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Abstract. This paper couples a general d-dimensional (d arbitrary)
model for the intracellular biochemistry of a generic cell with a prob-
abilistic division hypothesis and examines the consequence of division
for stability of cell function and structure. We show rather surprisingly
that cell division is capable of giving rise to a stable population of cells
with respect to function and structure even if, in the absence of cell
division, the underlying biochemical dynamics are unstable. In the
context of a simple example, our stability condition suggests that rapid
cell proliferation plays a stabilizing role for cellular populations.
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1 Introduction

Living organisms are composed of cells, and depending on the com-
plexity of the organism the number of these cells may range from the
tens to well over a billion. Each of these cells contains hundreds
of intracellular molecular constituents that are constantly being
synthesized and degraded, and estimates of the number of con-
comitant biochemical reactions occurring in a single cells range into
the thousands.

In addition to this myriad of biochemical reactions taking place,
cells are capable of cell division and most cells go through this process
rather frequently. Due, perhaps, to the ubiquitous nature of the cell
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division process the literature is replete with studies related to how cells
divide [cf. Murray and Hunt (1993) for an especially lucid overview of
the state of knowledge at the time of publication]. Indeed, some recent
advances in our understanding of a small portion of the dynamics of
intracellular biochemistry have been combined with elegant modeling
to provide a more comprehensive insight into the connection between
intracellular dynamics and the dynamics of the cell division cycle
[Goldbeter (1993) and Novak and Tyson (1993a,b)].

However, in spite of the rapid expansion of our knowledge con-
cerning the way in which cells divide, it seems safe to say that there is
little insight into the benefit of cell division, i.e. why cells divide. Here
we examine a heretofore unmentioned potential role for the cell divi-
sion process. Namely, we show that cell division may serve to confer
stability on intracellular biochemical mechanisms that might be un-
stable in the absence of cell division.

In keeping with the inferred complexity of the biochemistry of the
cell division process, this paper presents an analysis of a very general
model for the intracellular biochemistry in which it is assumed that
every cell contains d substances whose dynamic evolution governs the
life history of the cell and its progeny. This general setting is coupled to
a probabilistic cell division process. The model is neither one dimensional,
nor is it necessarily autonomous and these two aspects of the model
exclude the use of more traditional mathematical techniques for analysis
employed in previous models of the cell cycle [cf. Lasota and Mackey
(1984), Tyson and Hannsgen (1986), Tyrcha (1988), Lasota et al. (1992)].

This paper is organized as follows. Section 2 presents the biological
background and derivation of the model that we analyze. This model is
shown to be a type of iterated function system. In Sect. 3 we define
a Markov operator P on measures which describes the statistical
properties of our system and we formulate a criterion for the temporal
convergence of the iterates Pn of P. These iterates correspond to
consecutive generations of cells. (The proof of our convergence cri-
terion is quite complicated and is postponed to the Appendix.) In
Sect. 4 we develop the biological consequences of the convergence
properties of the model that we have presented. We believe that these
consequences may give some insight into the ubiquitous character of
cells and cell division in all living creatures.

2 Biological background and development of the model

We consider a population of cells that proliferate and mature in an
environment that may be constant or may vary with time. In keeping
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with the very general point of view that we are taking in this work, we
assume that each cell contains d substances whose masses (not concen-
trations) are denoted by the vector

y (t)"(y1(t),2 , yd (t)),

wherein t denotes the age of the cells which is the time that has elapsed
since the birth of the cell. We assume further that the evolution of the
vector y(t) is given by the formula y(t)"P(x, t) where P (x, 0)"x.
Here P :X][0, ¹)PX is a given function and X is a closed subset of
Rd. A simple example fulfilling these criteria is given by assuming that
y(t) satisfies a system of ordinary differential equations

dy
dt

"g(t, y) (2.1)

with the initial condition
y (0)"x (2.2)

and the solution of (2.1) is given by

y (t)"P(x, t).

Note that the function g on the right hand side of (2.1) should be
sufficiently regular to ensure the existence and uniqueness of the
solution of (2.1)—(2.2) in a time interval [0, ¹), where ¹6R.

Having specified the internal dynamics of the cell in a very general
way, we must now say something about the mitotic process.

We assume that the distribution of mitotic times t
.!9

, at which
every cell divides to produce two daughter cells, has the form

Prob(t
.!9

(t)"P
t

0

p(x, s) ds for 0(t(¹, (2.3)

where p is a given density depending on the initial vector y (0)"x.
Clearly since, for every given x, the function p is a density we have

P
T

0

p(x, t) dt"1.

Remark 2.1. The fact that p depends on x is crucial. For example, in
a one dimensional situation, it allows one to prove that the correlation
coefficient between the mitotic times of mother and daughter cells is
negative [Lasota and Mackey (1984)], as observed experimentally
[Powell (1955)].

