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An age-structured model for erythropoiesis is extended to include the active destruction of the oldest
mature cells and possible control by apoptosis. The former condition, which is applicable to other
population models where the predator satiates, becomes a constant flux boundary condition and results
in a moving boundary condition. The method of characteristics reduces the age-structured model to
a system of threshold type differential delay equations. Under certain assumptions, this model can be
reduced to a system of delay differential equations with a state dependent delay in an uncoupled
differential equation for the moving boundary condition. Analysis of the characteristic equation for the
linearized model demonstrates the existence of a Hopf bifurcation when the destruction rate of
erythrocytes is modified. The parameters in the system are estimated from experimental data, and the
model is simulated for a normal human subject following a loss of blood typical of a blood donation.
Numerical studies for a rabbit with an induced auto-immune hemolytic anemia are performed and
compared with experimental data.
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1. Introduction

Age-structured models provide a means of under-
standing the regulation of hematopoiesis. Poor
regulation of this physiological system appears to
underlie several hematological disorders that display
oscillatory counts in their cell numbers (Milton &
Mackey, 1989; Morley, 1970), i.e. cyclic neutropenia
(also known as periodic hematopoiesis) (Dale &
Hammond, 1988; Jones & Lange, 1983; Lange, 1983;
Wright et al., 1981), cyclic thrombocytopenia
(Bernard & Caen, 1962; Brey et al., 1969; Caen et al.,
1964; Cohen & Cooney, 1974; Demmer, 1920;
Engstrom et al., 1966; Goldsmith & Fono, 1972;

Lewis, 1974; Skoog et al., 1957; Wasatjerna, 1967;
Wilkinson & Firkin, 1966), cyclic eosinophilic
myositis and hyper-immunolobulin E syndrome
(Symmans et al., 1986), and the periodic variants of
chronic myelogenous leukemia (Chikkappa et al.,
1976; Delobel et al., 1973; Gatti et al., 1973; Kennedy,
1970; Morley et al., 1967; Nowell et al., 1988;
Shadduck et al., 1972; Mastrangelo et al., 1974, 1976;
Rodriguez & Lutcher, 1976; Umemura et al., 1986;
Yamauchi & Ide, 1992) and autoimmune hemolytic
anemia (Gordon & Varadi, 1962; Orr et al., 1968;
Ranlov & Videbaek, 1963).

It has long been suspected that periodic hemato-
logical diseases arise because of abnormalities in the
feedback mechanisms which regulate blood cell
number (Dunn, 1983; Kazarinoff & van den
Driessche, 1979; King-Smith & Morley, 1970; Kirk
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et al., 1968; Mackey, 1978, 1979a,b, 1996; Mackey &
Milton, 1990; Morley, 1979; von Schulthess & Mazer,
1982; Wazewska-Czyzewska, 1984; Wheldon et al.,
1974; Wheldon, 1975; Wichmann & Loeffler, 1988).
Previously, we developed an age-structured model for
erythropoiesis whose bifurcation analysis agreed
surprisingly well with experimental observations in an
induced autoimmune hemolytic anemia (Bélair et al.,
1995). However, this model was less satisfactory in
predicting the response of a normal patient to a blood
loss such as a blood donation. In this paper we
expand this previous model (Bélair et al., 1995) to
account for the active degradation of older cells and
to include the possibility of significant prepro-
grammed cellular death (apoptosis).

The idea that older cells are actively degraded has
several applications to the study of population
dynamics. Erythrocytes age primarily by damage to
their cell membrane as they pass through the
capillaries (Erslev & Beutler, 1995). Since erythrocytes
have no nucleus to produce proteins that effect repair
of the cell membrane, the membrane slowly loses
pliability and the cells can no longer efficiently deliver
O2 to the tissues. The immune system recognizes this
membrane breakdown and tags the membrane with
special markers. These markers then signal macro-
phages or white blood cells to actively degrade or
phagocytize the oldest erythrocytes after a period of
time that is about 120 days in humans.

In an ecological context, many populations have
older individuals actively weeded out by predators.
The predators, however, generally have a finite
appetite and satiate. Thus, for example, an overabun-
dance of hares will not result in incidence of obesity
in lynx populations, but rather in a self-regulation of
calorie intake on their part [possible predator
behaviors in the presence of an oversupply of prey
have been discussed recently (Crichton, 1995)].

For erythrocytes, if one assumes either a finite
source of markers or a fixed number of macrophages,
then there is a constant flux of the oldest erythrocytes
dying. This moving boundary condition is incorpor-
ated in this paper and represents a significant
improvement to our previous model (Bélair et al.,
1995).

