / . , ( x ) , X :  S~2,,), l =  1 . . . . .  2", (37) 

where a 2" lies in the period one window wherein 
the basin of attraction consists of one band [13]. 
The notation f t (x ,  Xt: S 2") defines the invariant 
density of $2": Jl--* J/, nonzero on X/. The w 
subscript on the right-hand side signifies the in- 

2 n 
variant density of S o : [0, 1] ~ [0, 1], nonzero 
on X. 

Using (37) and the fact that the X t map into 
each other cyclically, the invariant density for the 
period 2 n window of the hat map is the average 
of the 2" densities supported on each of the 2 ~ 

subspaces Xz, i.e. 

f * ( x ' X 2 " ' S ~ )  = I=~1 dx  

Xfw*('tI'tl, a( x ) , X :  Sa2"), (38) 

2 n 
where E2,,= U/=IXt .  Eq. (38) can now be com- 
pared with the general expression for the invari- 
ant density for asymptotically periodic systems (7) 
to conclude that in the period 2" window the hat 
map is asymptotically periodic with a period r = 
2". The components of the invariant density (38), 
multiplied by 2", are the components of the den- 
sity sequence {g/}. Hence, the metastable states 
of the expansion (6) for the system of the hat map 
are given by 

2" d I/r£- 2 ( x ) 
lim P ' fo ( x )  = ~_~ a~ '¢)(fo) dx  
t - , •  /=1 

× f *  ( q t t . , , ( x ) ,  X :  Sa2n ) (39) 

for all initial densities f0. The permutation a ' ( l )  
is given by a'(l)  = (l + t) mod 2". The 2" scaling 
coefficients a~,(/)(f0) are equal to the fraction of 
an initial ensemble, distributed according to f0, 
that accumulates in the subspace X~,(t ). Further- 
more the 2" coefficients oscillate among them- 
selves with period 2". 

An explicit expression for al(fo),  a2(fo) may be 
obtained for period two asymptotic periodicity on 
the interval [a2, al]. This is done by following 
how intervals of [0,1] migrate into Jl and J2 
(given by (35) with ~/.~ = F/.o, i = 0, 1). Suppose 
an initial density is supported on the entire inter- 
val [0,1]. Consider the two intervals [0 ,y l ]U 
[61, 1], where 3'1 and 61 were defined above (see 
fig. 1). To determine how an initial density sup- 
ported on the sets [0, y~]U[61,1] redistributes 
itself on J1 U J2, segment the sets [0, Yl] and [ill, 1] 
into an infinite sequence of disjoint subsets. The 
bounds of these subsets are given by 

[Yk+l,Yk] and [6k,~k+l] ,  k = 1 , 2 , 3  . . . . .  



sr r, . . . . .  , . . . .  3 ~,~ r TM ~,,rt.,n, /a~vmptotic periodicity and banded chaos 305 

[ I 

, /  

I I 

i t r \ \  
J ~ l  \ \  
i I I "\! 

7 t 6~ ¢32~ ~ 1 

Fig. 1. A partition of the interval [0,1] into sets [7,.i,Y,], 
[6,,~,+t1, n= 1,2,3 . . . . .  By following which of these sets 
asymptotically maps into the spaces J0 and J~ the coefficients 
~t1(fo),/12(fo) of the decomposition (39)can be determined. 

where 

a (fo) = f j fo(X) dx 

do ( f Y 2 k - i  
+ E f o ( x )  d x  

k =  1 24 

+ 

(41) 

valid for all initial densities fo. 
Fig. 2 i l lustrates the asymptotic sequence to 

which the sequence {P~fo} evolves for three 
choices of initial density f0 when a = x/2-. For 
this choice of a it is easily verified via (41) that 
the invariant density is 

f * ( x )  = 3 + 2v~- 4 + 3v~- 
2 1J2(X) + 2 1j,(X), 

1 
7k = a k _ l r a  + l l  and 6 k = 1 - - y k + l ,  

k = l , 2  . . . . .  

where 1A(X) is the indicator function, defined as 

1A(X) = 0, x ~ A ,  

We follow what fraction of an initial ensemble of 
points, distributed according to f0, winds up in 
the subspace J~ and what fraction in J2. Let us 
denote these fractions by/z  j,, l = 1, 2. Then with 

the aid of fig. 1 it is not difficult to show that 

tJ ) tz j  = E ~ ' z * - ' f o ( x ) d x  + '~2*+!fo(x)dx , 
k =  1 k Y2* 62k 

 'J2 = E fo(X) dx + fo(x) dx 
k = l  2*+I t~Zk- I 

(40) 

=1 ,  x ~ A .  (42) 

In figs. 2a and 2b there are no transients (Qfo = O) 

and Pt fo  is periodic from the first iteration. In 
fig. 2c, however, P~fo is periodic only after two 
transients .  The limiting conditional entropy 
H ~ ( p t f o [ f  *) is lowest in the sequence of fig. 2a, 
as there Pt fo  cycles through the entire {gl} se- 
quence. 

