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Abstract. We analyze a population model of cells that are capable of
simultaneous and independent proliferation and maturation. This
model is described by a first order partial differential equation with
a time delay and a retardation of the maturation variable, both due to
cell replication. We provide a general criterion for global stability in
such equations.
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1 Introduction

Time—age—maturation models for age structured biological popula-
tions have arisen in many contexts, the first of which was the modeling
of human demographics as described in Keyfitz (1968), Pollard (1973),
and Henry (1976). The comprehensive book of Metz and Diekmann
(1986) can be consulted for an excellent survey of many of the
more recent applications outside the demographic area, as well as an
exposition of how such models may be formulated from the relevant
biology.

One of the areas in which such ‘‘time—age’’ or ‘‘time—maturation’’
models have been used with great success is that of cell replication and
maturation, and these applications date from almost 40 years ago
[Von Foerster (1959), Trucco (1965a, b; 1966), Oldfield (1966), Nooney
(1967), Rubinow (1968, 1975)]. Recently Mackey and Rudnicki (1994)



considered a particular time—age—maturation cell cycle model that was
motivated by the biological process of hematological cell development
from the pluripotential stem cell population. Given the biological
constraint imposed on the model, they showed that the final formula-
tion of the model was framed as a pair of coupled nonlinear partial
differential equations. These are somewhat unique in that the dynamics
are not only dependent on the behavior of the cell population numbers
some time in the past (time delayed effects), but also that the popula-
tion behavior at a given maturation level is dependent on the behavior
at a previous maturation level (nonlocal effects). Thus, this important
biological problem leads, in a rather natural fashion, to an intriguing
mathematical problem involving a delayed nonlocal dynamics de-
scribed by a nonlinear transport equation:

Lu
Lt

#g (x)
Lu
Lx

"f (t, u(x, t), u(h(x), t!q)). (1)

Equations similar to (1) have been rather intensively studied numer-
ically by Rey and Mackey (1992, 1993, 1995a, b) and Crabb et al.
(1996a, b). However, in spite of the insight obtained from the numerical
solutions and some local analysis, these authors were unable to obtain
more global results concerning the eventual solution behavior of these
interesting systems. This paper extends some of the first steps of Dyson
et al. (1996) in providing such insight.

The paper is organized as follows. In Sect. 2 we give some brief
biological background to motivate the development of a cell replica-
tion model similar to that of Mackey and Rudnicki (1994) which has
subsequently been studied by Dyson et al. (1996). In Sect. 3 we make
some preliminary remarks and observations about the solutions of
a generalization of the central delayed and nonlocal partial differential
equation derived in Sect. 2. In Sect. 4 we introduce the associated
differential delay equation obtained from the partial differential equa-
tion of Sect. 3 by ignoring the maturation variable, and state and prove
our main theorem connecting the global solution behavior of this
associated differential delay equation with the local and global solu-
tion behavior of the partial differential equations of Sect. 2. In Sect.
5 we state and prove a result that guarantees the local stability of the
partial differential equation, which is a necessary ingredient for the use
of the main theorem of Sect. 4. In Sect. 6 we specifically consider the
same system considered by Rey and Mackey (1992, 1993, 1995a, b),
Crabb et al. (1996a, b) and Dyson et al. (1996) to illustrate the applica-
bility of our results. The paper concludes in Sect. 7 with a brief
consideration of the situations in which the model solution is unstable.

196 M. C. Mackey, R. Rudnicki



2 Cell population dynamics

The assumption that cellular maturation proceeds simultaneously with
cellular replication has been shown to be sufficient to explain existing
cell kinetic data for erythroid and neutrophilic precursors in several
mammals (Mackey and Dörmer, 1981, 1982). Thus, we consider a
population of cells capable of both proliferation and maturation. We
assume, in line with the current wisdom of cell kineticists, that these
cells may be either actively proliferating or in a resting (G

0
) phase

[Burns and Tannock (1970), Smith and Martin (1973)] so the model we
develop shares some characteristics of general population models with
quiescence [Gyllenberg and Webb (1987)].

2.1 The proliferating phase

Actively proliferating cells are those actually in cycle that are committed
to the replication of their DNA and the ultimate passage through mitosis
and cytokinesis with the eventual production of two daughter cells. The
position of one of these cells within the cell cycle is denoted by a (cell
age), which is assumed to range from a"0 (the point of commitment
to DNA synthesis) to a"q (the point of cytokinesis). The maturation
variable is labeled by m which ranges from m"0 to infinity, m3[0,R).

For concreteness one could think of erythroid precursor cells and
associate the maturation variable with the intracellular hemoglobin
concentration which is conserved at cytokinesis with the sum of the
hemoglobin content of the daughter cells equaling the hemoglobin
content of the mother cell. However we note that our formulation is not
restricted to this very specific identification of the maturation variable
with a conserved quantity, and a second example of this situation
would be the cell division/migration process in the intestinal crypts as
nicely reviewed in Potten and Löeffler (1990). In this case, the matura-
tion variable would be interpreted as the cellular position within the
crypt (as measured from the apex).

We assume that proliferating cells age with unitary velocity so
(da/dt)"1, that cells in this phase may be lost randomly at an age
independent rate c, and cells of both types mature with a velocity
» (m)"rm. (Note that if we want to consider the situation in which the
maturation variable m is confined between 0 and a finite maximal value
of m

F
"(R, then we would need to add the assumption that

» (m
F
)"0.)

If we denote the density of actively proliferating cells at time t,
maturation level m, and age a by p(m, a, t), then the conservation
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equation for p(m, a, t) is simply [Metz and Diekmann (1986)]

Lp
Lt

#

Lp
La

#

L[» (m)p]
Lm

"!cp, (2)

and we specify an initial condition

p (m, a, 0)"C(m, a) for (m, a)3[0, m
F
]][0,R),

where C is assumed to be continuous. The total (marginal) density of
proliferating cells at a given time and maturation level is naturally
defined by

P(m, t)"P
q

0

p (m, a, t) da.