Apoptosis (Evan et al., 1985; Koury, 1992; Park,
1996; Yuan, 1995) is a programmed cell death that is
probably determined by the genetic code of the cell.
As an example, in erythropoiesis it appears that many
burst-forming units of the erythroid line (BFU-E)
begin their proliferative phase with genetic instruc-
tions that kill the cell unless the signal is interrupted
by sufficient binding of erythropoietic (Epo) to the cell
membrane (Adamson, 1995). This death generally

occurs when the cells enter the next stage of
development, colony forming units or CFU-Es, and
provides a control that prevents the production of too
many erythrocytes. Apoptosis is incorporated in our
general model, but has little effect on the analysis of
the simplified model with delay differential equations.

In the next section we present our age-structured
model and show how it reduces to a threshold delay
system. In Section 3, we show with several simplifying
assumptions that the model further reduces to a
system of delay differential equations with a
state-dependent delay in an uncoupled differential
equation for the moving endpoint. A bifurcation
analysis is performed in Section 4, and numerical
studies in Section 5 examine two responses of
erythropoiesis: one following a blood donation in
humans and the second a hemolytic-induced anemia
in rabbits. Comparisons are made to an earlier study
(Bélair et al., 1995), where the age of the mature
erythrocyte was assumed to be fixed. The paper
concludes with a brief discussion in Section 6.

2. The Age-structured model with Constant Flux

In this section we present an age-structured model
for hematopoiesis that includes apoptosis and active
degradation of the oldest mature cells. This extended
model is based on an earlier model of Bélair et al.
(1995). For clarity, our model is described for
erythropoiesis, but it is sufficiently general to
characterize other hematopoietic lines. The active
degradation of the oldest mature cells extends easily
to other models with predation.

The precursor cells begin from a pool of BFU-Es
that have differentiated into a self-sustaining popu-
lation which eventually leads to the production of
mature erythrocytes. At some point the BFU-Es
further differentiate and start down a proliferative
path that can ultimately produce erythrocytes. Early
in this proliferative phase of development the
hormone Epo, along with other hormones, affects the
number of BFU-Es that become erythrocytes, though
the full details of the mechanism remain unknown.
Increases in the concentration of Epo may increase
the number of BFU-Es recruited to mature into
erythrocytes. Alternatively, there may be a relatively
constant supply of committed BFU-Es, but only the
cells tagged with sufficient Epo survive the rapidly
proliferating CFU-E phase to complete maturation.
This reflects the experimental finding suggesting that
Epo mediates apoptosis and, by interrupting the
programmed cell death, controls the number of cells
that mature (Adamson, 1995; Park, 1996).
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Once precursor cells pass the CFU-E stage, they
mature primarily by increasing their capacity to carry
hemoglobin. These cells appear to proliferate without
apoptosis, then stop dividing when they become
reticulocytes—the final stage in the bone marrow.
Epo appears to be able to accelerate the rate of
proliferation and maturing during this stage of
development. Reticulocytes accumulate hemoglobin
and decrease their cell size, eventually losing their
nuclei and their ability to produce proteins. When
sufficiently small, the reticulocytes enter the blood-
stream and become erythrocytes with a primary
function of carrying O2 to the tissues.

The schematic in Fig. 1 shows the primary features
of our model with a few simplifications from the
model presented below. Let p(t, m) denote the
population of precursor cells at time t with age m, and
let V(E) be the velocity of maturation, which may
depend on the hormone concentration, E. The
maturity level, m, for erythropoiesis can represent the
accumulation of hemoglobin in the precursor cells. If
S0(E) is the number of cells recruited into the
proliferating precursor population, then the entry of
new precursor cells into the age-structured model
should satisfy the boundary condition:

V(E)p(t, 0)=S0(E). (1)

It is possible that cell proliferation is controlled by
apoptosis, in which case S0(E) is simply a constant.
Assume the birth rate for proliferating precursor cells
is b(m, E) and that a(m, E) represents the death rate

from apoptosis. Let h(m− m̄) be the distribution of
maturity levels of the cells when released into the
circulating blood, where m̄ represents the mean age of
mature precursor cells and

g
mF

0

h(m− m̄) dm=1.

The disappearance rate function is given by:

H(m)=
h(m− m̄)

fmF
m h(s− m̄) ds

.

With these conditions the age-structured model for
the population of precursor cells with tq 0 and
0Q mQ mF satisfies:

1p
1t

+V(E)
1p
1m

=V(E)[b(m, E)p− a(m, E)p−H(m)p]. (2)

Let m(t, n) be the population of mature non-prolifer-
ating cells at time t and age n. Assume that the mature
cells age at a rate W, which is considered to be a
constant for erythropoiesis since the aging process
appears to depend only on the number of times that
an erythrocyte passes through the capillaries. From
the disappearance rate function, the boundary

F. 1. Schematic representation of the age-structured model of erythropoiesis. For simplifying purposes, the model diagrammed includes
neither the term for the apoptosis nor the distribution of maturation presented in the text, so agrees more closely to the model analysed
and simulated later in the paper.
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condition for cells entering the mature population is
given by the following expression:

Wm(t, 0)=V(E) g
mF

0

h(m− m̄)p(t, m) dm, (3)

where the maturity level mF represents the maximum
age for a cell reaching maturity.