Using eqs. (16)-(21) the correlation function of 
the hat map may be obtained, recovering the 
form originally derived in ref. [29]. 

Therefore, since al(fo) and Az(fo) also depend 
on the density ]Co supported on Jo, Jt we have 

4. Asymptotic periodicity and the quadratic map 

"~l(fo) = fj2fo(x) dx 

k = l  k Y2k+! ~2k-I 

It has been shown [5, 24] that maps with a 

single quadratic maximum like (2) display period 
doubling in the number of periodic points as the 
parameter r is increased. For example, with 1 < 
r _< 3, the trajectories of eq. (2)al l  converge to 
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0.0 , , '. -- X 0 . 0  t i 
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(a) (b) 

0.6 

P~ fo(X) 

2.3 

0.0 J 
0.2 0.4 0.6 

{ ~ . 8  X 

p3 f0(x) 

4- 1 2,3 

0 . 0  
0.2 0.4 0.6 

o18 

o18 

P f0(x) 

45 T 
2.3 

0 . 0  I 
0.2 0.4 0.6 

(c) 

:-~X 
0.8 

Fig. 2. The evolution of Ptfo in the period two window of the hat  map,  with a = ~ .  In (a) f0 is uniform over Ji w J2. Since the gi 
are uniform over Ji, i = 0, 1, Ptfo sets into immediate  oscillations without  transients.  In (b) f0 is uniform over the subspace J2. 
Again Ptfo sets into immediate  oscillations through the states g~ and g2. In (c) fo(x) = -~(5 + ~/2-)x, restricted to J1 u J2. Now 
Ptfo evolves th rough  two t ransient  densities before  settling into a periodic oscillation. 

one stable fixed point. Between 3 < r  < r  c = 
3.57. . .  there is a cascade of parameters  which 
sequentially give rise to first 2 periodic points, 
then 4, 8, e tc .  The periodicity of trajectories in 
each of these intervals is equal to the number  of 

periodic points. At r c, also known as the accumu- 
lation point, trajectories becomes aperiodic with 
the number  of periodic points becoming infinite. 

On the other side of the critical parameter ,  
r e < r ~ 4, the quadratic map (and maps like it) 
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contains a spectrum of parameter  values, labeled 
by r,,  n =  1,2 . . . . .  where so-called "banded 
chaos" has been numerically reported [1, 7]. Re- 
cent results on the invariant measures of the 
quadratic map for r near r---4 have been re- 
ported by Jakobson [14]. At these values the unit 
interval X = [0, 1] partitions into 2" subintervals, 
labeled Jl, l = 1 , 2 , . . . , 2  ~. These are such that 
$2":  J! ~ J! maps Jt onto Jl. As well each Jl is 
mapped cyclically through the whole sequence of 
{Jr} after 2" applications of S. The iterates of a 
time series are attracted to these Jt subspaces, 
returning to any Jt every 2" iterations. These 
iterates form a sequence with a positive Lya- 
punov exponent [4] containing no observable pe- 
riodicity. The recipe by which one obtains the 
parameter  values r n at which period 2" banded 
chaos occurs is given in ref. [8]. 

The Frobenius-Perron operator  corresponding 
to the quadratic map (2) is 

I T ( x )  = 
1 [(1 

1 ~ ~  f 5 + 2V " r 

(43) 

(a) 

r = r  I 

I I 
/~t~-------- J -------~r~ J -~ / i ~ I ~ I 

(b) 

l-=r 4 
4 

2 4 3 i 

Fig. 3. The two frames show respectively the iterated map 
S 2'', for n = 1, 2, at r = r n, on the unit interval. The bases of 
the smallest boxes represent the spaces Ji,J2 in (a) and 
J I , J 2 , J 3 , J 4  in (b). 

we first state the following lemma whose proof is 

easy. 

Numerically, the iterates of any initial density fo 
supported on [0, 1], acted on by (43), will eventu- 
ally decompose, so they are supported on the Jl, 
as illustrated in fig. 3 for r I and r 2. Subsequent 
to the contraction of density supports onto the 
sequence {Jr}, the evolution of the sequence {Ptfo} 
becomes periodic in time. We show here that at 
r = r,, the numerically observed periodic evolu- 
tion of ensemble densities, p t f o  , under the action 
of the operator  (43) is, in fact, asymptotically 

periodic. 

4.1. Spectral decomposition of  the 
Frobenius-Perron operator 

To prove that the Frobenius-Perron operator  
of the quadratic map is asymptotically periodic 

Lemma 1. If S is an exact transformation, P is 
the Frobenius-Perron operator  corresponding to 
S, and f * ( x )  is the stationary density of P, then 

lira P'fo = Kf* (  x) 
t ---)  o~  

for all f0 ~ Ll, f0 -> 0 where K =  folfo(x)dx. 

Next we state and prove a theorem necessary 
for a demonstration of the spectral decomposi- 
tion of the iterates of the Frobenius-Perron op- 
erator of the quadratic map. 