Let the initial value of substances x"y(0) in the nth generation be
denoted by x

n
, and the mitotic time t

.!9
in the nth generation by t

n
. We
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assume that in every generation the distribution of mitotic times is
given by (2.3). More explicitly we have

Prob(t
n
(t Dx

n
"x)"P

t

0

p(x, s) ds, for 0(t(¹, (2.4)

Then the vector
y (t

n
)"P (x

n
, t

n
)

represents the amount of intracellular substance just before mitosis in
the nth generation. At division, we assume that each daughter cell
receives exactly half of the component constituents of the mother
cell, so

x
n`1

"1
2
P(x

n
, t

n
) for n"0, 1, 2,2 . (2.5)

Equations (2.4) and (2.5) constitute the analytical description of the
mitotic process in our cell cycle model.

From a mathematical point of view, equations (2.4), (2.5) define
a discrete time dynamical system with stochastic perturbations in
which the times t

n
play the role of the perturbations. These times have

an interesting property. Namely, the distribution of the time t
n
appear-

ing in the formula for x
n`1

depends on x
n
. This makes the system more

realistic but also much more difficult to study analytically.
How are we to consider the evolution of the system (2.4), (2.5)? We

have, at successive mitoses, a time since the last mitosis with a corre-
sponding density, and a value for the amount of intracellular substance
just before the last mitosis. Since it is a basic tenant of cell biology that
both cell structure and function are determined by the constellation of
substances present in a given cell along with the the actual amounts, it
is reasonable to think that the behaviour of (2.4), (2.5) can be described
by the sequence of distributions

k
n
(A)"Prob(x

n
3A) for n"0, 1, 2,2 ,

where A denotes an arbitrary Borel subset of Rd. In the next section, we
will discuss the problem of asymptotic behaviour of the sequence Mk

n
N.

In particular we will give sufficient conditions that ensure the con-
vergence of Mk

n
N to a unique k

*
that is independent of the initial

measure k
0
.

From a biological point of view:

1. the initial measure k
0
just represents the way in which a collection of

cells is prepared at the start of, say, an experiment; while
2. the existence of a unique k

*
implies that the evolution of this

population from every k
0

with time ultimately produces a unique
population of cells with respect to cell function and structure.
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3 Criteria for asymptotic stability

In this section, we study the stochastically perturbed dynamical system
(2.4)—(2.5) from a somewhat abstract point of view. We set S"1

2
P, so

the equation (2.5) takes the form

x
n`1

"S (x
n
, t

n
) for n"0, 1, 2,2 . (3.1)

We make the following assumptions which we assume to hold
throughout this section.

1. The function S : X][0, ¹ )PX is continuous.
2. The Mt

n
N are random variables with values in [0, ¹) and the

distribution of t
n

conditional on x
n
"x is given by

Prob(t
n
(t Dx

n
"x)"P

t

0

p(x, u) du for 0(t(¹, (3.2)

where p : X][0, ¹)P[0, ¹) is a lower semi-continuous, non-
negative normalized function, i.e.,

P
T

0

p(x, t) dt"1 for x3X.

We use the lower semi-continuity assumption, rather than the (appar-
ently) more natural assumption of continuity, since this ensures that
our results are applicable to models in which the density p is not
continuous [Tyson and Hannsgen (1986)].

With this preliminary material, we now turn to a derivation of
a recurrence relation between k

n`1
and k

n
, where k

n
is the distribution

of x
n
. Let h : XPR be an arbitrary bounded Borel measurable func-

tion. Using our previously developed notation, the mathematical
expectation of h (x

n`1
) is given by

E (h(x
n`1

) )"P
X

h(x)k
n`1

(dx). (3.3)

However, using (3.1) we also have

E(h(x
n`1

))"E(h(S(x
n
, t

n
)) )

"P
X
CP

T

0

h(S(x, t))p (x, t) dtDk
n
(dx). (3.4)

If we pick h"1
A
, where 1

A
denotes the indicator function for the set A,

and equate (3.3) and (3.4), we obtain

k
n`1

(A)"P
X
CP

T

0

1
A
(S(x, t) )p (x, t) dtDk

n
(dx) , (3.5)
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which is the desired recurrence relation between k
n`1

and k
n
. Defining

an operator P by

Pk(A)"P
X
CP

T

0

1
A
(S(x, t) )p (x, t) dtDk (dx), (3.6)

equation (3.5) may be rewritten as

k
n`1

"Pk
n
.

The operator P is called the transition operator for the system (3.1),
(3.2). P is a linear operator in the spaceM

fin
(X) of finite Borel measures

on X. In particular, it maps every probability measure into a probabil-
ity measure, and is thus called a Markov operator [Lasota and
Mackey (1994)].