2.2 The resting phase

Immediately following cytokinesis, the two daughter cells are assumed
to enter the resting G

0
phase. The cellular age in this population ranges

from a"0, when cells enter, to a"R. If the maturation of the mother
cell at cytokinesis is m, then we assume the maturation of a daughter
cell at birth is am with a'0. We denote the density of cells in this stage
by n(m, a, t), so the total (marginal) density of cells in the resting stage is
given by

N (m, t)"P
=

0

n(m, a, t) da,

Again under the assumption that cells age with unitary velocity and
that they may exit from the resting stage either:

(1) by being lost at a random age-independent rate d70 or;
(2) by re-entering the proliferating stage at a rate b (N)70 that is

a decreasing function;

then the conservation equation for n (m, a, t) is given by

Ln
Lt

#

Ln
La

#

L[» (m)n]
Lm

"![d#b (N)]n, (3)

with an initial condition

n (m, a, 0)"k(m, a) for (m, a)3[0,R)][0,R),

and
lim
a?=

k(m, a)"0. (4)

We always assume that b and k are continuous.
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Remark 1. Our two preceding assumptions concerning the fate of cells
in the resting G

0
phase deserve some comment. First we have assumed

that cells are lost at a constant random rate from G
0

to accommodate
cell loss through maturation [Burns and Tannock (1970), Mackey and
Dörmer (1981, 1982)] or through cell death (either apoptosis or nec-
rosis). Though it is possible that the loss rate through either of these
causes may, in certain specialized circumstances, be non-constant the
existing data give no clear general guidelines on this matter. Hence we
have assumed the rates to be constant. Secondly, we have assumed that
the rate of cell re-entry into the proliferating P phase from the resting
G

0
phase is a decreasing function of N. This is abundantly documented

in the cell kinetic literature, where it is regularly noted that an ablation
of a fraction of a cellular population (e.g. using radioactive suicide
techniques) is followed by an increase in the rate of cell entry into the
proliferative phase [Baserga (1976), Nec\ as and Znojil (1987, 1988),
Leary et al. (1992), Ogawa (1993), and Nec\ as et al. (1995)]. What is less
clear, in a structured population as the present model is intended to
mirror, is the nature of the signal (is it mediated by cyclin-like agents
[Novak and Tyson (1993, 1995), Tyson et al. (1995)]) and the origin of
the signaling population. Is it only the cell density at the given matura-
tion level as we have assumed, or is the entire population of all
maturation levels

NM (t)"P
=

0

N(m, t)dm

involved? Here we have assumed that b responds only to the G
0

cell
density at a specific maturation level to reflect the characteristics of
certain stem cell populations in which cellular control appears to be
mediated by different cytokines at different levels of maturation [Sachs
(1993), Sachs and Lotem (1994)]. However, we note that under certain
circumstances it might be more appropriate biologically to assume
that the re-entry rate b depends on NM , b (NM ). A resolution of this issue
awaits more precise experimental work on maturing cell populations
in a variety of tissues, and no doubt different conclusions will be
reached in different situations.

2.3 Boundary conditions

In completing the formulation of this problem there are two natural
boundary conditions derived from the biology. The first of these is

n (m, 0, t)"2a~1p(a~1m, q, t), (5)
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and simply relates the equality of the cellular efflux following
cytokinesis to the input flux of the resting compartment. The second
boundary condition is

p(m, 0, t)"P
=

0

b (N (m, t))n(m, a, t) da"b(N(m, t))N(m, t). (6)

relating the efflux from the resting population to the proliferative
population influx.

2.4 Equations for P and N

Given a slightly different version of the above formulation of this time
age—maturation view of cell replication, Mackey and Rudnicki (1994)
were able to use the method of characteristics to derive evolution
equations for P(m, t) and N (m, t). With a minor change and using the
notation

Nq (m, t)"N (e~rqm, t!q),

Nq (m, t)"N(a~1e~rqm, t!q)"Nq (a~1m, t),

the final evolution equations in our case here are:

LP
Lt

#rm
LP
Lm

"!(c#r)P#Nb (N)!e~(c`r)qNqb(Nq), (7)

LN
Lt

#rm
LN
Lm

"![c#r#b (N)]N#2a~1e~(c`r)qNqb (Nq). (8)

Equations (7) and (8) are the final relations describing the cellular
dynamics. Notice that the solution of (8) is independent of the behavior
of the solution of (7), but the converse is not true. These equations,
without the nonlocal terms, have been used previously to understand
several periodic hematological diseases [Mackey (1978, 1979), Mackey
and Milton (1990)].

Equations (7) and (8) are interesting since they contain an explicit
retardation in the temporal term (t!q), and a nonlocal dependence
in the maturation variable. Other models of cellular replication
(Diekmann et al., 1984; Gyllenberg and Heijmans, 1987; Lasota and
Mackey, 1984) have displayed the same features.

Defining x"m and u(x, t)"N (m, t), equation (8) can be written in
the form (1), where g(x)"rx, h(x)"a~1e~rqx and

f (t, u, v)"![c#r#b (u)]u#2a~1e~(c`r)qvb(v). (9)
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In the rest of the paper we will assume that h(x)(x for x'0. From
this assumption it follows that we can consider the solution of equation
(1) for (x, t)3[0, M]][q,R), where M is any positive constant. With-
out loss of generality we can assume that M"1.