Theorem 2. Let S be a transformation acting on 
a phase space X = [0, 1], such that there are N 
subspaces Jz, i = 1 , . . . ,  N, Ji C X ,  which map onto 
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each other cyclically under the action of S. Also, 
assume that SN: J~--, J~ is exact for some u 
{1, 2 . . . . .  N). If 

N 
lira supp{ptfo} c ~i, = [.J i=' Ji, 

for all initial densities f0 then the Markov opera- 
tor P corresponding to S is asymptotically peri- 
odic on X. 

Proof Since the support of any initial density fo 
will eventually contract into E, a density, call it 
h(x),  entirely supported in E will eventually be 
obtained. We can write h(x) as 

where Aj(~j) = fj ~ i (x)dx.  Therefore,  combining 
our assumptions and eq. (47) gives 

N 

lim P'fo(X) = E hj(~j) fj*,,,,(x), 
t ---) 0¢ j = l  

a ' ( j )  = ( j  + t)  mod N. (48) 

Hence {Wfo(x)} is asymptotically periodic, and 
the densities g~ are given by gj - f j~ ,  j = 1 , . . . ,  N. 
Note that eq. (47) implies that the f~* are the 
stationary densities of the submaps S N" Jt ~ Jr. [] J j "  

Using theorem 2 one can prove the following 
theorem. 

N 

h ( x ) =  E ~ , ( x )  lj,(x), 
i = 1  

where ~g(X)~ L I. Denote  aN: Ju-~ J, by G, and 
let P~ be the corresponding Frobenius-Perron  
operator  of the map G. Then, since G is exact, by 
lemma 1 it follows that 

lim P h [ ~ ( x )  1j . (x)]  = a ~ ( ~ )  fj*(x) 1j~(x), 
t ---) m 

(44) 

where f j * (x )1L(x ) i s  the stationary density of Pc, 

and A~(sc~) = f j . Q ( x ) d x .  
Alternatively, if ~- is an integer, we can write 

(44) as 

JirnP'N[~(x)  1j .(x)]  = h~(~.) fj*(x) 1j~(x). 

(45) 

Hence, there must exist a sequence of densities 
{fj*}, supported on Jj, j = 1, 2 . . . . .  N, such that 

Pf ?(x) = Y;L,(x) 
where a(j)  = (j  + 1) mod N. (46) 

Since all subspaces map onto each other cycli- 
cally, (45) and (46) imply that 

lira pNr  ~ . (X)  ,r~,oo [ J 1 j j ] = l ~ j ( ~ j ) f j T ( X ) ] j j ( X )  

for all j = 1 . . . . .  N, (47) 

Theorem 3. At the parameter  values r = rn, the 
evolution the iterates, Wfo, of the Frobenius-  
Perron operator  (43) corresponding to the 
quadratic map (2) is asymptotically periodic for 

all f0 ~ D. 

Proof The proof of theorem 3 is twofold. It must 
first be shown that when r = r,,  the 2" subregions 
Jt attract all ensembles of initial conditions re- 
gardless of how they are initially distributed over 
the phase space [0, 1]. (This also holds exactly for 
an infinity of other r values where banded chaos 
exists with period p2  ", p = 1, 2 , . . . . )  This can be 
done by a geometrical argument. We start first 
with period two asymptotic periodicity (at r = rl)  , 
showing that all initial conditions find their way 
into J1, or J2. For period four asymptotic period- 
icity ( r = r  e ) each of J1 and J2 split into two 
subintervals. Working now with the map S2: Jt 
Jr, 1 = 1,2, we show that all initial conditions 
having found their way into J~ or J2 will now 
migrate into one of the four subintervals born out 
of the period two J~,J2 subspaces. Generalizing 
the procedure thus allows us to satisfy the first 
requirement of theorem 2 for any r,. 

The second part of the proof entails showing 
that the map G = s 2 n :  J 2  n - - - ) J 2  n is exact, where 
J2" is the (unique) chaotic band containing the 

1 critical point x = 3. In ref. [23] a set of conditions 
is given for a unimodal map S, which imply the 
existence of a unique invariant density supported 
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on a set ..7. The set ..7 is itself composed of the 
union of M 0 disjoint subintervals k i. Further, 
because of the existence of a unique density, for 
all initial densities f0 the iterates {Ptfo} of the 
Markov operator  corresponding to S will be 
asymptotically supported on the intervals, k i E ~-~, 
i = 1 . . . . .  M o. Additionally, for each k i we have 
t h a t  s M o ( k i  ) = k~, and that S~4": k i ~ k i is exact 
on k i. Now, since G is by its construction an onto 
map on J2" [7], it can be shown that the set 
actually consists of a single banded interval. 
Hence k i - - - ~  = J2 N, and so G is exact o n  J2"- 

Thus by theorem 2 the Frobenius-Perron op- 
erator (43) for the quadratic map is asymptoti- 
cally periodic at the parameter  values r = r,. As a 
result the iterates Ptfo are spectrally decompos- 
able into a linear combination of 2" densities gt, 
i.e. 