With the customary scalar product notation

S f, kT"P
X

f (x)k (dx),

the operator º that is adjoint to P is defined by

Sºf, kT"S f, PkT for f3C (X), k3M
fin

, (3.7)

where C(X) denotes the space of all continuous bounded functions
f :XPR with the supremum norm. A straightforward calculation
shows that

ºf (x)"P
T

0

f (S (x, t))p (x, t) dt. (3.8)

The space of all probability measures will be denoted by M
1
.

Clearly P mapsM
1
intoM

1
and therefore it is natural to takeM

1
as the

phase space of our dynamical system describing the evolution of k
n
.

The operator P describes the dynamics on M
1
. We say that the system

(3.1), (3.2), or equivalently the transition operator P given in (3.6),
satisfies the Prohorov property [Prohorov (1956)] if, for every e'0,
there is a compact set ½LX such that

lim inf
n?=

Pnk(½)71!e for k3M
1
. (3.9)

Our goal is to find conditions which ensure the Prohorov property
for P. Thus we assume that the continuous function S :X][0, ¹)PX
satisfies the growth condition

ES (x, t)E6j
0
(x, t)ExE#j

1
(x, t) for x3X, t3[0, ¹ ) (3.10)
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where E ·E is a norm in Rd and j
i
: X][0, ¹ )PR

`
are Borel measur-

able nonnegative functions of (x, t) such that

P
T

0

p (x, t)j
i
(x, t) dt6r

i
for i"0, 1; x3X. (3.11)

Inequalities (3.10), (3.11) allow the evaluation of the moments of the
measures Pnk for n"1, 2, 2 . Using these evaluations we have the
following theorem, proved in the Appendix.

Theorem 3.1. If conditions (3.10), (3.11) are satisfied and if r
0
(1,

r
1
(R then the system (3.1), (3.2) has the Prohorov property.

The Prohorov property can be easily interpreted dynamically.
Namely, this condition says that for every e'0 there is a set
½"½(e)LX such that the set of measures Mk3M

1
: k (½(e))71!eN

is a global attractor. To obtain a more precise description of the
behaviour of the sequence MPnk

0
N we must introduce a topology in M

1
.

We say that a sequence of probabilistic measures Mk
n
N converges

weakly to a probabilistic measure k
*

if

lim
n?=

S f, k
n
T"S f, k

*
T for f3C(X ).

Furthermore, we will say that the system (3.1), (3.2), or equivalently the
transition operator P, is asymptotically stable if

1. There is a unique measure k
*
3M

1
such that

Pk
*
"k

*
,

and
2. For every k3M

1
, the sequence MPnkN converges weakly to k

*
.

To prove the asymptotic stability of system (3.1), (3.2) we must
strengthen the properties assumed for the transformation S and the
density p. Thus, instead of the growth conditions (3.10), (3.11) we will
assume the Lipschitz type inequality

ES(x, t)!S (y, t)E6j
0
(x, t)Ex!yE for x, y3X ; t3[0, ¹)

(3.12)
where j

0
and S are related to p by the conditions

P
T

0

j
0
(x, t)p(x, t) dt6r

0
for x3X (3.13)

and

P
T

0

ES(0, t)Ep (x, t) dt6r
1

for x3X. (3.14)
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We assume moreover that p(x, t) satisfies an integral Lipschitz
condition

P
T

0

Ep(x, t)!p (y, t)E dt6r
2
Ex!yE for x, y3X. (3.15)

Finally we assume that for every x3X there exists a minimal division
time q

x
3[0, ¹) such that

p(x, t)"0 for 06t6q
x

and p(x, t)'0 for q
x
(t(¹.

(3.16)

The suggestive notation q
x

is used to highlight the fact that, bio-
logically, the minimal division time is thought to depend on the
initial supply of x.

With this background and these assumptions, we may formulate
our criterion for asymptotic stability. The proof will be given in the
Appendix.

Theorem 3.2. If S : X][0, ¹)PX and p : X][0, ¹ )PR
`

satisfy
conditions (3.12) through (3.16) with r

0
(1 and r

1
, r

2
(R, then the

system (3.1), (3.2) is asymptotically stable.

Observe that in the case when ¹(R and S is defined and
continuous in the closed set X][0, ¹] condition (3.14) is automati-
cally satisfied with

r
1
" max

06t6T

ES (0, t)E.

