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Abstract

A general approach is introduced for describing the time evolution of a Markov process in
continuous time and with a finite number of states. The total number of transition events from
one state to other states and of the total sojourn times of the system in the different states are
used as additional state variables. The large time behavior of these two types of stochastic state
variables is investigated analytically by using a stochastic Liouville equation. It is shown that the
cumulants of first and second order of the state variables increase asymptotically linearly in time.
A set of scaled sojourn times is introduced which in the limit of large times have a Gaussian
behavior. For long times, the total average sojourn times are proportional to the stationary state
probability of the process and, even though the relative fluctuations decrease to zero, the relative
cross correlation functions tend towards finite vatues. The results are used for investigating the
connections with Van Kampen’s approach for investigating the ergodic properties of Markov
processes. The theory may be applied for studying fluctuation dynamics in stochastic reaction
diffusion systems and for computing effective rates and transport coefficients for non-equilibrium
processes in systems with dynamical disorder.
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1. Introduction

Usually the time-dependent behavior of Markov processes is described in terms of
a set of suitable random variables characterizing the properties of the system inves-
tigated. In some cases, however, the knowledge of the stochastic properties of these
variables is not enough for the complete characterization of the system. For instance,
this is the case of Markovian rate processes occurring in systems with dynamical disor-
der. For such systems, the knowledge of the stochastic properties of the time intervals
spent by the system in one state or another (the sojourn times, [1-3]) is more im-
portant than the knowledge of the probability of occurrence of the different possible
states. The knowledge of the stochastic properties of the sojourn times is also important
for investigating the ergodic properties of Markov processes [4—6]. Random variables
similar to the sojourn times attached to the different states of a Markov process are
the numbers of transitions experienced by the system from one state to other possible
states. In the particular case of unimolecular reactions, the numbers of transitions have
been used by Solc [7] for developing a microscopic description of stochastic reaction
dynamics.

The purpose of this article is to investigate the stochastic correlated behavior of the
numbers of transition events and of the sojourn times for a Markov process in contin-
uous time with a finite number of discrete state variables. The study is of importance
both from the theoretical and applied points of view. In addition to the possible appli-
cations for the analysis of the rate and transport processes in systems with dynamical
disorder, another possible application is related to the evaluation of relative stability of
stochastic reaction—diffusion systems far from equilibrium. From the theoretical point of
view such a study is intimately connected with Van Kampen’s description of composite
stochastic processes and to the ergodic behavior of Markov processes [1,2]. The present
paper focuses mainly on the theoretical aspects of our approach. As suggested by a
referee, the application of the theory to the evaluation of effective rate and transport
coefficients for systems with dynamical disorder is presented in a following paper.

The structure of the paper is as follows. In Section 2 a description of the continuous-
time Markov processes with a finite number of discrete state variables is given in
terms of the total times spent by the system in the different possible states and of
the numbers of jump events corresponding to these states and a stochastic Liouville
equation for the corresponding joint probability density is derived. In Section 3 we
suggest a procedure of solving the stochastic equations and we evaluate the moments
of the random variables. In Section 4 the asymptotic behavior of the moments is
analyzed; the analysis shows the existence of certain ergodic properties for a Markov
process with a finite state space and continuous time. Finally, in Section 5 some open
questions and possible applications of the theory are outlined.
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2. Formulation of the problem

Our approach can be applied to any system which can be described by a Markovian
master equation

dP(¢
éﬁ LS Bm, - B0Q. =1, 1)
J'#i
with
Qj:Z%j/, j:1,4..,M, (22)
J'#i

where j=1,...,M is a label attached to the different possible M states of the system,
W is the transition rate from the state j to the state j/, @, is the total transition
rate from the state j to other states and P(t) is the probability that at time the state
of the system is j. We assume that the Markov process described by Eq. (2.1) is
time homogeneous, that is, the rates W depend only on the states j and ;' and are
independent of time. We also assume that the total number M of states is possibly
very large but finite, and that all states are connected [8] in the sense that given two
arbitrary states j,;’ there are at least two ways

F R e e e e (2.3),(2.4)

for which the corresponding rates are different from zero.
By introducing the matrix notations

P()=[P()..... Pu(D)], 2.5)
W=[;l,  W;=0; (2.6)
Q=[5,9]. (2.7)