In the current formulation of the model, we
consider that destruction of erythrocytes occurs by
active removal of the oldest cells. By assuming either
a constant supply of markers or a constant number
of phagocytes that become satiated in their destruc-
tion of the oldest erythrocytes, there is a constant flux
of erythrocytes from the mature population. This
results in a moving boundary condition with the age
of the oldest erythrocyte, nF (t), varying in t. The
boundary condition, derived in Appendix A, is given
by:

(W− nt F (t))m(t, nF (t))=Q, (4)

where Q is the fixed erythrocyte removal rate.
If g(n) is the death rate of mature cells (depending

only on age), then the partial differential equation
describing m(t, n) is given by:

1m
1t

+W
1m
1n

=−Wg(n)m, tq 0, 0Q nQ nF (t),

(5)

where the maximum age, nF (t), is determined by (4).
The Epo level E is governed by a differential

equation with a negative feedback, depending on the
total population of mature cells, M(t), defined by:

M(t)=g
nF (t)

0

m(t, n) dn. (6)

The differential equation for E is thus:

dE
dt

= f(M)− kE, (7)

where k is the decay constant for the hormone and
f(M) is a monotone decreasing function of M
representing the negative feedback effect of the total
population of mature cells on the rate of hormone
production. Typically, we shall consider the following
form of f:

f(M)=
a

1+KMr, (8)

which is a Hill function that often occurs in enzyme
kinetic problems.

The partial differential equations and their
boundary conditions given by eqns (1–5) describe the
age-structured populations of the erythrocytes. The
hormone erythropoietin is produced at a rate
dependent on the total mature erythrocyte population
given by (6), and exerts control in the age-structured
model through the boundary conditions, the birth
and death of precursor cells, and the velocity of aging.
This system of equations may be transformed to a
system of threshold delay equations following the
techniques of several authors (Bélair et al., 1995;
Gatica & Waltman, 1982, 1988; Metz & Diekmann,
1986; Smith, 1993). This technique assumes that a
solution to (7) for E(t) is known, then the method of
characteristics for the partial differential equations (2)
and (5) is used to find solutions p(t, m) and m(t, n).
See Appendix B for the general solution. When only
long time behavior is considered, the partial
differential equations reduce to a system of integro-
differential equations or threshold-type delay
equations with the state-dependent delay t defined
implicitly by

m=g
t

t− t

V(E(r)) dr. (9)

3. Reduction to a Delay Differential System with
State Dependent Delay

In the previous section and Appendix B, the
age-structured model was reduced to a system of
threshold-type delay equations. In this section, a few
simplifying assumptions that are reasonable for
erythropoiesis are made that further reduce this
system to a system of delay differential equations with
a fixed delay in one equation and a state dependent
delay in an equation governing the age at which
mature erythrocytes die. These assumptions parallel
the ones that Bélair et al. (1995) used to show how the
age-structured model can be reduced to a system of
delay differential equations with two delays. See that
work for more details justifying the assumptions.

The first assumption is that the velocities of aging
are constant and normalized to one, i.e.

V(E)=1 and W=1.

This assumption significantly simplifies the ex-
pressions for p(t, m) and m(t, n) found in Appendix B
[eqns (B.1) and (B.2)]. Furthermore, it reduces (9) to
t= m. The second assumption is that the precursor
cells grow exponentially for a given period of time m1,
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then stop dividing. This assumption on the birth rate
of the precursor cells yields

b(m, E)=6b,
0,

mQ m1,
me m1,

(10)

for some constant growth rate b. If we assume that
apoptosis occurs at the beginning of the life cycle of
the precursor population, then the disappearance
function a(m, E) can be included in the boundary
condition S0(E). Similarly, if h(m− m̄) is a Dirac
d-function, then the changing of precursor cells into
mature erythrocytes only occurs on the boundary.

With these assumptions it follows that the solution
for M(t), given by (B.3), can be written as

M(t)=g
nF (t)

0

ebm1S0(E(t− n−T ))e−gn dn,

where T= mF . Differentiating this equation yields

dM(t)
dt

= ebm1[S0(E(t−T ))

− e−gnF (t)(1− nt F (t))S0(E(t−T− nF (t)))]− gM(t).

(11)

The assumptions on W, h, and the evaluation of p
transform the constant flux boundary condition to

Q=(1− nt F (t))ebm1e−gnF (t)S0(E(t−T− nF (t))). (12)

By substituting (12) into (11), we obtain the following
system of delay differential equations with a fixed
delay T and a state dependent delay occurring in the
equation governing the age at which mature cells die:

dM(t)
dt

= ebm1S0(E(t−T ))− gM(t)−Q,

dE(t)
dt

= f(M(t))− kE(t),

dnF (t)
dt

=1−
Qe−bm1egnF (t)

S0(E(t−T− nF (t))
. (13)

Two significant points can be made about (13).
First, the equation for M� (t) reduces to having only
the single time delay T, exponential decay, and the
constant flux −Q. The production term represents a
delayed entrance after fixed exponential growth of the
BFU-Es that were recruited to mature. The constant
flux, −Q, matches our ‘‘satiated predator’’ assump-
tion that a constant number of red blood cells are
destroyed by the macrophages.