Analogously, (3.15) is satisfied with a finite r
2
, if ¹(R, X is the

closure of a convex domain and the derivatives p
xi

are bounded.
We close this section with a remark which concerns the localization

of the support of the invariant measure k
*
. We say that k3M

1
is

supported on a measurable set ½LX if k (½)"1. A set ½LX is
called invariant with respect to dynamical system (3.1) if

S (x, t)3½ for x3½, t3[0, ¹). (3.17)

Remark 3.1. If the system (3.1), (3.2) is asymptotically stable and the
set ½LX is nonempty, closed, and invariant then the stationary
measure k

*
is supported on ½. To prove this it is sufficient to start

with a point x
0
3½. From condition (3.17) we have x

n
3½ with prob-

ability one and consequently k
n
(½)"1. Since ½ is closed, this implies

k
*
(½)"1.
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4 Biological consequences

We now return to the biological system (2.4), (2.5) which was derived in
Sect. 2. Thus we have

S (x
n
, t

n
)"1

2
P(x

n
, t

n
), (4.1)

We may also specifically interpret P(x, t) as the solution of the differen-
tial equation (2.1) with the initial condition (2.2). Since the solution
P describes the evolution of amounts of real chemicals, it must be the
case that P is non-negative for non-negative x. More precisely, setting

X"R
`

]2]R
`

, R
`
"[0,R),

we assume that P(x, t)3X for t3[0, ¹), x3X. Further, we assume
that

EP(x
1
, t)!P(x

2
, t)E6ea(x1)tEx

1
!x

2
E for x

1
, x

2
3X, t3[0, ¹).

(4.2)

Note that if P(x, t) is the solution of (2.1)— (2.2) and g satisfies a
Lipschitz condition with respect to y with Lipschitz constant a, then
(4.2) is satisfied with a(x

1
)"a. Substituting j

0
(x, t)"1

2
exp[a (x)t]

into (3.13) gives

P
T

0

p(x, t) ea(x)t dt62r
0
.

As before we assume that p :X][0, ¹)PR is positive for q
x
(t(¹

and vanishes for 06t6q
x
. Further p is lower semicontinuous, satis-

fies (3.15) and P : X][0, ¹)PX is continuous.
Applying Theorem 3.2 to the dynamical system (4.1) we have

Corollary 4.1. If inequality (4.2) is satisfied and if

sup
x
P

T

0

p (x, t) ea(x)t dt(2, (4.3)

and

sup
x
P

T

qx
EP(0, t)Ep (x, t) dt(R (4.4)

then the dynamical system (2.4), (2.5) is asymptotically stable.

The factor of 2 that appears on the right hand side of (4.3) is
a consequence of the fact that the process of cell division produces two
daughter cells, and it is quite important for the eventual stability of the
system.
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In a general setting, note that for a(x)60, inequality (4.3) is always
satisfied since the left hand side is not larger than 1. To see this, note
that for a (x)60

P
T

0

p (x, t) ea(x)t dt6P
T

0

p(x, t) dt"1.

If ¹ is finite we may say even more, since if max a(x)'0, then

P
T

0

p(x, t) ea(x)t dt6eT.!9 a(x) P
T

0

p(x, t) dt"eT.!9a(x),

and inequality (4.3) reduces to

¹ max a(x)(ln 2.

We interpret this to imply that if the cell proliferation process is
relatively rapid (¹ is small), then the system is asymptotically stable
even if the underlying dynamics are unstable (maxa (x)'0).

When ¹ is not finite, it is more difficult to make comprehensive
statements about stability, but the flavor of the power of our result is
given by the following two examples for which all calculations can be
carried out completely. Of course, the most important condition is
inequality (4.3). All other conditions are relatively easy to verify.

Example 4.1. Let the right hand side g of (2.1) be linear. More precisely
we assume that (2.1) reduces to

dy
dt

"Gy#b (t) (4.5)

where G is a d]d constant matrix and b : [0, ¹)PX (X"(R
`

)d )
a continuous bounded vector. We denote the eigenvalues of G by
j
1
,2 , j

d
. Choose a real number a

0
such that

a
0
'max

k

Rej
k
.

Then according to the classical results of Liapunov stability theory,
there is a norm in Rd such that (4.2) holds with a(x)"a

0
. We further

assume that for some constant q'0

p (x, t)"G
0
be~b(t~q)

for t6q
for t'q,

(4.6)

where b'0. This means that for t'q, the number of cells that have
not yet divided decays exponentially with time, and the probability
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that a single cell divides in the interval [t, t#Dt], if it had not yet
divided by time t, is constant. More precisely,

Prob(t
.!9

3[t, t#Dt] D t
.!9

't)"bDt#o(Dt) for t'q.

This last assumption is identical with the division assumption in the
cell cycle model of Smith and Martin (1973).

Substituting (4.6) into (4.3) with a (x)"a
0

and ¹"R we obtain,
under the assumption that b'a

0
,

b P
=

q
e~b(t~q)`a0t dt(2,

or
b

b!a
0

ea0q(2. (4.7)

Further observe that

EP(0, t)E6P
t

0

EeG(t~u)b (u)E du6c P
t

0

ea0(t~u) du6
c
a
0

ea0t,

where c"sup
t
Eb(t)E. For b'a

0
we may verify inequality (4.4).