Eq. (2.1) becomes
dP(8)/dt =P(t)(W — Q). (2.8)
The formal solution of Eq. (2.8) is
P(t) =P(0)G(1), (2.9)
where the Green function G(¢) is given by
G(t)= exp[t(W — Q)]. (2.10)

By considering a large time interval of length ¢ we attach to each of the M states
of the system the following random variables (a) the total time §; spent by the system
in the state j in the time interval of length f; (b) the total number g; of transition
(jump) events from the state j to other states occurring in the same time interval.
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Although these variables have been used at times in the literature for describing some
random processes of physical or chemical interest, the knowledge of their stochastic
properties is still incomplete. The variables §; have been called cumulative residence or
sojourn times. Some of their properties have been analyzed by Van Kampen by using
the theory of composite stochastic processes [1,2]. The motivation of Van Kampen’s
research has been the theory of chromatography and the theory of anomalous diffusion.
His approach is based on a path summation formula which was originally used in the
theory of continuous-time random walks. By applying this method he has succeeded in
evaluating the asymptotic behavior of average values (6;), j=1,...,M corresponding
to the general master equation (2.1). He has also attempted to evaluate the second
moments (Af;Af) of the sojourn times; unfortunately, his equation for the second
moments is wrong. An alternative approach is that of Van den Broeck [3,9]; it has been
introduced in connection with the generalized Taylor problem and is less general than
the one of Van Kampen: it only applies to the case where the rates W}, are different
from zero only for j = j+1. The numbers of events ¢; have been introduced by Solc [7]
in connection with the stochastic description of the unimolecular reactions. Random
variables similar to g; have also been used in the theory of nuclear reactions [10].
As far as we know, no attempts have been made in the literature to study the stochastic
correlations between the total sojourn times and the numbers of transition events.
The method used in this paper for the study of the stochastic properties of the random
variables ), and g; is different from the methods used by Van Kampen, Van den Broeck
or Solc. It is based on the use of a stochastic Liouville equation. The following analysis
based on a stochastic Liouville equation is not limited to the systems obeying the
Van den Broeck restriction Wj; =0 for ;' # j+ 1 and avoids the difficulties related to
the evaluation of the complicated path sums entering Van Kampen’s approach [1,2].
We introduce the probability

Bi(0,q;1)d® with 8=[0], q=[g,] and ZZ/B,-(O,q;t)dO:l,
J q

(2.11)

that at time ¢ the state of the system is j and that the cumulative sojourn times
corresponding to a total time interval of length ¢ have values between 6; and 0; +d0},
Jj=1,...,M and that the corresponding numbers of transition events are q;,j =1,...,M.
This probability is the solution of a stochastic Liouville equation of the type

o 0
(E + 6_9,) B®.q;t)=> WyB(8,q1.....q0 — L., qu:1) — B,(8,q;1).

J#i’
(2.12)
Together with the initial and boundary conditions
B;j(8,q;t=0)=F(t=0)3,06(0), (2.13)

B; (at least one 8, <0 or ZHI >t t;éO) =0, (2.14)
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Eq. (2.12) completely determines the time evolution of the state probability density
B;(8,q;). The model given by Egs. (2.12)-(2.14) includes the master equation (2.1)
as a particular case. We have

P(t)= - [ Bj(8,q;¢)d0. (2.15)
=3 [ [m

By summing in Eq. (2.12) over gqi,...,qu, integrating over 6y,...,6y and using
Eq. (2.15) we recover Eq. (2.1), as expected.

3. Integration of evolution equations. Moments

In order to integrate the stochastic Liouville equation (2.12) we introduce the multiple
Laplace—Fourier and z-transform of the state probability density B;(9,q;¢)

B(o;z;5)= / // Z H(zj)""exp (—st+ Zﬂjwj>Bj-(0,q;t)d0dt,
2o . J

3.1)
where
o = [0 )], z=[d;z;], (3.2)

w; is the frequency conjugate to the sojourn time ¢, z; is the z-variable conjugate to
g;, and s is the Laplace variable conjugate to the time variable {. We assume that

Res<0, |z|<1l, Imw;=0. (3.3)

These conditions ensure the convergence of the sums and integrals in Eq. (3.1). Strictly
speaking, the integration limits for 6; are given by