Before closing this section, we offer a few comments of a biological
nature relative to the mathematical assumption that h (x)(x. This
simply reflects the fact that the (non-local) maturation argument in the
marginal density Nq(m, t)"N(a~1e~rqm, t!q) does not exceed m. In
terms of the biological parameters of the model this condition can be
written as a~1e~rqx(x or

e~rq(a.

In the first example quoted above in our discussion of the maturation
process, we would expect that a"1/2 if there was an exact division of
the mother cell hemoglobin between the two daughter cells so our
previous inequality becomes

ln 2(rq.

In the second example of the intestinal crypt where the maturation
variable could be interpreted as position within the crypt, at cell
division the two daughter cells are at approximately the same position
as the mother cell and thus a"1 so the requirement e~rq(a"1
would always be satisfied.

We also note in closing that there is always a second condition
imposed on the parameters a, c, r and q if equation (8) is to have
a (positive) steady state solution in addition to the trivial one of N,0.
This condition is easily shown to be

a62e~(c`r)q
b (0)

c#r#b (0)
.

3 Existence and uniqueness of solutions

Equation (1) can be written in the form

Lu
Lt

#g(x)
Lu
Lx

"f (t, u, uq), (10)

where uq (x, t)"u (h(x), t!q), q'0. We assume that the functions
g : [0, 1]PR, h : [0, 1]P[0, 1], and f : [0, R)]R]RPR are con-
tinuously differentiable and satisfy the following conditions:

(a) g (0)"0, g (x)'0 for x'0,
(b) h(0)"0, h(x)(x for x3( 0, 1 ],
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(c) there exist continuous functions a
1
, a

2
: [0,R)]RPR such that

D f (t, u, v) D6a
1
(t, v) Du D#a

2
(t, v).

Equation (1) is considered with the initial condition

u (x, t)"u(x, t) for (x, t)3[0, 1]][!q, 0]. (11)

A function u : [0, 1]][!q,R)PR is called a classical solution of
the problem (10), (11) if u is a continuous function in its domain,
u satisfies the initial condition (11), the partial derivatives Lu/Lt and
Lu/Lx exist for (x, t)3[0, 1]](0,R) and u satisfies equation (10) for
(x, t)3[0, 1]](0,R). Equation (10) has an extensive literature when
q"0, and has been considered by Brunovský (1983), Brunovský and
Komornı́k (1984), Komornı́k (1986), Lasota (1981), Lasota et al. (1991),
|oskot (1985, 1994), Rudnicki and Mackey (1994), and Rudnicki
(1985, 1987, 1988). Aspects of the behaviour of equation (10) when
q'0 have been considered in Crabb et al. (1996a, b), Dyson et al.
(1996), Mackey and Rudnicki (1994), and Rey and Mackey (1992, 1993,
1995a, b).

First we show that if u is a continuously differentiable function
then there exists exactly one classical solution of (10), (11).

Equation (10) can be solved by steps using the method of character-
istics. Let n

s
x be the solution of the equation

dn
s
x

ds
"g (n

s
x) (12)

with the initial condition n
0
x"x for x3[0, 1]. The solution of (12) is

well defined for n
s
x61. We can omit the problem of the global

existence of the solutions of (12) by extending the function g on the
interval [0,R) provided that g is bounded and continuously differenti-
able on [0,R). Then the function (s, x)Ân

s
x is well defined on

R][0,R) and continuously differentiable with respect to (s, x).
If u is a solution of the problem (10) and (11), then the function

t(c, s)"u (n
s
c, s) is well defined for s'0 and c such that 06n

s
c61.

The function t satisfies the equation

Lt
Ls

"f (s, t, u (h(n
s
c), s!q)) (13)

for s3(0, q], 06n
s
c61. We can rewrite equation (13) in the form

Lt
Ls

"fM (s, c, t), (14)

202 M. C. Mackey, R. Rudnicki



where fM (s, c, z)"f (s, z, u (h(n
s
c), s!q)). The function fM is continuously

differentiable in its domain and grows at most linearly with respect to
z. From this it follows that for any c3[0, 1] there exists a unique
solution of (14) and this solution is defined for s such that n

s
c3[0, 1].

Moreover the function t(c, s) is continuously differentiable with re-
spect to (c, s).

On the other hand if t is a solution of (14) such that
t(c, 0)"u (c, 0)"u(c, 0), then the function u (x, t)"t(n

~t
x, t) is well

defined for (x, t)3[0, 1]][0, q], (Lu/Lt) and (Lu/Lx) exist and are con-
tinuous functions for (x, t)3[0, 1]](0, q], and u satisfies equation (10)
in this set [for t"q by (Lu/Lt) we understand the left hand side
derivative (Lu~/Lt)]. In this way we obtain the solution of (10) for
t3[0, q]. Using this method we can solve (10) successively for t3[q, 2q],
t3[2q, 3q],2 . Only one problem remains: Does u(x, t) satisfy the
equation (10) for t"nq?

We will check that it does for t"q. Let t be a solution of the
equation

Lt
Ls

"f (s, t(c, s), u (h(n
s~qc), s!q)) (15)

with the initial condition t(c, q)"u (c, q). Then

Lt`

Ls
(c, q)"f (q, u (c, q), u(h(c), 0)). (16)

Let u (x, t)"t(nq~t
x, t). Then

Lt`

Lt
(c, q)"

Lu`

Lt
(c, q)#g (c)

Lu
Lx

(c, q).

From (16) it follows that

Lu`

Lt
#g(x)

Lu
Lx

"f (t, u, uq) for t"q.

This implies that (Lu`/Lt)"(Lu~/Lt) for t"q and u satisfies (10) for
t"q.