Second, we observe that the nt F (t) equation is
uncoupled from the other two equations. Thus,
despite its greater complications because of the state
dependent delay, this equation has no effect on the

behavior of the solutions of the remaining (two
equation) system. This is due to the constant Q of the
first equation ‘‘hiding’’ the variability of the longest
maturation time, nF (t).

4. Linear Stability Analysis

In this section we examine the linear stability of the
simplified model given by (13). Experimental results
(Clarke & Housmann, 1977) show that S0(E) is
monotonically increasing, and in fact, almost linear
for a wide range of E. The function f(M) represents
the negative feedback by M in the production of E,
so is monotonically decreasing. Thus, there is a
unique equilibrium (M� , E� , n̄F ) for (13).

The simplified model given by (13) can be linearized
about its equilibrium, and the resulting system is
given by:

Mt (t)= ebm1S'0 (E� )E(t−T )− gM(t),

Et (t)= f '(M� )M(t)− kE(t),

nt F (t)=
1
E�

E(t−T− n̄F )− gnF (t). (14)

Notice that the linearization of the last equation can
be justified (Cooke & Huang, 1996) despite additional
difficulties due to the state-dependence of the delay nF .

The characteristic equation for the eigenvalues
corresponding to (14) is given by

detn l+ g

−f '(M� )
0

−ebm1S'0 (E� )e−lT

l+ k

−
1
E�

e−l(T+ n̄F )

0
0

l+ g n=0,

which can be written

(l+ g)[(l+ g)(l+ k)+Ae−lT]=0,

where A0 − ebm1S'0 (E� )f '(M� )q 0. One solution of
this equation is l=−g, associated with the nF

equation, which is shown to be inherently stable. It
remains to analyse the exponential polynomial

(l+ g)(l+ k)=−Ae−lT, (15)

to determine for which parameter values all its roots
have negative real parts.

Equation (15) has been studied extensively (see
Boese & van den Driessche (1984), Cooke &
Grossman (1982) and Mahaffy (1982) and references
therein). In most of these studies, when a systematic
investigation of the parameter values yielding stability
of the equilibrium is performed, one of the bifurcation
parameters is the time delay T. Our analysis differs
slightly, since here the delay T is known. Thus, we use
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F. 2. Stability region for the basic model in the place of the
parameters A and g. A super-critical Hopf bifurcation occurs along
the dotted line, and the equilibrium (M� , E� , n̄F ) is stable for positive
values of A below this line. The full line displays the location of
the equilibrium for the rabbit experiment as g varies.

supercritical Hopf bifurcation (Bélair, 1996). A
locally stable limit cycle appears for parameter values
above the line where purely imaginary roots exist. A
comparison of the bifurcation diagram in Fig. 2 with
the one presented in fig. 6 of Bélair et al. (1995) gives
a remarkably similar value for the bifurcation point
for the rabbit experiment near g=0.08.

5. Simulations of the Mathematical Model

In this section, the mathematical model given by
(13) is simulated for two cases and compared with
previous results of Bélair et al. (1995), where the
mature cells had a fixed lifespan. Our first example
examines the response of a normal human subject
following a blood donation of 5% of the blood (a
mild form of phlebotomy). The second example is
based on experiments of Orr et al. (1968), who studied
rabbits with an induced auto-immune hemolytic
anemia that exhibit periodic oscillations in their
erythrocyte populations.

5.1.   

A normal human has approximately 3.5×1011

erythrocytes kg−1 body weight and a mean Epo
concentration of around 10 mU ml−1 of plasma. Our
model assumes M� =3.5 and E� =10. The maturation
of red blood cell precursors takes about 6 days and
mature erythrocytes live on average 120 days, so we
assume T=6 and n̄F =120. Since the half-life of Epo
is about 6 hr and only 0.06–0.4% of mature cells are
destroyed by normal physiological activity, we
assume that k=2.8 and g=0.001. Using a least
squares fit to data of Erslev (1991), we found the
parameters in the Hill function (8) to satisfy a=6570,
K=0.0382, and r=6.96. From the steady-state
values it follows that S'0 (E� )=0.0031 and Q=0.0275.

With these parameters and the assumption that
S0(E) is a linear function, we simulated this model for
300 days following a blood donation. The numerical
method employed in this simulation was a modified
fourth order Runge–Kutta scheme with fixed stepsize.
In the simulation, the history of E(t) is sorted on a
fixed grid, and a linear interpolation is used to
determine intermediate values between grid points as
the delay, T+ nF (t), varies in the state dependent
delay equation of system (13).