Namely

P
=

0

EP(0, t)Ep(x, t) dt6
bc
a
0
P

=

q
ea0t~b(t~q) dt"

bcea0q
a
0
(b!a

0
)
.

Thus, the system under consideration is asymptotically stable if b'a
0

and (4.7) is satisfied. This happens even for a
0
'0 [which means that

the original dynamics leading to the production of y are unstable],
when b is sufficiently large and q is sufficiently small. A small q and
large b are indicative of relatively rapid cell proliferation.

If b is large, then p is concentrated in the vicinity of q and condition
(4.7) has the approximate form

a
0
q(ln 2

in analogy with the condition derived above for finite ¹.

Example 4.2. It is well known that the simple exponential distribution
of mitotic times of the previous example never adequately describes the
actual situation [cf. Powell (1955, 1958) for an especially complete
treatment of this subject], and that one can often fit the intermitotic
data using the density of the gamma distribution:

p (x, t)"G
0
bk`1

C(k`1)
(t!q)ke~b(t~q)

for t6q
for q(t,

(4.8)
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where C( ·) is the gamma function. In this case, in a manner entirely
analogous to that of the previous example, it is easy to show that the
system is asymptotically stable if b'a

0
and

A
b

b!a
0
B
k`1

ea0q(2, (4.9)

a condition that clearly reduces to (4.7) when k"0.
With the density (4.8) it is easy to show that the average inter-

mitotic time is given by

StT"q#
k#1

b
(4.10)

while the variance is

p2"
k#1

b2
. (4.11)

Thus, writing the parameters k and b of the density (4.8) in terms of the
average and variance we have

k#1"A
StT!q

p B
2

and b"
StT!q

p2
"

k#1
StT!q

with StT'q.

These relations, coupled with the stability condition (4.9), imply that at
constant k or constant b, stability is associated with smaller values of
the average intermitotic time StT. Once again, this is in accord with our
earlier conclusions concerning the stabilizing effects of relatively rapid
proliferation.

The asymptotic stability criterion stated in Corollary 4.1 is
formulated in terms of the weak convergence of measures. Thus
if the system (2.4)—(2.5) is asymptotically stable the distributions k

n
defined by

k
n
(A)"Prob(x

n
3A)

converge weakly to a unique distribution k
*
. This fact allows one to

obtain some information concerning the behaviour of x
n
(for example

by using some ergodic theorems). However here we are going to show
some consequences of the convergence of k

n
to k

*
using the Alexan-

drov theorem for weak convergence [Billingsley (1968)]. Let ALX be
a measurable set such that k

*
(A)"1. Denote by m the Lebesgue

measure on X. Since m is regular, for evey e'0 there exists an open set
BMA such that

m (BCA)6e . (4.12)

The set B can also be chosen in such a way that the Hausdorff distance
between A and B does not exceed e, i.e. for every x3B there is a y3A
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such that Ex!yE6e. On the other hand, since B is open and
k
n
converges weakly to k

*
by the Alexandrov theorem there exists an

integer n
0

such that

k
n
(B)7k

*
(B)!e for n7n

0
,

and consequently

Prob(x
n
3B)71!e for n7n

0
. (4.13)

Thus for large n the point x
n
is close to A with probability near 1.

This last fact is especially interesting when the measure k
*

is
singular. Recall that a measure k

*
3M

1
is said to be singular if there is

a measurable set ALRd such that

m(A)"0 and k
*
(A)"1. (4.14)

In order to show how a singular measure k
*

may appear let us return
to equation (4.5) and assume that for every t70 the vector b(t) belongs
to the set

C"Mjb
0
: j3R

`
N ,

where b
0

is an eigenvector of the matrix G and has nonnegative
coordinates. Then b

0
is also an eigenvector for the matrix eGt and from

the formula

P(t, x)"P
t

0

eG(t~u)b(u) du#eGtx

it follows that C is invariant with respect to S(x, t)"1
2
P (x, t). There-

fore, according to Remark 3.1 the invariant measure k
*

is supported on
the one dimensional set C. Of course, this is a very special example and
in general the measure k

*
is more complicated.