Remark 2. The solution of the problem (10) and (11) continuously
depends on the initial function u. Precisely, using once more the
method of characteristics and the method of steps one can check the
following statement. Let M'0 and ¹'0 be given constants. Then
there exists an ¸'0 such that for any two solutions of (10) which
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satisfy the following condition

max
x|*0,1+

max
t|*~q,0+

Du
i
(x, t) D6M for i"1, 2,

we have

max
x|*0,1+

max
t|*0,T+

Du
2
(x, t)!u

1
(x, t) D6¸ max

x|*0,1+

max
t|*~q,0+

Du
2
(x, t)!u

1
(x, t) D.

If u : [0, 1]][!q, 0]PR is a continuous function, then we can
define a generalized solution of the problem (10) and (11). Let
u
n
: [0, 1]][!q, 0]PR be a sequence of continuously differentiable

function such that u
n
Pu uniformly. Then, from the continuous de-

pendence of the solution of (10) on the initial condition it follows that
the sequence of the solutions u

n
corresponding to u

n
is uniformly

convergent, on any compact set [0, 1]][0, ¹], to some continuous
function u(x, t). This function does not depend on the choice of the
sequence Mu

n
N and it is called the generalized solution of the problem

(10) and (11). The generalized solution can be also obtained using the
method of characteristics described above. Since we only consider
generalized solutions we will omit the word generalized.

4 The main result

Now we consider the following delay differential equation associated
with (10):

z@ (t)"f (t, z(t), z(t!q)). (17)

The following theorem plays a central role in our investigations.

Theorem 1. ¸et u(x, t) be a solution of the problem (10) and (11). ¸et z(t)
be the solution of (17) satisfying the initial condition z(t)"u(0, t) for
t3[!q, 0]. ¹hen for every t

0
70 and e'0 there exist t

1
'0 and

another solution uN (x, t) of (10) such that

(i) supMDuN (x, t)!z(t) D : (x, t)3[0, 1]][!q, t
0
]N(e,

(ii) uN (x, t)"u (x, t) for (x, t)3[0, 1]][t
1
,R).

From Theorem 1 the entire strategy of this paper becomes clear.
Namely, if z

0
(t) is a globally asymptotically stable solution of (17) and

u
0
(x, t)"z

0
(t) is a locally asymptotically stable solution of (10) then

u
0
(x, t) is globally asymptotically stable solution of (10). Thus, rather

surprisingly, the question of determining the global stability of a solu-
tion of (10) can be reduced to the problem of examining the global
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stability of the corresponding differential delay equation (17) and the
local stability of (10). Therefore, in the general case it is sufficient to
focus on the global stability of the associated differential delay equa-
tion (17), which is itself usually quite difficult, and the local stability of
(10), which is often easier and which we treat in Sect. 5.

Proof. We split the proof of Theorem 1 into two steps.

Step I. We first show that for every d3(0, 1) there exists t
1
'0 such

that if u
1
, u

2
: [0, 1]][!q, 0]PR are continuous functions and

u
1
(x, t)"u

2
(x, t) for (x, t)3[0, d]][!q, 0], then the solutions u

1
and

u
2

of (10) corresponding to u
1
, u

2
satisfy u

1
(x, t)"u

2
(x, t) for

(x, t)3[0, 1]][t
1
,R).

Let S : [0, 1]P[0, 1] be a function given by the formula

S(x)"maxMn
~qx, sup

yIx

h (y)N.

Then S is a continuous function. Since n
~qx(x for x3(0, 1] and

h(y)(y6x for 0(y6x61, we have S (x)(x for x3(0, 1]. First,
we check that if a3[0, 1] and u

1
, u

2
are two solutions of (10) such that

u
1
(x, t)"u

2
(x, t) for (x, t)3[0, S(a)]][!q, t

0
] then u

1
(x, t)"u

2
(x, t)

for (x, t)3[0, a]][t
0
#q,R).

Indeed, if (x, t)3[0, a]][t
0
, t

0
#q], then h(x)6S (a) and

t!q3[!q, t
0
]. This implies that u

1q(y, t)"u
2q (y, t) for

(x, t)3[0, a]][t
0
, t

0
#q]. From this it follows that u

1
and u

2
are

the solutions of the same partial differential equation for
(x, t)3[0, a]][t

0
, t

0
#q]. Moreover, if n

t0~t
x6S(a) then

u
1
(n

t0~t
x, t

0
)"u

2
(n

t0~t
x, t

0
). This implies that the solutions u

1
and

u
2

are the same along the characteristic c (t)"(n
t0~t

x, t). In particular,
since n

~qx6S (a) for x3[0, a] we have u
1
(x, t

0
#q)"u

2
(x, t

0
#q).

For (x, t)3[0, a]][t
0
#q, t

0
#2q] the functions u

1
and u

2
are the

solutions of the same partial differential equation with the same
initial condition. This implies that u

1
(x, t)"u

2
(x, t) for

(x, t)3[0, a]][t
0
#q,R). Consider the sequence MSn(1)N. Since S is

a continuous function and S (x)(x for x3(0, 1], we have
lim

n?=
Sn(1)"0. Let k be an integer such that Sk(1)6d. If

u
1
(x, t)"u

2
(x, t) for (x, t)3[0, d]][!q, 0], then u

1
(x, t)"u

2
(x, t) for

(x, t)3[0, 1]][(2k!1)q,R).

Step II. Now let e'0 and t
0
'0 be given constants. Let u(x, t) be

a solution of (10) and z(t) be the solution of (17) with the initial
condition z(t)"u (0, t) for t3[!q, 0]. The function w(x, t)"z(t) is also
a solution of (10). From the continuous dependence of the solutions
of (10) on the initial condition it follows that there exists e

1
'0 such
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that if

DuN (x, t)!z(t) D(e
1

for (x, t)3[0, 1]][!q, 0] (18)

then

DuN (x, t)!z(t) D(e for (x, t)3[0, 1]][!q, t
0
], (19)

where uN is the solution of (10) which satisfies the initial condition
uN (x, t)"uN (x, t) for (x, t)3[0, 1]][!q, 0]. Since u (x, t) is a continuous
function and z (t)"u (0, t) for t3[!q, 0], there exists d'0 such that
Du(x, t)!z (t) D(e

1
for (x, t)3[0, d]][!q, 0]. Now, let

uN (x, t)"G
u (x, t): (x, t)3[0, d]][!q, 0],

u (d, t): (x, t)3(d, 1]][!q, 0].