2 n 

Pt fo (x )  = E A~-'(l)(f0) g , ( x )  + Qt - ' f o (X  ), 
/ = l  

(49) 

bination in the gl states. The scaling coefficients 
of these linear combinations (decompositions) are 
fixed by the initial density of the ensemble, )Co. 
Changing from P'fo to Pt+'fo entails a "shuf- 
fling" of the scaling coefficients onto different gl. 
Therefore,  each density of the asymptotic se- 
quence {Ptf0} can be represented by some cyclic 
permutation of the sequence {Al(fo),Az(fo), 
. . . ,  A2,(f0)}. Each Al(f0) is equal to the fraction 
of the initial ensemble, distributed according to 
fo, that asymptotically becomes distributed over 
the subspace Jt at time t. 

As with the hat map the scaling coefficients 
Al(f0), hz(f0) can be analytically determined for 
period two asymptotic periodicity for the 
quadratic map when r =r~, and the attracting 
phase space consists of the subspaces Jt and J2" 
These are disjoint and connected at the fixed 

point of (2), and S: J1 ~ J2, S: J2 "-~ J l .  The coef- 
ficients At(fo),Az(fo) may be obtained for any 
arbitrary density fo supported on the phase space 
X = [0,1]. Analogous to the hat map, define a 
sequence of points 

where, by theorem 2 the g/ are stationary densi- 
ties of the submaps $2": Jt ~ Jr, l = 1 . . . .  ,2", and 
supp g / =  J/. [] 

4.2. The sequence {Ptfo} and the coefficients Ai(fo) 

The parameter  values r = r ,  define a reverse 
sequence to the period doubling sequence, for 
r < r  c, described earlier [1]. For the latter se- 
quence, we talk of a period doubling in the num- 
ber of periodic points. When r = r,,  however, 
periodic points are replaced by chaotic bands and 
going from r n to r ,+l  involves a doubling in the 
number of bands. As the motion in these bands is 
chaotic, the map (2) at r = G  must be described 
statistically. The last section showed that a den- 
sity gt can be assigned to each one of the chaotic 
bands. The time dependent  evolution of an en- 
semble of phase space trajectories is asymptoti- 
cally described by a set of metastable densities 
{P'fo}, which is composed of different linear corn- 

1 / 1 Yn 
V and 6 , = l - y n + ~ ,  " ) / n + l  = 2 -  - -  4 r 1 
i 

(50) 

1 2 1 where y, = ~ r l ( 1 -  ~rl). By following the frac- 
tion of initial points, lying in [y~+~,y.] and 
[~ . ,6 .+  1] and distributed according to fo, that 
flows into J~ kJ J2, we obtain 

+ E fo(X) 
k = l  2k+1 

fo) = £ fo( x) dx 
1 

+ E ,2k ,fo(X ) 
k= 1 2k 

dx + So(x) dx), 
32k _ 

dx+ i? o x  x ) 
(51) 
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Fig. 4. A numerical illustration of one periodic cycle of the asymptotic sequence {Ptfo} for the parameter r = r I = 3,678573508. A 
transient of 20 densities has been discarded, and the iterates PZlfo , p22fo , and P23fo are shown, Since P21fo = P23fo, the 
sequence (P'f0} asymptotically repeats with period two. In (a) the initial density f0, shown in the inset, is uniform over [0.7, 0.8]. In 
(b) f0(x) = 200(x - 0.9) over [0.9, 1]. 

Fig. 4 i l lus t ra tes  the  asymptot ic  evolut ion  of  Ptfo 
af ter  20 t rans ien ts ,  for r = r v In fig. 4a the  init ial  

dens i ty  is un i fo rm on the  region  of  J~ U J2 given 

by [0.7, 0.8]. Fig. 4b shows an asympto t ic  cycle of  

Ptfo with fo(x) = 200(x - 0.9) s u p p o r t e d  on 

[0.9, 1]. Fig. 5a i l lus t ra tes  Ptfo when  r = r2, with 

40 t rans ien ts  d i s ca rded  and the  ini t ial  dens i ty  f0 

un i fo rm on [0.5, 0.85]. Fig. 5b shows one  p e r i o d  4 

cycle o f  Ptfo with fo(X)=2OO(x-0.91) sup- 
p o r t e d  on [0.9, 1]. 

W h e n  r = rn, the  dens i ty  ana log  o f  a pe r iod ic  

orb i t  as execu ted  by one  ini t ial  cond i t ion  is of  

pa r t i cu l a r  in teres t .  This  h a p p e n s  when  supp fo = 
Jl, l = 1 . . . . .  2 n. Then  P~fo asymptot ica l ly  cycles 

t h rough  the  sequence  {gl, g2 . . . . .  g2,}- As  (27) 

reveals  this  pa r t i cu la r  choice  of  f0 allows the  

system to a t ta in  the  lowest  poss ib le  cond i t iona l  

en t ropy:  H~(P ' fo i f* )=-n log(2) .  Any  o the r  

choice of  f0 will genera l ly  involve several  gt 

dens i t ies  in the  decompos i t i on  of  Ptfo, and  thus  

give a h igher  asympto t ic  cond i t iona l  en t ropy  of  

the  system. Fig. 6a shows ptfo af ter  30 t rans ien ts  

with r = r l ,  and  with the  init ial  densi ty  fo(X)= 
4 . 5 2 ( x -  0.3) 1/3, s u p p o r t e d  on [0.3,0.7] c J 2 ( the 

subspace  con ta in ing  the  cri t ical  point) .  Fig. 6b 

depic t s  Ptfo af ter  63 t rans ien ts  when  r = r2, with 
f 0 ( x ) - - 1 9 . 6 4 ( x - 0 . 4 1 )  1/2, s u p p o r t e d  on [0.41, 