A typical blood donation causes approximately 5%
of the erythrocytes to be lost. To account for this in
the simulation of (13), the initial data is taken as
M(0)=0.95M� . In addition, the history of E(t) must
be adjusted to account for the loss of mature cells
originally stimulated by S0(E). Thus, E(t)=0.95E� for

the parameters A and g as bifurcation parameters. We
also assume that the remaining parameters are
constant, at values to be discussed in the following
section. Only their signs are assumed for the moment
with both k and T positive.

A root of eqn (15) only acquires a positive real part
by crossing the imaginary axis. A zero root l=0
occurs when A=−kg, which is impossible in the first
quadrant of the parameter plane (g, A), since both A
and g are non-negative. For purely imaginary roots
l= iv, substituting l= iv into eqn (15) and
separating real and imaginary parts yields

A cos vT+ kg−v2 =0,
−A sin vT+vg+ kv=0. (16)

These two equations can be considered as a linear
system of equations in the two unknowns A and g and
inverted to

A=(v2 + k2)/D,
g=(v sin vT− k cos vT )/D, (17)

where D=1/(cos vT+ k sin vT/v).
Thus, in the plane of the parameters (g, A) we

obtain the entire locus of purely imaginary roots of
eqn (15). The stability region is illustrated in Fig. 2,
using parameter values for the simulation of a rabbit
with induced auto-immune hemolytic anemia de-
scribed at the beginning of Section 5.2. Notice that for
all values of g, a sufficiently small value of A leads to
a stable equilibrium. At any fixed value of A, an
increase in the value of g eventually leads to a
stabilization of the equilibrium. It is possible to show
that stability of the equilibrium is lost via a
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−n̄F E tQ −T, while E(t)=E� for −TE tE 0 as
the precursor population residing in the bone marrow
is initially unaffected by a blood donation which
harvests only circulating erythrocytes.

The simulation of (13) is shown in Fig. 3 with the
previous results of Bélair et al. (1995) overlaid for
comparison. The only difference between (13) and the
earlier model is the boundary condition affecting the
death of aged erythrocytes. The previous model
assumed that all erythrocytes die at 120 days, which
causes a renewed decline in erythrocytes near 126
days. In the new model (13), with the constant flux
boundary condition resulting from mature erythro-
cytes being actively destroyed, the erythrocyte
population levels off at the equilibrium value. It can
be seen that 99% of the equilibrium value is restored
within 18 days. This is consistent with the accepted
value (Guyton & Hall, 1996) of 3 to 6 weeks for total
recovery of red blood cell concentration following a
blood donation. The simulations of Fig. 3 comparing
the earlier predictions of Bélair et al. (1995) with the
predictions of the refined model presented here
suggest that the current formulation is physiologically
more realistic.

The actual variation in nF (t) is very small over the
course of the simulation with a total variation of only
6 days as shown in Fig. 4. nF (t) begins by slowly
dropping from 120 to a minimum of 114.34 in 115
days. This decline is due to the loss from all age
classes from the blood donation. Then nF (t) rises more
rapidly to a maximum of 120.02 at 157 days, which
is several days after the new erythrocytes produced
after the blood donation have aged to the point of
death. The reported range for the age at death for

F. 4. This graph shows the variation of the age of the mature
erythrocytes (nF (t)) for the simulation shown in Fig. 3.

mature erythrocytes is from 100 to 140 days (Erslev
& Beutler, 1995), so the variation in our model is far
less than experimentally observed values. It is
interesting that a slow change in the delay can
produce such a dramatic difference in the behavior of
the dynamical system.

5.2.  -  

In the experiments of Orr et al. (1968), rabbits were
continuously given red blood cell iso-antibody for
prolonged periods of time. As a consequence, there
were oscillations in their circulating reticulocyte
counts and in their hemoglobin levels with an
approximate period of 18 days. (The dashed line in
Fig. 6 is a reconstruction of their hemoglobin data of
Fig. 3 plotted as a percentage of normal values.)
These data strongly suggest the presence of periodic
oscillations in erythrocyte populations for rabbits
regularly given an iso-antibody to their red blood
cells. This experimentally induced auto-immune
response is assumed to cause a random destruction of
erythrocytes, which is reflected in our model by an
increase in g. Figure 2 shows that a Hopf bifurcation
occurs near g=0.08 for the model of these rabbits
with an auto-immune induced hemolytic anemia
given the parameters listed below.