0,20, Y 6=t. (3.4),(3.5)
J

We note that these restrictions are implicitly included in Eqgs. (2.12)—(2.14) and thus
we can formally extend the integration limits for 8, j=1,...,M from —oo to +oco.
In matrix notation the transform of Eq. (2.12) is

sB—P0)-Bio=B(W+E - Q), (3.6)
where

B=(8.,....Bu), (3.7

o=[5 ], (3.8)

EZ[VZ‘}'/(ZJ'—— 1)], Ejj:()- (39)
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From Egq. (3.6) we can express B by a relationship similar to Eq. (2.9)

B(0,7;5) =P(0)6(w,z;s), (3.10)
where

G(0,z;5)=Is+Q —io -W-E)"!, (3.11)

is the Laplace, Fourier and z-transform of a Green’s function similar to the Green’s
function G(¢) of the master equation (2.1).

Egs. (3.10) and (3.11) formally solve the problem of determining the stochastic
properties of the sojourn times ¢; and of the numbers of transition events g;. They may
be used to evaluate both the state probability density B;(0;q;¢) and the corresponding
moments of ¢; and ¢;. To do that we use two different series expansions of the matrix
G(®,Z;5).

A first scheme is based on the separation of the diagonal matrices in Eq. (3.11)

G(0,z;9)=[1-JIs+ Q- i0) ' (W+E)] s+ Q—in)"". (3.12)
Here the inverse of the matrix (Is + € — i®) is equal to
(Is + Q — i0) ' =[5 /(s + Q; — iw))]. (3.13)

By expanding Eq. (3.12) in a matrix geometric series we have

G(w.z;9)=) [(Is+Q—io) (W+E)(ls+Q - o). (3.14)
q=0

From Eq. (3.14) it is easy to express the Green’s function &(8,q;?) corresponding
to the matrix ®(®,z;s) in the form of an infinite sum of multiple convolution products
over the variables 0, q and ¢. The resulting expression is cumbersome and in order
to save space we do not give it here. More important is the physical significance of
such expansions: they express the contribution to &(0,q;?) or B(0,q;?) of the different
paths j, — j, —--- of variable length in the state space. The expansion (3.14) or
the corresponding formula for the Green’s function ®(9,q;¢) are similar to the path
summation formula of Van Kampen [1,2]. The approach presented here includes that
of Van Kampen as a particular case. Van Kampen does not discuss the stochastic
properties of the numbers g; of transition events and thus for a comparison we should
introduce the marginal probability density of the state of the system and of the sojourn
times

Ri(®;0)=> Bi(8.q:1). (3.15)
q

From Egs. (3.10)—(3.14) it follows that the Fourier and Laplace transform of R;(9;¢)

ﬁj(m;s);//..-/exp (—st+20jwj>Rj(9;t)d9dt,
00 J
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is equal to
Rj(@;5)=[P(0)6(w;5)];, (3.16)
where
Gi(a;5)=0(0,Vz;=1;5)=[1 - (Is + Q — i) 'W] ' (Is + @ —iw)~".
(3.17)

By expanding Eq. (3.17) in a geometric series and coming back to the real time
variables 0; and ¢, we obtain

t
1, (0; 1) = 65,7, ()0(6;, — ) + /'//joj(to)}’j(to —t)dty
0

+z; ZZ / / l//joj\(t())wjljz(tl _tO)"'
q= J

Veres Jg— 1 ty—1=0 fo=0
Xy i(tgor =t 2y — t—1)0(8;, — to)
X 5(61" —(n — t())) . 5(91 —(t - lq41)) dty - - ’dlq_l , (318)
where
Wy (t)dt = Wy exp(—18;) dt (3.19)

is the probability that a given jump occurs from a given state j to the state ;' after
a waiting time in the state ; between ¢ and ¢ +df and

yj(t)zz /dljjf(t)dt: exp(—1£2;) (3.20)
7%

is the probability that the system stays in the state j in a time interval of length ¢. The
product

Yios W (0 — 10) -+ - W, (g1 — tg—2)y(t — tg—1) dlo - - - dig_) (3.21)

is the probability of occurrence of a path jo — ji — -+« — js—1 — j which is made up of
a transition jo — j; occurring at a time between # and # + dto, ... and from a transition
Jg—1 — j occurring at a time between #,_, and £, + dt,— and that from the time £,
to the current time ¢ the system stays in the state j. From Eq. (3.18) we see that the
Green’s function ®y;,;(8;¢) is the average of a product of delta functions