Then uN satisfies (18). If uN is a solution of (10) with the initial con-
dition uN , then uN satisfies (19). Since u(x, t)"uN (x, t) for (x, t)3[0, d]]
[!q, 0], from the first step it follows that u(x, t)"uN (x, t) for
(x, t)3[0, 1]][t

1
,R). K

5 Local stability of the partial differential equation

We now turn to considerations of the local stability of the full partial
differential equation (10). We assume that the function f does not
depend on t. Then equation (10) takes the form

Lu
Lt

#g (x)
Lu
Lx

"f (u, uq). (20)

Let uN (x, t) be a given solution of (20) and let A be a subset of C([0, 1]]
[!q, 0]). We say that the solution uN of (20) is exponentially stable on the
set A if there exists k'0 such that for every u3A the solution of the
problem (20), (11) satisfies the condition

maxMDu(x, t)!uN (x, t) D :x3[0, 1]N6Ce~kt, (21)

where C is a constant which depends only on u. Let

Ae"Mu: Du(x, t)!uN (x, t) D(e for (x, t)3[0, 1]][!q, 0]N.

We say that uN is locally exponentially stable if there exist an e'0, k and
C such that condition (21) holds for every solution of the problem (20),
(11) with u3Ae .
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Theorem 2. ¸et w be a constant such that f (w, w)"0 and

L f
Lu

(w, w)(!K
Lf
Luq

(w, w) K . (22)

¹hen the solution uN (x, t),w of (20) is locally exponentially stable.

Proof. Without loss of generality we can assume that w"0. Let

a"
Lf
Lu

(0, 0)

and

b"
Lf
Luq

(0, 0),

then a(!Db D. In the space C ([0, 1], [!q, 0]) we introduce an auxili-
ary norm

DDu DDj"maxMDu(x, t) Dejt : (x, t)3[0, 1]][!q, 0]N,

where j3R. If j"0 then DDu DD"DDu DD
0

is the standard norm in
C([0, 1]][!q, 0]). For any j

1
3R, j

2
3R the norms DD ) DDj1

and DD ) DDj2
are equivalent and

DDu DDj2
6DDu DDj1

6e(j2~j1)q DDu DDj2
for j

1
6j

2
.

Let u be a solution of (20), (11) and ¹ : C([0, 1]][!q, 0])P
C([0, 1]][!q, 0]) be a transformation given by (¹u)(x, t)"
u(x, t#q). We check that there exists j'0, e'0 and c3(0, 1) such
that

DD¹u DDj6cDDu DDj (23)

for DDu DDj6e. From the Lagrange mean value theorem it follows that
for every (u, v)3R2 there exists h3(0, 1) such that

f (u, v)"
Lf
Lu

(hu, hv)u#
Lf
Lv

(hu, hv)v.

Let d'0 be a given constant and d
1
'0 be a constant such that

K
Lf
Lu

(u, v)!a K(d, K
Lf
Lv

(u, v)!b K(d (24)

for Du D(d
1

and Dv D(d
1
. From the continuous dependence of the

solution of (20) on the initial condition, it follows that there exists
d
2
3(0, d

1
) such that DD¹u DD(d

1
for DDu DD(d

2
. This implies that if

DDu DD(d
2
, then the solution of the problem (20), (11) satisfies

K
Lu
Lt

#g (x)
Lu
Lx K6( Da D#d) Du D#( Db D#d) DDu DD. (25)
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Let (x, t)3[0, 1]][0, q] and t(s)"u(n
s~t

x, s) for s3[0, t]. Then from
(25) it follows that

Dt@(s) D6( Da D#d) Dt(s) D#( Db D#d) DDu DD. (26)

Inequality (26) implies that

Dt(s) D6ADt(0) D#
( Db D#d) DDu DD

Da D#d B e( Da D`d)s. (27)

Since Dt (0) D6DDu DD, from (27) we obtain

Dt(s) D6K DDu DD, (28)
where

K"

Da D#Db D#2d
Da D#d

e( Da D`d)q.

From (28) and from the formula u (x, t)"t(t) it follows that

Du(x, t) D6K DDu DD for (x, t)3[0, 1]][0, q]. (29)

Now we are ready to prove (23). Let u3C([0, 1]][!q, 0]) be
a function such that DDu DD(d

2
and let j be a positive constant. Then

Du(x, t) D6e~jt DDu DDj for (x, t)3[0, 1]][!q, 0]. (30)

Let u(x, t) be a solution of (20), (11). From (24) it follows that u (x, t)
satisfies the inequality

K
Lu
Lt

#g (x)
Lu
Lx

!au K6dDu(x, t) D#( Db D#d) Du(h(x), t!q) D (31)

for (x, t)3[0, 1]][0, q]. From (29) and (30) it follows that

Du(x, t) D6Kejq DDu DDj and Du(h(x), t!q) D6ej(q~t) DDu DDj . (32)

Using (32) in (31) we obtain

K
Lu
Lt

#g (x)
Lu
Lx

!au K6(dKejq#( Db D#d)ejq~jt) DDu DDj . (33)

Let (x, t)3[0, 1]][0, q] and t(s)"e~asu (n
s~t

x, s) for s3[0, t]. Then
from (33) we have

Dt@(s) D6(dKejq~as#( Db D#d)ejq~js~as) DDu DDj . (34)