0.59] c J4 -  
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Fig. 5. Two period four cycles of the asymptotic sequence {Ptfo} for the parameter r = r 2 = 3.592572184. In this figure 40 
transients have been discarded and the iterates p41fo , p42fo , p43fo , p44fo and p45fo are shown. Since P4t/o= Pasfo , the 
sequence {Ptfo} asymptotically repeats with period four. In (a) the initial density (inset) fo is uniform over [0.5,0.85]. In (b) 
fo(x) = 200(x - 0.9) over [0.9, 1]. 
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Fig. 6. A period two and period four cycle of the sequence {Ptfo} for r = r 1 = 3.678573508 and r = r e = 3.592572184, respectively. 
In (a) 30 transients have been discarded and the iterates p31fo through p34fo are shown. )Co (inset) is supported on the subset of 
J2, [0.3,0.7], and has the form f o ( x ) =  4.52(x- 0.30) I/3. In (b) 63 transients have been discarded and the iterates P6afo through 
p6Sfo are shown, fo has the form fo(x)  = 19.64(x - 0.41) I/2. 
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4.3. Correlations of the quadratic map and the 
Frobenius-Perron operator 

Using the asymptotic periodicity of the 
Frobenius-Perron operator (43) we can derive 
(to first order) the time correlation function of 
(2), for r = rn. In so doing no assumptions are 
made about the quasiperiodicity of orbits, or the 
decoupling of the time correlation into periodic 
and stochastic components as has been done pre- 
viously [8]. These properties come naturally from 
(20) and (21), by virtue of asymptotic periodicity 
at r=rn. 

The conventions we use to label the subspaces 
Jt are as follows. Let L be the set of intervals to 
the left of the critical point, x = ½, and not con- 
taining it. R denotes the set of intervals to the 
right of the critical point and not containing it, 
while C consists of those intervals of X containing 

1 the critical point, x = ~. Call the branch of the 
quadratic map to the left of the critical point S L 
and that to the right S R. Then, 

s~t(x)= ~ 1- 1 - - 7  

and SRt(X) = 1 [1  + ~ ( 1 - -  - ~ )  ]. (52) 

The counterimage of all initial conditions within 
L will be mapped according to S~ t, while those 
within R have counterimages given by mapping 
via S~, t. Points on C will thus have a counterim- 
age given by mapping according to both SE t and 
S R~. Thus, a density f supported on L, R or C 
will map, respectively, according to 

dSg'(X) 
P f ( x )  = d x  

_ d S ~ ' ( x )  
dx  

_ d S - ~ ( x )  

dx  

f ( S L ' ( X ) ) ,  supp{f} ~ L, 

f ( SR l (X ) ) ,  supp{f} ~ R, 

I[ f(SLI(X)) @ f(SRI(x))]) 
supp{f} ~ C, 

(53) 

where d S - ' / d x  = d S R l / d x  = dSL t /dx .  The 
last component of (53) is just the operator (43). 
At r = r  n there are 2 n gt densities satisfying 
Pgl = gt+ i, l = 1 mod 2 n . . . . .  2 n rood 2 ". From (53) 
the relation among the gt is given by 

gt+ ' (x )=l  dSL'(x)dx g ' (SLt (X)) '  J I L L ,  

I d S ~ ' ( x )  ' 
- dx ,gt(SRt(X)), J , ~ R ,  

_ [ d S - ' ( x ) [ g t ( S L , ( X ) ) + g , ( S R , ( X ) ) ]  
dx  

Jl = J2" E C. 

(54) 

The stochastic component of the time correla- 
tion function is examined first, and then the sim- 
pler periodic component. The mth moment of 
x weighted with the density g~ is defined by 
(xm)t = f~upptg,)x'gt(x)dx, while the variance of 
x with respect to gt(x) is written as var(x) t = 
( x 2 ) , -  (x),L 

Substituting xgt(x) for f ( x )  into the operator 
equations (53), and then using (54), gives 

P[xgt(x)] =SL' (X)gl+,(X) ,  J I L L ,  

=SRI(X)gt+I(X),  J t E R ,  

1-~[g2.(SR'(X)) = ½g,(x) + 2r, 

- -g2~(SLI(X)) ] ,  J / = J 2  ~. (55) 

However, by (12) and (13) the important quantity 
for the stochastic component of the time correla- 
tion function is Q(xg t) = P(xg t - ( x )tgt). Hence, 
from (55) we have 

e [ x g , ( x )  - <x>, , , ]  