We conjecture, however, that in the space of dynamical systems
(3.1), (3.2) (or equivalently (2.4), (2.5)) satisfying conditions (3.12)—(3.16)
most of the systems have a singular stationary measure k

*
. This fact

may have an important biological consequence. To highlight the
biological consequences consider a given system (2.4), (2.5) with a sin-
gular k

*
. Then for some ALX we have (4.14). In this case, conditions

(4.12) and (4.13) imply that
m (B)6e. (4.15)

and

Prob(x
n
3B)"k

n
(B)7k

*
(B)!e"1!e for n7n

0
. (4.16)

Recall that
x
n
"(y1

n
(0),2 , yd

n
(0))
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is the composition of substances (at birth) in the nth generation.
Conditions (4.15), (4.16) imply, therefore, that with high probability the
vector x

n
belongs to a small set. This, in turn, means that the composi-

tion of substances is not arbitrary and the cell is highly structured.
Summarizing, if our conjecture is true the structure of the cell is also to
some extent the result of the cell cycle dynamics. For dynamical
systems described by a finite number of transformations an analogous
conjecture has been proved [Lasota and Myjak (1994)].
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Appendix: proofs

Here we present the proofs of Theorems 3.1 and 3.2, using the notation
of Sect. 3. The proof of Theorem 3.1 is rather elementary, but the proof
of Theorem 3.2 is more complicated and based on techniques from the
theory of iterated function systems.

Proof of Theorem 3.1. Fix an e'0. Define m
n
"Sh, k

n
T, n"0, 1,2,

where h(x)"ExE. Consider first the case m
0
(R. Using the recur-

rence formula k
n`1

"Pk
n

and the expression (3.8) for the adjoint
operator º we have

m
n`1

"Sh, Pk
n
T"Sºh, k

n
T"P

X
GP

T

0

ES (x, t)Ep(x, t) dtHk
n
(dx).

From this and inequalities (3.10), (3.11) it follows that

m
n`1

6P
X
GExE P

T

0

j
0
(x, t)p(x, t) dt#P

T

0

j
1
(x, t)p (x, t) dtHk

n
(dx)

6r
0 P

X

ExEk
n
(dx)#r

1 P
X

k
n
(dx)"r

0
m

n
#r

1
.

By an induction argument this gives

m
n
6rn

0
m

0
#

r
1

1!r
0

for n"1, 2,2

Since m
0
(R, there exists an integer n

0
such that m

n
6c for n7n

0
where c"1#r

1
/(1!r

0
). Using the Chebyshev inequality this implies

k
n
(½

L
)71!

c
¸

for n7n
0
, ¸'0,
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where ½
L
"Mx3X : ExE6¸N. Thus, in the case m

0
(R the proof is

finished. The general case m
0
6R can be reduced to the previous one

as follows. For given d'0 we choose a compact set KLX such that
k
0
(K)71!d. Setting

kN
0
(A)"

k
0
(AWK)
k
0
(K)

we define a probabilistic measure kN
0

supported on K for which the
initial moment mN

0
"Sh, kN

0
T is finite. Thus, according to the first part

of the proof there is a number n
0
"n

0
(d) such that

PnkN
0
(½

L
)71!

c
¸

for n7n
0
, ¸'0.

Since k
0
(A)7k

0
(AWK), we have

Pnk
0
(½

L
)7k

0
(K)PnkN

0
(½

L
)7(1!d)A1!

c
¸B .

Choosing d sufficiently small and ¸ sufficiently large we obtain

Pnk
0
(½

L
)71!e for n7n

0

which completes the proof. K

Proof of Theorem 3.2. The proof is based on the lower bound tech-
nique for Markov operators developed in Lasota and Yorke (1994). To
apply this method we are going to verify the following three properties
of the transition operator P.

1. P has the Prohorov property.
2. For some ¸'0 the operator is nonexpansive with respect to the

Fortet—Mourièr norm [Fortet and Mourièr (1953)] in M
1

given by

Ek
1
!k

2
E
L
"supMDS f, k

1
T!S f, k

2
TD : f3F

L
N

where F
L

is the set of functions f : XPR satisfying

D f (x) D61, D f (x)!f (y) D6¸Ex!yE": .
L
(x, y). (A.1)

The nonexpansiveness means that

EPk
1
!Pk

2
E
L
6Ek

1
!k

2
E
L

for k
1
, k

2
3M

1
.

3. P satisfies a lower bound condition: For every e'0 there is an
a'0 such that for every two measures k

1
, k

2
3M

1
there exists

a Borel measurable set A, diam A(e, and an integer n
0

for which

Pn0k
k
(A)7a for k"1, 2.
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It was shown in Lasota and Yorke (1994) (Theorems 3.1 and 3.9)
that if X is a locally compact metric space, then conditions (1)—(3)
imply the asymptotic stability of P. In our case X may be considered
with the metric .

L
. Thus the verification of (1)—(3) will complete the

proof.
To prove (1) observe that conditions (3.13) and (3.14) imply (3.10)

with j
1
(x, t)"ES (0, t)E. Thus, by Theorem 3.1 the Prohorov property

follows.
In order to verify (2) we will use the adjoint operator. We have

EPk
1
!Pk

2
E
L
"supMDS f, Pk

1
!Pk

2
TD : f3F

L
N

"supMDSºf, k
1
!k

2
TD : f3F

L
N .