Since t(0)"u(n
~t

x, 0)"u(n
~t

x, 0), we have Dt(0) D6DDu DDj . From
inequality (34),

Dt(t) D

6C1#
dK
a

ejq(1!e~at)#
Db D#d
a#j

ejq(1!e~(j`a)t)D DDu DDj , (35)
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results. Since u (x, t)"eatt (t) and (¹u)(x, t)"u (x, t#q) we have

ejt(¹u)(x, t)"e(a`j)t`aq t(t#q). (36)

From (35), (36) and inequalities a(0, t60 it follows that

ejt D¹u (x, t) D

6Ce(a`j)t`aq#
dK
Da D

ejq#
Db D#d
a#j

(e(a`j)(t`q)!1)D DDu DDj . (37)

Inequality (37) implies that

DD¹u DDj6c(d, j) DDu DDj , (38)

where

c (d, j)"max Ge~jq#
dK
Da D

ejq, eaq#
dK
Da D

ejq#
Db D#d
a#j

(e(a`j)q!1)H .

For any j'0 we can choose d'0 sufficiently small so that the first
term in the above maximum is less than one. The second term in the
maximum equals

eaq#
Db D
a

(eaq!1)

for d"0 and j"0. Since aq(0 and Da D'Db D, this term is less than
one. If we choose d'0 and j'0 sufficiently small, then both terms in
the maximum are less than one. In this way we obtain inequality (23)
for DDu DD6d

2
. If we take e"e~jqd

2
then for any u such that DDu DDj6e

we have DDu DD6d
2

and consequently (23) holds for DDu DDj6e. Now, let
u be a solution of the problem (20), (11) such that DDu DDj6e. Since
u(x, t)"(¹nu)(x, t!nq) for t3[(n!1)q, nq] and DD¹nu DDj6cn DDu DDj
we have

Du (x, t) D6ejqcn DDu DDj
for (x, t)3[0, 1]][(n!1)q, nq]. If we take k"!q~1 log c, then

Du (x, t) D6ejq DDu DDje~kt6ejq~kt DDu DD

for (x, t)3[0, 1]][!q,R), which completes the proof. K

Now, consider the associated delay differential equation corres-
ponding to (20):

z@(t)"f (z (t), z(t!q)). (39)

Let u3C[!q, 0] and denote by zr the solution of (39) satisfying the
initial condition zr(t)"u(t) for t3[!q, 0]. Let w3R be a constant
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such that f (w, w)"0. Then w is a stationary solution of (39). The set

B(w)"Gu3C[!q, 0]: lim
t?=

zr (t)"wH
is called the basin of attraction of w. Denote by P the projection
operator

P : C([0, 1]][!q, 0])PC[!q, 0]

given by (Pu)(t)"u(0, t) for t3[!q, 0].

Corollary 1. ¸et w3R satisfy (22) and f (w, w)"0. ¹hen equation (20)
is globally exponentially stable on the set

A"Mu3C([0, 1]][!q, 0]): Pu3B(w)N.

Proof. From Theorem 2 it follows that there exists e'0 such that if
u3C([0, 1]][!q, 0]) and DDu!w DD(e then the solution uN of (20)
with the initial condition uN (x, t)"u(x, t) for (x, t)3[0, 1]][!q, 0]
satisfies (21). Let u be a solution of the problem (20), (11) and u3A. Let
z(t) be the solution of (39) with the initial condition z(t)"Pu(t) for
t3[!q, 0]. Then there exists t

0
'0 such that Dz (t)!w D(e/2 for

t7t
0
. From Theorem 1 it follows that there exists t

1
't

0
and a solu-

tion uN of (20) such that DuN (x, t)!z (t) D(e/2 for (x, t)3[0, 1]]
[t

0
, t

0
#q] and uN (x, t)"u(x, t) for (x, t)3[0, 1]][t

1
,R). Since equa-

tion (20) is autonomous and DuN (x, t)!w D(e for (x, t)3[0, 1]]
[t

0
, t

0
#q], the solution uN satisfies (21). Consequently, u also satisfies

(21) with a suitable chosen C. K

Remark 3. If f (w, w)"0,

a"
Lf
Lu

(w, w)(0, b"
Lf
Luq

(w, w)

and a(!Db D, then the constant solution w is locally asymptotically
stable for both equations (20) and (39). If b7Da D then the trivial
solution of the linear equation z@(t)"az(t)#bz (t!q) is unstable.
Thus, one might expect that both equations (20) and (39) are locally
asymptotically stable at the same time. However this is, in fact, not
true. Consider the following equation

Lu
Lt

#x
Lu
Lx

"!u (e~1@2x, t!1). (40)

If k3(!1, 0) is a solution of the equation

e(k~1)@2"1
2
!k, (41)
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then the function

u(x, t)"et@2xDkD sin(2n logx!2nt) (42)

is a solution of (40). Indeed, equation (41) has a solution k3(!1, 0),
because the function g(x)"e(x~1)@2#k!1

2
satisfies conditions

g(!1)(0 and g(0)'0. Moreover

Lu
Lt

#x
Lu
Lx

"(1
2
!k)u(x, t)

and

!u (e~1@2x, t!1)"e(k~1)@2u(x, t)"(1
2
!k) u (x, t).

This implies that the function u defined by (42) is an unbounded
solution of (40). Since equation (40) is linear the trivial solution of (40) is
unstable. On the other hand, if we consider the associated differential
delay equation

z@(t)"!z (t!1), (43)

then the trivial solution of (43) is globally exponentially stable (see
[Hale, Chap. 5]). Moreover, from Theorem 1 it follows that though
u(x, t) grows exponentially, for every t

0
'0 and e'0 there exists

another solution uN (x, t) of (40) such DuN (x, t) D(e for t6t
0

and
uN (x, t)"u(x, t) for sufficiently large t.