8(0;, — 10)8(8;, — (1 — ) -+~ 8(0; — (t — t5-1)) (3.22)

which expresses the probability that the sojourn times between the different transitions
are equal to

Hjozt(), 9]-':(1‘1~—t()),...,9j=(t—tq_1). (3.23)
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The average is evaluated by means of the probability distribution (3.21) of a path
of a given length ¢; finally, the contributions of paths of different lengths are added.
Eq. (3.18) is the same as Van Kampen’s summation formula [1,2] which has been
recovered as a particular case of our approach. In particular, if the integrals over
0;,,0;,,...,0; are carried out then Eq. (3.18) gives a path expansion of the Green
function G(¢) connected to the master equation (2.1); similar expansions have been
used in connection with the theory of continuous-time random walks (CTRW, [11])
and of age-dependent master equations (ADME, [12]).

The moments of the total sojourn times 6; and of the total numbers g; of transition
events can be evaluated by using a different type of expansion. The moments of gth
order of these random variables depend on the derivatives of gth order of G(w,z;s)
evaluated in the point =0, Vz; =1. That is why we shall try to find an expansion
of ®(®,z;s) in which the gth term is a homogeneous function of gth order of the
variables w; and z; — 1. If such an expansion can be computed analytically, thus, at
least in principle, all moments of 8; and g; can be evaluated exactly.

We try to express ®(,z;s) in terms of the Laplace transform of the Green’s func-
tion G(¢)

G(s) :/G(t)exp(—st)dt =Is—-W+ Q). (3.24)

From Egs. (3.11) and (3.24) we come to

6(0,2;5) = (G7!(s) - io — E)" ' =[I - G(s)(i® + E)]"'G(s)

o0
=G(s) + Z [G(s)(iw + E)]'G(s) . (3.25)
g==1
As i® and E are linear homogeneous functions of w; and z; 1, respectively, it follows
that the gth term of Eq. (3.25) is a homogeneous function of gth order in w; and z; — 1.
It turns out that (3.25) is the expansion sought for.
The moments of the sojourn times

CRORNNGOEDY Z//G -+ 6,,B;(8,q;1)d0, (3.26)
Jj 9

may be evaluated by means of the equation

(0, () - By (D) =i 9.8~ {ZZ l@q(%z(m.,.v‘zé;:l;s)} } (3.27)
Uy uy =0

which can be derived by combining Eqgs. (3.10), (3.15), (3.16) and (3.26). In Eq. (3.26)
£~ denotes the inverse Laplace transformation with respect to the s-variable. Only the
gth term from the expansion (3.25) gives a contribution to Eq. (3.27). We emphasize
that in Eq. (3.27) some of the labels u;,u>,...,u4, may have the same values and thus
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this equation can be used to evaluate all moments of the sojourn times, 6;, including
the ones having the form (07" ---0;/"), where my = 1,my > 1,...,my > 1. After some
calculations, Egs. (3.25) and (3.27) lead to the following expressions for the moments
of the sojourn times:

1
000, 0) =3 [ RO Cup, 089G, O (328)
* 0
where ® denotes the temporal convolution product:
t
e o= [ 1611501, (3.29)
0
P(t) is the solution of the master equation (2.1):
B()=)_ B(0)G;(1), (3.30)
Jo
and
o = (0y,...,0) (3.31)

is a permutation of (1,...,q) and the sum runs over all possible permutations (1,...,q).
From Eq. (3.28), we get the following expressions for the average values of the sojourn
times and for the elements of their covariance matrix:

t

(0(8)) = / Ry, (332)

0

(A46,,(1)A46,,(1)) =// By () Guyus(t' — 1" + By (t' )Gy (' — )] dt dt”
0

0
t ot
—//E,,(t’)ﬂz(t”)dt'dt". (3.33)
0 0

The other moments of the sojourn times 6; and of the numbers of transition events g;
can be computed in a similar way (see Appendix A). We get the following expressions
for the mean values of ¢; and of the covariances of g; and of ¢; and 6;:

t

(qu(t)) =2y / B(t')dt', (3.34)