To prove the nonexpansiveness it is sufficient to show that
º(F

L
)LF

L
for some ¸'0. Fix an f3F

L
. We have D f D61 and

consequently

Dº f (x) D6P
X

D f (S(x, t) ) Dp(x, t) dt6P
X

p(x, t) dt"1,

so the first condition of (A.1) is satisfied by ºf. Further

Dºf (x)!ºf (y) D6P
T

0

D f (S(x, t) )p (x, t)!f (S (y, t) )p (y, t) D dt

6P
T

0

D f (S(x, t) ) D Dp(x, t)!p(y, t) D dt

#P
T

0

D f (S(x, t) )!f (S(y, t) ) Dp (y, t) dt.

Using conditions (A.1) for f this gives

Dºf (x)!ºf (y) D6P
T

0

Dp(x, t)!p (y, t) D dt

#¸ P
T

0

ES (x, t)!S (y, t)Ep(y, t) dt.

According to (3.15), (3.12) and (3.13) we finally obtain

Dºf (x)!ºf (y) D6(r
2
#r

0
¸)Ex!yE

which for ¸"r
2
/(1!r

0
) reduces to

Dºf (x)!ºf (y) D6¸Ex!yE .
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Therefore the second condition of (A.1) is satisfied by ºf and ºf3F
L
.

The nonexpansiveness of P is verified.
Now we are going to show condition (3) holds, which is the most

difficult part of the proof. By the Prohorov property there exists
a compact set ½LX such that for every k3M

1
we may find an

integer n
*
"n

*
(k) for which

Pnk(½)71
2

if n7n
*
(k).

Now let an e'0 be given. We can find an integer m such that

4rm
0

diam½6e.

Consider a pair (x, y)3X2. Suppose first that q
x
7q

y
. From inequality

(3.13) it follows that there exists a value tN
1
3 (q

x
, ¹) such that

j
0
(x, tN

1
)6r

0
. Thus, according to (3.12) we have

ES (x, tN
1
)!S (y, tN

1
)E6r

0
Ex!yE .

Moreover, since tN
1
3 (q

x
, ¹)L(q

y
, ¹ ) we have

p(x, tN
1
)'0, p (y, tN

1
)'0.

If q
y
7q

x
we may obtain the same result by first choosing an appropri-

ate number tN
1
3 (q

y
, ¹). Thus by an induction argument for every pair

(x, y)3X2 we may construct a sequence (tN
1
,2 , tN

m
), tN

i
"tN

i
(x, y) such

that

DS
m
(x, tN

1
,2 , tN

m
)!S

m
(y, tN

1
,2 , tN

m
) D6rm

0
Ex!yE (A.2)

p
m
(x, tN

1
,2 , tN

m
)'0, p

m
(y, tN

1
,2 , tN

m
)'0, (A.3)

where the functions S
k
(k"1, 2, 2) are defined by the recurrence

relations

S
1
(x, t

1
)"S (x, t

1
) , S

k`1
(x, t

1
, 2, t

k`1
)"S (S

k
(x, t

1
,2, t

k
), t

k`1
) ,

k"1, 2,2
and

p
k
(x, t

1
,2, t

k
)"p (x, t

1
)2p(S

k~1
(x, t

1
, 2t

k~1
), t

k
).

By the continuity of S and lower semi-continuity of p, for every
(x, y)3½2 there exist neighborhoods N

x
of x, N

y
of y and positive

numbers d"d(x, y), p"p (x, y) such that

ES
m
(u, t1

1
,2 , t1

m
)!S

m
(v, t2

1
,2 , t2

m
)E6rm

0
Ex!yE#

e
4

6rm
0

diam ½#

e
4
6

e
2

(A.4)
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and
p
m
(u, t1

1
,2 , t1

m
)7p (x, y), p

m
(v, t2

1
,2 , t2

m
)7p (x, y) (A.5)

for u3N
x
, v3N

y
and Dtk

i
!tN

i
(x, y) D6d (x, y) (i"1,2, m; k"1, 2).

Since ½2 is a compact set, there is a finite covering

(N
x1
]N

y1
)X2X(N

xq
]N

yq
)M½2. (A.6)

Define

d" min
16i6q

d (x
i
, y

i
), p" min

16i6q

p (x
i
, y

i
).

We are going to show that P satisfies condition (3) with a"pdm/4q.
Let k

1
, k

2
3M

1
be given. By the Prohorov property there is an integer

nN "nN (k
1
, k

2
) such that

Pnk
k
(½)71

2
for n7nN , k"1, 2.