For comparative purposes, the parameters in (13)
for the simulation of the rabbit experiment were
initially chosen to agree with Bélair et al. (1995). The
experimental work of Orr et al. (1968) indicated the
average erythrocyte population was 75% of normal,
so we chose M� =2.63(×1011 erythrocytes kg−1 body
wt) and E� =71.1 (mU ml−1 plasma). Orr et al. (1968)
claim the maturation for rabbit erythrocytes, T, is 3
days, which was the value used in Bélair et al. (1995)
and so is used for our comparative study below.
However, other references suggest that this value is
too low, so additional simulations are performed and

F. 3. Simulation of the model showing the concentration of
Epo and the population of mature erythrocytes following a 5%
blood donation at t=0. The graphs labeled Model 1 are
simulations from previous work where the mature cells die at 120
days, while the graphs labeled Model 2 are from (13).
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analysed with other values of T. The normal rabbit
erythrocyte lifespan is n̄F =50 days (Burwell et al.,
1953). Using data for rats (Orr et al., 1968), we chose
k=6.65 day−1. The Hill function parameters used
were r=6.96, K=0.0382, and a=15,600. The
parameter g is increased from its normal value in the
previous simulation to reflect the higher destruction
rate. This parameter has a significant effect on the
amplitude of the simulation and is found to
correspond well to the experiments of Orr et al. (1968)
when g=0.1. From the steady state information it
follows that S'0 (E� )=0.00372 and Q=0.00178.

For our numerical simulation we begin with initial
data at normal levels, i.e., M(0)=3.5, nf (0)=50, and
E(t)=10 for t $ [−T− nF (0), 0]. With the par-
ameters given in the previous paragraph, a Runge–
Kutta integration scheme is applied to the models,
and the simulations are shown in Fig. 5. The
simulations of Bélair et al. (1995) and the one for (13)
are readily seen to be very close. After 90 days of
simulation the solution has shifted by approximately
1 day, but the amplitude of oscillation is virtually the
same. Initially, the length of the age for the mature
cells varies quite dramatically with nF (t) dropping as
low as 30.7 by the 34th day. However, after 80 days
the model settles into very regular oscillations in all
variables, and nF (t) oscillates between 48.5 and 52.8
with the same period as the other variables. Again the
state dependent delay nF (t) responds very conserva-
tively in this model when compared to the variation
in the mature population, M(t), and the concen-
tration of Epo, E(t). The oscillations in our model
have a period of 11–12 days, compared to 16–17 days
in the experiments, and an amplitude that is slightly
lower and more regular than the experimental results.

F. 6. Comparative study of the model predictions of eqn (13)
to the hemoglobin data (dashed line) of Orr et al. (1968) for a rabbit
with an auto-immune induced hemolytic anemia with maturation
delay T=4.1 and g=0.065. The simulation shows the
concentration of Epo and the fraction of mature erythrocytes
relative to normal populations.

As noted earlier, the maturation time for rabbit
erythrocytes may be higher than the value used for the
simulations in Fig. 5. Further simulations varying the
maturation time, T, show that the period of
oscillation in the model is very sensitive to this
parameter. For example, if we choose the human
maturation time, T=6, then the period of oscillation
changes to 23.5 days for (13). To obtain a similar
amplitude of oscillation, g changes to about 0.045
along with corresponding changes to S'0 (E� ) and Q. If
these parameter values are used in the model of Bélair
et al. (1995), then the period is 22 days and the
amplitude is reduced to 84% of the amplitude for the
simulation of (13). Since the bifurcation diagram
(Fig. 6) in Bélair et al. (1995) is more complicated
than Fig. 2, we would predict that the models would
diverge as g decreases. The numerical simulations
indicate that the two delay model is slightly more
stable than (13) though the behavior remains similar.
Our simulation with T=6 begins with nF (t)
decreasing to a minimum of 15.1 days before
returning to an oscillatory solution with nF (t) between
46.8 and 54.1. The initial decline appears to be
unrealistic.

If we keep all parameters at their previous values
but adjust T and g to yield simulations close to the
experiments, then we found (see Fig. 6) that T=4.1
days and g=0.065 yield results with a period of 16.5
days and an amplitude that is quite comparable to the
experiment of Orr et al. (1968), if one ignores what
appears to be a transient effect in the first 40–50 days
of their data. This suggests that our model provides
a partial, but indirect, means of estimating the time
of maturation and rate of destruction of erythrocytes.

F. 5. Comparative simulations of models for a rabbit with an
auto-immune induced hemolytic anemia showing the concentration
of Epo and the fraction of mature erythrocytes relative to normal
erythrocyte population. The model of eqn (13) is compared with the
two-delay model in Bélair et al. (1995).
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Because the experiment induces an anemia, which
results in an increase in Epo, it is possible that this
experiment has an accelerated maturation time
(smaller delay T than normal) as discussed in Section
2. However, many other parameters are in this model,
and our studies have not been exhaustive.

6. Discussion

The age-structured hematopoiesis model developed
in this paper, and specifically applied to erythro-
poiesis, contains a novel boundary condition which
corresponds to a constant flux of erythrocytes as
mature cells are actively destroyed by macrophages.
(In an ecological framework, this condition is
equivalent to having a constant number of predators
that are constantly satiated and control the popu-
lation by consuming the oldest individuals in the
population). This modification transforms the model
of Bélair et al. (1995) with two delays into a system
of three delay differential equations with a state-de-
pendent delay. However, this greater complexity is
readily simplified, and a much simpler system of two
equations with only one delay has been analysed for
stability. Our analysis shows exactly what assump-
tions are necessary to reduce the age-structured
population model to a system of delay differential
equations that are significantly easier to analyse as
shown by the Hopf bifurcation analysis of Section 4.