0
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! t

(Aqu,(t)Aq,,z(t» = (£, /Hu(t,)dl/ Ouyuy _Qu:/Rzz(tH)df”

0 0
t
+// |B41(t’)2 qulejuz(tl - t”)Quz
0 0 J
+Btz(tl)z m‘sz/ul(tl - t”)'Qlu dr' di" s (3.35)
J
I3 t
(40,2000 =~ [ [ B2t "
0 0
t
+f/ [R,,(t’)Gu.uz(t’ ),
0 0
+Puz(t')z Worj G, (' — t")} di’ di” . (3.36)
J

Egs. (3.28) and (3.32)-(3.36) for the moments of the sojourn times and of the
numbers of the transition events are new. They are valid for any time interval of
length ¢, short or long. Although exact, these equations are rather difficult to be used
in the general case. In the asymptotic regime they turn into simpler forms which are
easy to use. The analysis of the asymptotic behavior of Egs. (3.28) and (3.32)—(3.36)
is the subject of the next section.

4. Asymptotic behavior. Ergodic properties

It is known that for a Markov processes with a finite number of connected states
the probability vector P(¢) and the Green’s matrix G(¢) tend towards stationary values
which are independent of the initial state of the system:

plst . pAfI’
rlim P()=[P" - P] and tlim GH)y=| - - - - -1, @n
Plsf .. pbflf

where P =[P -.-Pj] is the stationary solution of the master equation (2.1).
In order to evaluate the asymptotic behavior of the moments of the sojourn times
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and of the numbers of transition events we need to know also the properties of the
functions

L= / G, (1)) dt', (4.2)
t

190 = [ GPana. (43)
0

In Appendix B we show that

() =tB" + Gy + A} (1), (4.4)
2 s 1)
LW =12P" +1C,; + 4D + A, (4.5)

where C;,; and Aﬁ J) are constants and A( )(t) are combinations of exponentials with

constant or polynomial coefficients of ¢ wh1ch decay exponentially to zero as t — oo

APP()—0 as1—co. (4.6)

For the analysis of the asymptotic behavior we need only the values of £ and C;,;.
The stationary state probabilities B* are determined by the stationary form of the
master equation (2.1):

S WPt =QP", j=1,...M, 4.7
J' A
and by the normalization condition
> p=1. (4.8)
j
In Appendix B we derive a system of linear equations for C;; which is similar to
Egs. (4.7), (4.8):

P — o =ZC}‘u%j' - Cyp Qs i =1.,M, (4.9)
u#j
> Cy=0, j=1,...M. (4.10)

The system (4.9), (4.10) has only one non-trivial solution.
By using Egs. (4.2), (4.3) we get the following asymptotic expressions for the
moments of the sojourn times and of the number of transition events as ¢t — co:

0,6y ~P"t ast— o0, (4.11)
(g ) ~P7Qut ast—00, (4.12)
(46,,(1)40,,(2)) ~ (P“Cul,,2 +PICuu it ast—oc, (4.13)

U
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(A0, (1) A4, (1)) ~ <1;fl'culuzguz +BIY Wuzjcj,,l>z as t— 0o, (4.14)
J

{46y, ()44, (1))

~ (R«S.zéungm + PS, Z %Uquzguz +PSt Z Wl'lzjcjulgll1> as 1 —o00.

(4.15)

Eq. (4.11) has already been derived by Van Kampen [1,2] and a particular case of
Eq. (4.12) for M =2 has been derived by Solc [7]; Egs. (4.13)—(4.15) are new. For
the covariance matrix of the sojourn times Van Kampen gives a different formula [2]

(40, ()46, (1)) ~PIPHQ + Q) ast—oo. (4.16)

Although Eq. (4.16) predicts the same time dependence as our Eq. (4.13), it is not
correct. As the sum of the sojourn times 6; is constant and equal to the length ¢ of
the time interval considered (see Eq. (3.5)), we should have

DD (46, (6)40,,(1)) = < [Z AOu(t)} > ([40%) = (4.17)
u) U

Our Eq. (4.13) fulfills the condition (4.17); this condition is a consequence of the iden-
tity 2y, Cuyuy = 24, Cusuy, =0 (see Eq. (4.10)). On the other hand, from Van Kampen’s
formula (4.16) we obtain

2
<lZAOu(t)] > =2 B'/Q,>0, (4.18)

an expression which is wrong.