6 Applications

In this section we apply the theory developed in Sects. 4 and 5 to the
maturity structured population model considered in Sect. 2 and to the
equation describing a model of the blood production system proposed
by Rey and Mackey (1993) and further analyzed by Dyson et al. (1996).

A. Maturation structured model

We consider the following equation

Lu
Lt

#g (x)
Lu
Lx

"![c
1
#b (u)]u#c

2
b (uq)uq . (44)

Equation (8) derived in Sect. 2 has the form (44) with c
1
"c#r and

c
2
"2a~1e~(c`r)q and g (x)"rx. We assume that c

1
'0, c

2
'0 and
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b : [0,R)P(0,R) is a continuously differentiable and decreasing func-
tion. Let

f (u, uq)"![c
1
#b (u)]u#c

2
b (uq)uq .

Equation (44) has a trivial solution u
0
,0. According to Theorem 2 the

trivial solution u
0

is locally exponentially stable if

Lf
Lu

(0, 0)(!K
Lf
Luq

(0, 0) K . (45)

Since

Lf
Lu

(0, 0)"!c
1
!b (0)

and

Lf
Luq

(0, 0)"c
2
b(0),

the condition

c
1
'(c

2
!1)b (0) (46)

implies (45).
Next we check that the trivial solution of the equation

v@(t)"![c
1
#b (v (t))]v(t)#c

2
b(v (t!q))v (t!q) (47)

is globally asymptotically stable when (46) holds.
To prove this we construct a Liapunov function [see Hale (1977,

Chap. 5) for details]. Let j (x)"(c
1
#b (x))x, K(x)":x

0
j (y) dy and let

a Liapunov function » : C[!q, 0]PR be given by

»(/)"K (/(0))#1
2 P

0

~q
j2(/ (h)) dh. (48)

It is easy to check that

»Q (/)"!j2 (/(0))#c
2
j (/(0))/(!q)b (/ (!q))#1

2
j2 (/ (0))

!1
2
j2(/ (!q))"!1

2
[j (/ (0))!c

2
/(!q)b (/(!q))]2

!1
2
[j2(/ (!q))!(c

2
)2/2(!q)b2(/ (!q))]

6!1
2
[(c

1
#b (/ (!q)))2!(c

2
)2b2(/ (!q))]/2(!q)

6!1
2
c
1
[c

1
!(c

2
!1)b (/(!q))]/2(!q).

Since b is an decreasing function, there exists e'0 such that

»Q (/)6!e/2(!q).
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From the last inequality it follows that every solution of (47) is
convergent to 0 when (46) holds, and thus Corollary 1 implies that
every solution of (44) converges exponentially to zero as tPR uni-
formly for x3[0, 1].

If c
1
((c

2
!1)b(0), then equation (44) has a nontrivial constant

solution u
*

and u
*

satisfies the equation

c
1
#b (u

*
)"c

2
b(u

*
).

If we assume additionally that

b@(u
*
)u

*
#b (u

*
)'0, (49)

then

Lf
Lu

(u
*
, u

*
)(!K

Lf
Luq

(u
*
, u

*
) K .

Consider the specific example of

b (u)"
b

a#u
, a'0, b'0.

Then (49) holds, and consequently, the solution uN (t, x),u
*

of (44) is
locally exponentially stable. In this case Mackey and Rudnicki (1994,
Remark 1) proved that z(t)"u

*
is a globally asymptotically stable

solution of (47) with the basin of attraction containing all positive
initial functions u3C[!q, 0]. Now, Corollary 1 implies that if u(x, t) is
a solution of (44) such that u(t, 0)'0 for t3[!q, 0 ], then u converges
exponentially to u

*
as tPRuniformly for x3[0, 1].

B. Blood production system

Next we apply our results to the equation

Lu
Lt

#g (x)
Lu
Lx

"!ru#uq (a#buq). (50)

We assume that r'0 and Da D(r. Equation (50) satisfies the
assumptions of Theorem 2. Thus u,0 is a locally exponentially stable
solution of (50). Now, we find the set A of initial conditions such that
(50) is exponentially stable on A. In order to do this, we consider the
delay differential equation

z@(t)"!rz(t)#z (t!q)[a#bz (t!q)]. (51)
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Substituting z(t)"(b/r)x (rt) in (51) we obtain

x@ (t)"!x (t)#x(t!qr) C
a
r
#x (t!qr)D . (52)

Thus, it is sufficient to consider equation (51) with r"b"1 and
Da D(1. We prove the following lemma.

Lemma 1. ¸et Da D(1 and

A"Mu3C[!q, 0]:!1(u(t)(1!a for t3[!q, 0]N.

¸et x (t) be a solution of the equation

x@(t)"!x (t)#x (t!q)[a#x (t!q)], (53)

which satisfies the initial condition x (t)"u(t) for t3[!q, 0] and u3A.
¹hen

lim
t?=

x(t)"0. (54)

Proof. Let u3A. Then there exists e3(0, 1!Da D) such that
!1#e6u (t)61!a!e. Observe that

!1#e(!

a2

4
6y(a#y)(1!a!e (55)

for y3[!1#e, 1!a!e]. If x (t) is the solution of (54) corresponding
to u, then from (55) it follows that

!x (t)!1#e(x@(t)(!x (t)#1!a!e (56)

for t3[0, q]. Since x (0)3[!1#e, 1!a!e], from (56) it follows that
x(t)3[!1#e, 1!a!e] for t3[0, q]. By induction we obtain
x(t)3[!1#e, 1!a!e] for t3[0, q]. Now, we prove that the trivial
solution of (53) is asymptotically stable on the set

Ae"Mu3C[!q, 0]:!1#e6u(t)61!a!e for t3[!q, 0]N.