The numerical simulations of the model presented
in Section 5.1 demonstrate the behavior expected
following the daily procedure of a blood donation,
where initially the population drops significantly. The
Epo concentration is predicted to rapidly rise, which
causes the erythrocyte population to recover and tend
toward equilibrium. The delay variable, describing
how long the mature erythrocytes live, recovers slowly
as it controls the history of the age-structured
population. All of these variables are, in theory,
clinically measurable. It would be rather exciting if
data on Epo levels and erythrocyte number were
collected at a sufficiently high sampling frequency to
allow a quantitative comparison between the data and
the predictions of the model. Only in this way can
modelers hope to refine models such as these to
accurately reflect the experimental/clinical reality. In
a similar vein, the predictions of the simulations of
Section 5.2 are well within the realm of checking from
an experimental point of view, and logistically would
be easier to carry out on a laboratory animal than on
a human. One can only hope that experimental
hematologists will be sufficiently intrigued by
modelers’ predictions to join forces and work toward

a better understanding of the hematopoietic regulat-
ory system. Mathematically, the extension of this
paper offers a significant improvement in the
predicted response to blood donation (see Section
5.1), but has a negligible effect on the simulations
related to the laboratory induced autoimmune
hemolytic anemia (see Section 5.2). One facet of
erythropoiesis (and hematopoiesis in general) that has
not been considered here involves the effects of
‘‘random’’ fluctuations in the system or other
dynamic control systems and how these would be
manifested in the model behavior. Little is known
about the degree of variation in the number of
circulating blood cells in single mammals over time,
though preliminary data taken on one of the authors
(JMM) indicates that under certain circumstances it
may be considerable. This question of the normal
degree of variation in blood cell numbers is
unexplored in the clinical/laboratory literature, and
from a modeling perspective the understanding of the
effects of additive and/or multiplicative noise on the
behavior of functional equations or differential delay
equations is in its infancy (Mackey & Nechayeva,
1994, 1995).

The model presented in this paper is sufficiently
general that it can, we feel, easily be applied to other
hematopoietic regulatory situations, e.g., the regu-
lation of platelet production via thrombopoietin, and
the regulation of white blood cell production by the
colony stimulating factors and other cytokines
(Mackey, 1996). The constant flux boundary con-
dition introduced here probably captures the physio-
logical reality of peripheral, circulating blood cell
destruction better than have previous models (Dunn,
1983; Kirk et al., 1968; Mackey, 1978, 1979a,b, 1996;
Mackey & Milton, 1990; Morley, 1979; Wichmann &
Loeffler, 1988), and it will be of particular interest to
see whether this improvement will significantly aid in
the explanation of one of the most mysterious of the
periodic hematological disorders: the cyclical throm-
bocytopenias (Bernard & Caen, 1962; Brey et al.,
1969; Caen et al., 1964; Cohen & Cooney, 1974;
Demmer, 1920; Engstrom et al., 1966; Goldsmith &
Fono, 1972; Lewis, 1974; Skoog et al., 1957;
Wasatjerna, 1967; Wilkinson & Firkin, 1966) which
have, to date, resisted all modeling attempts.

This work was supported in part by NSF (JMM),
NSERC (JB and MCM) and FCAR (JB and MCM). Part
of this work was performed when JMM was visiting the
Centre de Recherches Mathématiques and the Montréal
based Centre for Nonlinear Dynamics Physiology and
Medicine.
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Hémat. 2, 378–386.

B, F. &   D, P. (1994). Stability with respect to
the delay in a class of differential-delay equations. Can. Applied
Math. Quart. 2, 151–175.

B, O., G, E. P. R. & W, D. (1969). Cyclic
thrombocytopenia associated with multiple antibodies. Brit.
Med. J. 3, 397–398.

B, E. L., B, B. A. & F, C. A. (1953).
Erythrocyte life span in small mammals. Amer. J. Physiol. 172,
718.

C, J., M, G., L, M. J. & B, J. (1964). Les
purpuras thrombopéniques intermittents idiopathiques. Sem.
Hop. Paris. 40, 276–282.

C, G., B, G., B, H., C, A. D.,
C, E. P., O, S., P, M. & R, J. S. (1976).
Periodic oscillation of blood leukocytes, platelets, and reticulo-
cytes in a patient with chronic myelocytic leukemia. Blood 47,
1023–1030.

C, B. J. & H, D. (1977). Characterisation of an
erythroid precursor cell of high proliferative capacity in normal
human peripheral blood. Proc. Natl. Acad. Sci. U.S.A. 74,
1105–1109.