= [ s c ' ( x )  - < . > , ] g , + , ,  

= [SRI (x  ) -- ( X > , ] g l +  1, 

= (½ - <x>2°)g, + a [ g 2 d ,  

Jt ~ L, 

Jl ~ R, 

Jl --- J2-, (56) 
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where A[g2,, ] is defined as 

1 
A[g2,, ] -~ ~ - ~ [ g 2 , , ( S ~ ' ( x ) ) - g z , , ( S C ' ( x ) ) ] .  

(57) 

At this point some approximations are made. It 
can be shown [8] that except for the central 
portion of the map S, supported on J2", all other 
portions supported on J/ (l = 1 , 2 , . . . , 2 " - 1 )  ap- 
proach linear transformations as r,--* r~. There- 
fore, assuming that all gt for l =  1 , 2 , . . . , 2 " - 1  
map according to a linear transformation we may 
write 

Since Qgt = 0, take as a set of basis functions 
the set E t ( x ) =  ( x -  (x)t)gt(x). With respect to 
the functions El, the stochastic operator Q may 
be represented as 

~ l , j - 1  
= , J t ~ L ,  

[Q] ~/ 4(x)t+L 
r n 1 rn 

- - 6 t , j _ l  

r . ~ / 1 -  4(x)l+r~ 
, J / ~  R, 

1 

= 0 ,  J !  = J 2 " ,  (60) 

(x)1+1 =r , , ( x ) t (1  - ( x ) , ) .  (58) 

Figs. 4 -6  suggest that ( X ) 2 , ,  = / .  The g2,, compo- 
nents of the densities they depict are approxi- 

1 mately symmetrical about x = 5. This makes the 
A[g2,,] t e r m  zero to first order. Thus, to first order 
the third component of (56) may be set equal to 
zero. Also, expanding S~. l(x) and S~ l(x) to first 
order and substituting (58) into (56) yields 

( x  - ( x ) l + l )  gl+~ 
Q ( x g t )  = , J t ~ L ,  

r,, ~/1 4(x) /+  l r,  

where [Q] denotes matrix representation and ~i,j 
denotes the Kronecker delta. Thus, following a 
similar procedure as for the hat map (see ref. 
[29]), [Q]' is found to be 

1 ~xNR( i , i+t - l )  ,,_ ..,~ 
[0] '= T, 

where 

l < t < 2 ~ - l ,  

= 0 ,  t > 2 " -  1, (61) 

- ( x - ( x ) l + l ) g t + l  j t ~ R  ' O ( t , i ) =  

¢ r,, 1 4 (x ) t+ l  
r n 

i + t - I  1 

1-'I (62) 
j=i ~/1 4(x)Y+lr,, 

0, J /=  J2 ~" (59) 

Eq. (59) shows that the function xg I will ap- 
proach its asymptotic value of ( x ) t  gt after ap- 
proximately (2 ~ -  l) iterations. This behavior 
causes the time correlation to drop to zero after 
2" iterations. However, this result is only approxi- 
mate. We will see below that the numerically 
computed time correlation function actually de- 
cays more slowly than this approximation pre- 
dicts. 

To complete the analysis of the stochastic com- 
ponent of the time correlation function the sec- 
ond term of eq. (15) must be evaluated. Hence, 

2 n 
1 t E xO_ (x ,)dx 

l =  1 0 

2 " - t  
t y .  ( l)Nmt, t+ t_ l )p ( t , l )  l = - -  - xEt+ I dx .  

rn l = l  

(63) 
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Fig. 7. (a) The stochastic component  of  the time correlation function Cst(t) calculated numerically for r I, r e, r 3 and r4, 
respectively. Three periods 2 n time units in length are spanned.  (b) shows, for the same parameters ,  Cst(t) as calculated by eq. (64). 

Noting that ]¢~xE,+ t d x  = var(x),+t, we obtain 

Cst(t) 

1 2~ 
= ~ -  ~'~ var(x) / ,  t = 0 ,  

i=1  

1 2 " - t  
2 n r  t E ( - l ) N R ( i ' i + t - 1 ) P ( t , i ) v a r ( x ) t + i ,  

i=1  

t = 1 , . . . , 2 " -  1, 

= 0, t > 2" - 1. (64) 

In fig. 7, the stochastic component of the time 
correlation function (64) is compared (fig. 7b) 
with the numerically computed one (fig. 7a) for 
r = r, with n = 1, 2, 3, 4. The numerical evalua- 
tion spans 3 periods of length 2". The agreement 
is good over one period. However, the real corre- 
lation continues past 2 n iterations. 