Let kN
k
"PnN k

k
. Then (kN

1
]kN

2
) (½2)71

4
and according to (A.6)

(kN
1
]kN

2
) (N

xj
]N

yj
)7

1
4q

(A.7)

for some integer j, 16j6q. Fix this integer and set N
1
"N

xj
and

N
2
"N

yj
for simplicity. Since the kN

i
are probabilistic, (A.7) implies

kN
k
(N

k
)7

1
4q

for k"1, 2. (A.8)

Now define tJ
i
"tN

i
(xN

j
, yN

j
), i"1,2 , m, and

A"A
1
XA

2
,

where

A
k
"MS

m
(u, t

1
,2 , t

m
) : u3N

k
, Dt

i
!tJ

i
D6d (i"1,2 , m)N

for k"1, 2.

From inequalities (A.4) it follows that diam A6e and from (A.5) that

p
m
(u, t

1
,2, t

m
)7p for u3A, Dt

i
!tJ

i
D6d. (A.9)

Let n
0
"nN #m. We have

Pn0k
k
(A)"PmkN

k
(A)"Sºm1

A
, kN

k
T7Sºm1

Ak
, kN

k
T .

Using equation (3.8) m times, this inequality may be rewritten in the
form

Pn0k
k
(A)7

P
X
GP

T

0

2P
T

0

1
Ak

(S
m
(x, t

1
,2, t

m
))p

m
(x, t

1
,2 , t

m
) dt

12
dt

mHkN
k
(dx).
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For x3N
k

and D tJ
i
!t

i
D6d we have S

m
(x, t

1
,2t

m
)3A

k
. This and

inequality (A.9) allow us to evaluate the multiple integral from below.
Namely

Pn0k
k
(A)7pdmkN

k
(N

k
)

which, according to (A.8), finally gives

Pn0k
k
(A)7pdm/4q"a.

Condition (3) is thus verified and the proof of Theorem 3.2 is
completed.

The proof presented above for Theorem 3.2 was quite long and
complicated. However, until now this seems to be the state of the art
and known proofs of the asymptotic stability for dynamical systems
described by a finite number of transformations and state dependent
distributions are also difficult [Barnsley et al. (1988), Lasota and Yorke
(1994)]. Since we deal with an infinite family S (x, t) parametrized by
a continuous parameter t3[0, ¹), the situation is even more delicate.
The density distribution function p (x, t) of variables t

n
depends on x.

For some values of x it can be small or even equal to zero. This
property of p, important from the biological point of view, does not
allow us to easily exploit the contracting assumption (3.12) and in
particular to use the Banach fixed point theorem. The asymptotic
stability we have proved results not only from contracting properties of
transformation S but also from positivity conditions (3.16) concerning
p. We illustrate the importance of those conditions by the following
example.

Example A.1. Consider the dynamical system (3.1) acting on the
interval X"[0, 3] with t

n
3[0, 3). We assume that the transformation

S is defined by

S(x, t)"t for 06x63, 06t(3.

Thus, in fact S does not depend on x and the system (3.1) reduces to
x
n`1

"t
n
. We assume that the conditional density distribution func-

tion p (x, t) of random variables t
n

is given by the formula

p(x, t)"




p
1
(t) for 06x61

(2!x)p
1
(t)#(x!1)p

2
(t) for 1(x(2

p
2
(t) for 26x63,

where

p
1
(t)"max(2!2t, 0), p

2
(t)"max(2t!4, 0) for 06t(3.

Cell division and the stability of cellular populations 259



Evidently all the assumptions of Theorem 3.2 are satisfied except (3.16).
We have instead

p (x, t)"0 for 06x61, 16t(3
and

p(x, t)"0 for 26x63, 06t62.

These properties imply that for x
0
3[0, 1] the random variable

x
1
"S (x

0
, t

0
)"t

0

belongs to [0, 1] with probability one and further by induction
x
n
3[0, 1] with probability one for every n70. Analogously, if

x
0
3[2, 3] then also x

n
3[2, 3] with probability one for n70. Thus, in

the first case k
n
([0, 1])"1 and in the second k

n
([2, 3])"1. This

shows that the system under consideration in not asymptotically
stable. K

In the proof of Theorem 3.2 not all assumptions were fully
exploited. We have not used the homogeneity of the norm E ·E but
only the triangle inequality. This fact is summarized in the following
remark.

Remark A.1. Theorem 3.2 remains true if S :X][0, ¹ )PX is con-
tinuous, p : X][0, ¹)PR

`
lower semi-continuous and the conditions

(3.12) through (3.16) are satisfied with r
0
(1; r

1
, r

2
(R. Under these

conditions the distance Ex!yE may be replaced by an arbitrary
metric . (x, y) generating the same standard topology in Rd and in
particular the norm ExE by . (x, 0).

The above remark can be quite useful when we look for possible
sharp estimations which ensure the asymptotic stability. For example
using Remark A.1 it is possible to find precise description of the region
of asymptotic stability for the well known Tyson—Hannsgen (1986)
model of the cell cycle. We omit, however the details here, since this
model has been examined elsewhere [see Tyrcha (1988) and Lasota
et al. (1992)].
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