To prove this we construct a Liapunov functional (see Hale [1977],
Chap. 5 for details).

Let j (x),1 if a70 and

j(x)"G
1, for x70,

a~2!1#(a#x)2, for x(0

if a(0. Set G (x)"2 :x
0
yj (y) dy and H(x)"x2j(x) and let a Liapunov

functional » :AeP[0,R) be given by

»(u)"G(u(0))#P
0

~q
H(u (h)) dh.
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It is easy to check that

»Q (u)"G@(u (0))[!u(0)#u(!q)(a#u(!q))]#H(u (0))!H(u (!q))

"!¼(u (0), u(!q)),
where

¼(x, y)"x2j(x)#y2j(y)!2j (x)xy(a#y).

We check that ¼(x, y)'0 for x, y3[!1#e, 1!a!e] and
(x, y)9(0, 0). If a3[0, 1] then Da#y D61!e and consequently

¼ (x, y)"(x!y(a#y))2#y2 (1!(a#y)2)'0

for (x, y)90. If a3(!1, 0) then we consider two subcases:
(1) x70. Then

¼ (x, y)"(x!y(a#y))2#y2 (j(y)!(a#y)2).

Since

j(y)!(a#y)27minMa~2!1, 2e!e2N'0

we have ¼ (x, y)'0 for (x, y)90.
(2) x(0. If y60, then

¼ (x, y)7x2j(x)#y2j(y)'0.

If y'0 we consider an auxiliary function

b (x)"2(a#x)2x#a2 (a#x)2!a2.

This function has the following properties: b(0)(0, b@ (0)'0 and
bA(x)(0 for x60. This implies that b(x)(0 for x60. Thus

1!2xj(x)71!2(a#x)2x'1#a2(a#x)2!a2"a2j(x).

From the inequality 1!2j(x)x'a2j(x) it follows that

¼ (x, y)7¼ Ax,
j(x)xa

1!2j(x)xB
"x2j(x) C1!

a2j(x)
1!2j(x)xD'0.

Now, let h (x)"minM¼(x, y) : y3[!1#e, 1!a!e]N. Then h is
a continuous function, h (0)"0 and h(x)'0 for x90 and
x3[!1#e, 1!a!e]. Since »Q (u)6!h (u (0)) for u3Ae the trivial
solution of (53) is asymptotically stable on the set Ae .
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From Lemma 1 and Corollary 1 we immediately have:

Corollary 2. ¸et Da D(r and denote by u(x, t) the solution of (50) with the
initial function u. If b'0 and!r/b(u(0, t)((r!a)/b or b(0 and
(r!a)/b(u(0, t)(!r/b for t3[!q, 0], then u(x, t) converges expo-
nentially to zero as tPRuniformly for x3[0, 1].

Remark 4. These results can be applied to an equation reducible to the
one considered by Rey and Mackey (1993) and Dyson et al. (1996):

Lu
Lt

#rx
Lu
Lx

"!(c#r)u#juq (1!uq), (57)

with uq(x, t)"u (a~1e~rqx, t!q) and j"2a~1e~(c`r)q.
If j3(0, c#r), then from Corollary 2 it follows that if

1!(j#r)/j(u(0, t)((j#r)/j for t3[!q, 0], then the solution u of
(57) with the initial data u converges exponentially to zero as tPR

uniformly for x3[0, 1]. If j3(c#r, 3c#3r), then equation (57) has
a non-trivial stable solution u

0
,1!(j#r)/j. Substituting

w(x, t)"u (x, t)!u
0

to (57) we obtain

Lw
Lt

#rx
Lw
Lx

"!(c#r)w#wq[2(c#r)!j!jwq]. (58)

From Corollary 2 it follows that if (j#r)/j!1(w(0, t)((j#r)/j
for t3[!q, 0], then w converges exponentially to zero as tPR. This
implies that if 0(u(0, t)(1 for t3[!q, 0], then the solution u of (57)
with the initial function u converges exponentially to 1!(j#r)/j
uniformly for x3[0, 1]. These global conclusions give analytic support
to the results of Rey and Mackey (1992, 1993, 1995a, b) and Crabb
et al. (1996) obtained through a local analysis and numerical investiga-
tion of equation (57), though many of the numerical results obtained in
these papers still lack analytic explanation.

7 Discussion

Although the main emphasis of this paper has been with the problem of
global stability, Theorem 1 can also be used to prove some results
concerning unstable behaviour as shown in the following case.

Let z
0

be a solution of (17). Assume that there exists a solution u
0
of

(10) such that u
0
(0, t)"z

0
(t) for t3[!q, 0] and assume that

u
0
(x, t)!z

0
(t) does not converge to zero. Then z

0
is an unstable

solution of (10). Indeed, for each e'0 we can find another solution uN of
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(10) such that DuN (x, t)!z
0
(t) D(e for x3[0, 1], t3[!q, 0] and

u
0
(x, t)"uN (x, t) for x3[0, 1] and sufficiently large t. After a slight

modification of Theorem 1 one can check that any solution u of (10)
such that u

0
(0, t)"z

0
(t) for t3[!q, 0] is also unstable.

Consider the model of the blood production system rewritten in the
alternate form of Dyson et al. (1996):

Lu
Lt

#x
Lu
Lx

"!u#kuq (1!uq). (59)

For k3(1, 4) Dyson et al. (1996) proved that there exists a non-trivial
stationary solution u(x, t)"t(x) of (57) such that t (0)"0. This im-
plies that any solution of (57) such that u (0, t)"0 for t3[!q, 0] is
unstable. This question is discussed in detail in Section 7 of Dyson et al.
(1996).
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