The correlation function also contains a peri- 
odic component due to the oscillatory motion of 
orbits through the various subspaces Jz. From (20) 
and (21) its form is 

2 n 

Co(t)= E I~b(wj)] zei'oj`, t = l , 2  ..... (65) 
j=2 

where 

2 n 

~l(60j) = E <X>l eit°i(l-I)" 
l=1  

The expression of the mean values of x with 
respect to the g t  may be calculated numerically. 
Fig. 8 shows the graph of (65) for the same values 
of r n,  n = 1, 2,3. The periodic component of the 
correlation function for r, ,  n = 1, 2, 3, calculated 
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Fig. 8. The periodic component of the correlation function 
for the parameters r = rpr2,r  3 in (a) through (c), respec- 
tively. The period eight cycle in (c) cannot be distinguished at 
the resolution shown. Likewise for period 16 and higher. 

when they generate period two asymptotic peri- 
odicity. In particular consider a class of initial 
densities given by 

1 
L,(x)  = { ,  x e  [ r , , r ,  +~] ,  

= 0, otherwise, (66) 

where ~1 comes from the sequences {Yi} used in 
deriving (41) for the hat map or (51) for the 
quadratic map. Let s c vary freely such that 

Yl + #  = ~2. , - t  +or, 

= ~2m ~- or, 

where m = 1, 2, . . . .  

0 - ~  or ~ 6 2 m  -- 82m_1 ,  

0 ~<or~< 62m+1 -- ~2m , (67) 

Substituting the sequence (66) into the eqs. 
(41) for Al(f0), a2(f0) of the hat map we obtain 

a ~:(m) or 
'~ ' ( f°)  = ( a +  1 ) [ l + K ( r n ) o r ]  + K ( m ) o r + l '  

1 
a 2 ( f ° ) =  ( a + t ) t  ~ ) " t K ' m ~ o r + x  1,1 , (68) 

where 

a Z m - ' ( a  + l )  

K( m ) = a 2m - 1 ' 

numerically from C(r )  = <xt+~x, )  - <x) 2 
identical to that shown in fig. 8. 

is 

for the first case of (67). Likewise for the second 
interval of variation of # in (67) the scaling coef- 
ficients are given by 

5. The limiting conditional entropy of maps (I) 
and (2) 

The functional dependence of H c ( P ' f o l f * )  
( H c ( f o )  for short) on the initial state fo can be 
illustrated analytically for the systems (1) and (2) 

A,(L,) = 

' h ( k , )  = 

~ , ( m )  

(a  + 1)[1 + orK(m + ½)1' 

a~a(m) 
(a + 1)[1 + orK(m + ½)] 

+ or~(m + ½) 
1 + orK(m + ½)' 

(69) 
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(a) ~(.fo) where  
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a 2m -- 1 a 2 m + 2 -  1 

r l z ( m ) =  a 2m+1-1 and r / , ( m ) =  a 2 , , + 1 _ 1 .  

A plot  of  Hc(fo) using (68) and (69) is shown 

in fig. 9a. A r e m a r k a b l e  f ea tu re  of  fig. 9a occurs  

when fo is such tha t  3q + ~ : = 6 z , , - v  A t  these  

va lues  of  s ¢, (68) s implif ies  to 

a 1 
A ' ( f ° ) =  a + l  and  A2(f0  ) =  a+----T' 

(b) T I r ~ / 4 C  ~ (i) 

-0.08467 

-0.09311 
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-0.11000 
0.92000 0.94667 0.97333 1.00000 

-0.09300~ (ii) 

$7£ 
0.98940 0.99293 0.99647 1.00000 

-0.09344~ (iii) 

-0.09359[ 

0.99900 0.99933 0.99967 1.00000 

Fig. 9. (a) The limiting conditional entropy, Hc(fo) ,  versus 
the spreading parameter ~ for the hat map at a = v~-. s c is 
equal to the width of the support of an initial density f0 
which is uniform over [Yl,Yl +~¢l. The local maxima in the 
figure correspond to Yl +~:= 62,.-i and are all equal. The 
sequences {Yi} and {6i} are described in the text. (b) shows a 
graph of the limiting conditional entropy H~c-(f0) versus ~ for 
the quadratic map at r = r v The parameter s ¢ plays the same 
role as in (a). Variations in H~(fo) occur over smaller ~ scale 
for the quadratic map. (bXii) is a blow-up of the inset box in 
frame (bXi). (bXiii) is a blow-up of the inset box in (bXii). 

mak ing  the po in ts  y l + s c i soent ropic .  F o r  these  

va lues  of  s ¢ the  asymptot ic  decompos i t i on  of  Ptfo 
is ident ical .  F o r  example  when  a = v~- the  l imit-  

ing cond i t i ona l  e n t r o p y  b e c o m e s  H~(fo)-- 
- 0 . 0 1 4 8 .  No te  also the  local min ima  that  deve lop  

in the  l imit ing cond i t iona l  en t ropy  as the  sp read -  

ing p a r a m e t e r  ~: increases .  

A s imi lar  compar i son  of  the  l imit ing condi -  

t ional  en t ropy  can be  m a d e  for  the  asympto t ic  

pe r iod ic i ty  o f  the  quad ra t i c  m a p  at  r = r~. The  

same  set o f  init ial  dens i t ies  def ined  by (66) is 

cons ide red ,  except  now yg a n d  6~ a re  those  used  

for the  scal ing coefficients  (51) of  the  quad ra t i c  

map ,  at  r = r 1. Fig. 9b is the  ana logous  plot  of fig. 