C, T. & C, D. P. (1974). Cyclical thrombocytopenia:
Case report and review of literature. Scand. J. Haemat. 12, 9–17.

C, K. & G, Z. (1982). Discrete delay, distributed delay
and stability switches. J. Math. Anal. Appl. 86, 592–627.

C, K. & H, W. (1996). On the problem of linearization
for state-dependent delay differential equations. Proc. AMS 124,
1417–1426.

C, M. (1995). T L W. V P, N Y.
D, D. C. & H, W. P. (1988). Cyclic neutropenia: A

clinical review. Blood Reviews 2, 178–185.
D, J., C, P., P, P. & B, J. (1973).

Evolution cyclique spontanée de la leucocytose dans un cas de
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APPENDIX A

Constant Flux Boundary Condition

The boundary condition given by eqn (4) is needed
in this model to account for the loss of mature
erythrocytes. When erythrocytes age, their cell
membrane breaks down and macrophages destroy the
least pliable cells. We assume that the macrophages
are in constant supply and are saturated in their
consumption of erythrocytes, which allows the age of
destruction of erythrocytes to vary. This condition is
the one obtained in predator-prey models where the
prey far outnumber the predators, so predators could
always eat their fill. There is then a saturation, or
satiation effect in the predators, their intake is
constant and targeted at the weakest, oldest prey.

Figure A1 shows a schematic representation of the
boundary condition. The conveyor belt advances at
speed W, and the belt is allowed to either stretch or
shrink such that the flux lost from the mature
population remains constant. Let Q be the rate of
removal of erythrocytes: then QDt is the number of
erythrocytes lost over the period of time Dt. The
Mean Value Theorem gives an average number of
erythrocytes m(j, nF (j)), for some j $ (t, t+Dt),
taken out in this time interval. A statement of balance
can be written as:

QDt=WDt m(j, nF (j))

− [nF (t+Dt)− nF (t)]m(j, nF (j)). (A.1)

F. A1. Schematic illustration of the loss of mature erythrocytes to macrophages. The conveyor belt may have to stretch or shrink
(an increase or decrease in the age of the mature erythrocytes) to maintain the assumed constant flux boundary condition corresponding
to a fixed number of erythrocytes being destroyed.
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(B.1)

where F(m, E)=V(E)[b(m, E)− a(m, E)−H(m)], and t is determined by the threshold eqn (9). The method
of characteristics applied to (2.5) produces the following result for the mature cells:

m(t, n)=g
G

G
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G

G
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c(n−Wt) exp$−Wg
t

0

(n+W(s− t)) ds%,
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n

W
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n/W

0

g(Ws) ds%,
tq n/W

(B.2)

Equations (B.1) and (B.2) include transient solutions for small times t and the general solution for large times.
If we choose t sufficiently large and examine only the long term behavior of these equations, then M(t) is found
to satisfy:

M(t)=
1
W g

nF (t)

0 g
mF

0

h(m− m̄)p0t−
n

W
, m1dm exp$−Wg

n/W

0

g(Ws) ds%dn. (B.3)

From (B.1) with (t, m) $ R2, the precursor population p depends only on the hormone level E. Equation (B.3)
shows that M depends only on p, so it follows that M is a function of E. Thus, eqns (7) and (B.3) form a system
of integro-differential equations or threshold-type delay equations with the state-dependent delay t defined
implicitly by (9).

The first term on the r.h.s. of (A.1) represents the
number of mature cells lost because of the movement
of the conveyor belt, while the second term represents
either ones that stay on the belt due to a stretching
or additional ones lost due to contraction. Dividing
each side of (A.1) by Dt and taking the limit as
Dt : 0, the boundary condition becomes

Q=[W− nt F (t)]m(t, nF (t)).

This is the constant flux boundary condition required
for the formation of the model, in Section 2.

APPENDIX B

Solutions from the Method of Characteristics

The method of characteristics is used to find the
general solution of the partial differential equations
and their boundary conditions given by eqns (1–5). A
characteristic curve C0 emanating from the origin in
the (t, m)-plane with tq 0 and 0Q mQ mF separates
the (t, m)-space into two regions, R1 and R2. This
characteristic curve C0 satisfies

t(s)= s and m(s)=g
s

0

V(E(s)) ds, s $ [0, sF ],

where sF is the threshold value implicity defined by

mF =g
sF

0

V(E(s)) ds.

The region R1 provides solutions that depend on the
initial conditions, while R2 depends on the boundary
conditions and provides the longer time solutions.

Given the pair of variables (t, m) $ R2, a state-de-
pendent delay, t, is implicitly defined by (9). This
delay represents the time required for the maturation
level to go from 0 to m and is found with knowledge
of the history of the hormone concentration, E.

If the age-structure of the population satisfies the
following initial conditions:

p(0, m)=f(m),
m(0, n)=c(n),

then the method of characteristics gives the following
solution to the partial differential equation (2):