9a for the  quad ra t i c  map.  No te  that  for  the  

quad ra t i c  m a p  the  values  y~ + ~ = 62, ,_ ~ do  not  

def ine  i soen t rop ic  points ,  a l though H~(fo) does  

converge  to a va lue  o f  abou t  0 .093 . . .  as y~ + 

~ 1. Moreover ,  a z ig-zag p a t t e r n  s imi lar  to fig. 

9a e me rge s  but  on a much  smal le r  scale,  as shown 

by the  insets.  

Can  the  z ig-zag p a t t e r n  in the  cond i t iona l  en-  

t ropy  of  fig. 9b act l ike a s igna tu re  of  maps  with a 

quad ra t i c  max imum?  Universa l  p r o p e r t i e s  of  

maps  with a quad ra t i c  max imum have been  exam- 

ined  for bo th  t h e  Lyapunov  exponen t  and  for 

power  spec t r a  [28]. M a p s  with a quad ra t i c  maxi-  

m u m  lead,  for ce r ta in  p a r a m e t e r  ranges ,  to 

b a n d e d  chaos.  Thus  asympto t ic  pe r iod ic i ty  and  

the  analysis  of  sect ion 2 should  be  app l i cab le  to 

these  maps .  It is then  r e a sona b l e  to expect  tha t  a 
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sequence  of  ini t ial  dens i t ies  f0 as def ined  by (66) 

should  l ead  to cond i t iona l  en t rop ie s  with s imi lar  

scal ing p r o p e r t i e s  as tha t  of  fig. 9b. 

6. Summary 

T h e  no t ion  of  associa t ing  the  s ta te  of  a low- 

d imens iona l  dynamica l  sys tem with a phase  space  

dens i ty  was p roposed .  In  this  fo rmal i sm the  evo- 

lu t ion of  a system is equ iva len t  to the  evolu t ion  of  

an ensemble  of  phase  space  po in t s  col lect ively 

d i s t r ibu ted  accord ing  to the  dens i ty  P t f o  , where  

P is the  M a r k o v  o p e r a t o r  cha rac te r i z ing  the  dy- 

namics  o f  the  system. A large  class o f  o n e - d i m e n -  

s ional  maps  " e q u i l i b r a t e "  and can asymptot ica l ly  

be  de sc r ibed  by an invar iant  density.  A n o t h e r  

class of  dynamica l  systems which also possess  an 

invar iant  dens i ty  a re  known as asymptot ica l ly  pe-  

r iodic  maps .  T h e s e  systems,  however ,  do  not  in 

gene ra l  a t ta in  this  invar iant  densi ty.  Hence ,  phys- 

ically m e a s u r a b l e  quant i t ies ,  def ined  on the  space  

on which  these  maps  o p e r a t e ,  canno t  be  esti-  

m a t e d  on the  basis  of  the  invar iant  densi ty.  In-  

d e e d  since the  flow of  dens i t ies  {Ptfo} cont inua l ly  

cycles accord ing  to eq. (6), physical  observab les  as 

well  as s ta t is t ical  s ta tes  of  asympto t ica l ly  pe r iod i c  

systems can  at mos t  be  cons ide r ed  as be ing  

m e t a s t a b l e  in t ime.  A desc r ip t ion  of  physical  

p r o p e r t i e s  can  be  def ined  only at  d i sc re te  t imes  in 

the  cycle, t h rough  the  a p p r o p r i a t e  me t a s t ab l e  

s ta te  of  (6) a s soc ia ted  with the  co r r e spond ing  

t ime  in the  cycle. In  p r inc ip le  a c o m p l e t e  de te r -  

m ina t ion  of  the  dynamics  of  asymptot ica l ly  per i -  

odic  systems only requ i res  knowledge  of  the  

ini t ial  dens i ty  of  p r e p a r a t i o n  f0 and the  " p u r e "  

s ta tes  gi in the  decompos i t i on  (6). 

As ympto t i c  pe r iod ic i ty  was numer ica l ly  illus- 

t r a t e d  in two maps ,  (1) and  (2), at  the  p a r a m e t e r  

va lues  w h e r e  they  g e n e r a t e  b a n d e d  chaos.  Us ing  

a gene ra l  fo rmula t ion  of  the  au toco r r e l a t i on  

func t ion  of  asymptot ica l ly  pe r iod i c  systems,  we 

ca lcu la t ed  the  au toco r r e l a t i on  func t ion  for  the  

quad ra t i c  m a p  wi thout  assuming the  d issoc ia t ion  

of  t r a jec to r ies  into a pe r iod ic  and s tochast ic  com- 

ponen t .  Also  the  cond i t iona l  en t ropy  of  these  

maps  was s tud ied  at p a r a m e t e r s  whe re  they  dis- 

p lay asymptot ic  per iodic i ty ,  indica t ing  clear ly  its 

d e p e n d e n c e  on the  init ial  dens i ty  of  p r e p a r a t i o n  

of  the  system, fo.  
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