Egs. (4.11)—(4.15) have two important physical consequences. The first consequence
is related to ergodicity and has already been noticed by Van Kampen [2]. Considering
a physical variable f(j) which depends on the state j of the system but does not
depend explicitly on time, from Eqs. (4.11) it is easy to show that

Jlim =Y (00 = (FON (4.19)
J
where
(fON® ZP“f(f) (4.20)

is the stationary ensemble average of the variable f(j). It follows that for 1 — oo the
time evolution of a single system passing from one state to another may be represented
by a stationary ensemble of systems characterized by the probabilities 2%, j=1,..., M.
The connections between this property and ergodicity are discussed later in this sectior.
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A second consequence is related to the relative magnitude of fluctuations of the
sojourn timers and of the numbers of transition events. From Egs. (4.11 )—(4.15) we can
compute the relative fluctuations of 6, and g,, £(0,) and &(q,), respectively. We obtain

e(0,) = 1/ ((40,())2)/(0.(1)) ~ t7'2\/2Cu/P5" as t — o0, (4.21)
E(qu) = ((AQu(t))2>/<qu(t)>

~t 12 <1+2Z%Cju>/(ﬂ”!2u) as t—o00. (4.22)
J

As t — oo, the relative fluctuations of the sojourn times (Egs. (4.21)) and of the num-
bers of jump events (Egs. (4.22)) decrease to zero as ¢~ '/2; thus, for large times, the
contribution of fluctuations is negligible in comparison with the average values. Here
the length 7 of the time interval plays the role of a large parameter similar to the total
number of particles in equilibrium statistical mechanics: Eqs. (4.21) are “s~1/2 laws”
which justify the use of the average quantities (6,(r)) and (g,(¢)) for the description
of the system, for instance for the evaluation of the rate or transport coefficients. We
emphasize that as t — oo the fluctuations, although very small, play, however, a certain
role in the description of the system. To show that we evaluate the relative correlations
between 0, and g,.

Corr(0u s 0u,) = (404, 40,,)/1/ ([ 46, 2){[46,,)%)

~ [Bj;tculuz + R;S;Cuzul]/\/4pus]t}?fztcu|u| Cupu, 88 t—00, ug #uy,

(4.23)
COrt(0u3 gus) = (400, Agus)/ 1/ (140, 12){[ 41, 12)
[ uluzQuz +P“Z VVuz}CI“) /
B3 Cypuy (2+4Z W,,U-Cjuz) as t — oo, (4.24)
j

Corr(qu,; qu,) = (AqulAquz>/\/<[Aqu|]2><[A‘1u2]2)
P”Z uuC/'uzQuz +PStZ mzjcjuxgul
\/Pﬁtﬂitguuguz(l + 22 WaiCu )L+ 32 Wi jCuy)

as t— 00, Uy Fuy . (4.25)
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The relative correlations do not vanish at #— oo but rather tend towards constant
values.

The asymptotic behavior of the joint probability density B;(0,q;?) cannot be evalu-
ated in a simple way. However, the asymptotic form of the reduced (marginal) prob-
ability of the sojourn times

RO.N=D_ Y B0.q:0), (4.26)
;ooa

can be evaluated analytically by using the expressions (3.28) for the moments (6,,(¢) - -
f,,(t)). The asymptotic ‘t=1/2 law’ (4.21) suggests the introduction of the scaled so-
journ times

7= (0; - (@‘))/\/@ ) (4.27)

in terms of which we define as called probability density
R*(1;1)dr=R(0;1)dO (4.28)

and the corresponding characteristic function

(s*(m*;z):/.../exp(z-zwj‘r,) R*(r; 1) dr. (4.29)

where wj-‘, j=1,...,M are the Fourier variables conjugate to the scaled sojourn times
T, j=1,....,M.

Our method of evaluating the probability density of the sojourn times in the limit
t — o0 is to compute the asymptotic behavior of the moments (8,,(¢)---0,,(¢)) and to
evaluate the characteristic function €*(w*;¢) by expressing it as a moment expansion.
If the characteristic function (f*(m*;t) is known then the probability R*(t;1)dr can
be evaluated by means of an inverse Fourier transformation.

The first step is to express the moments of the scaled sojourn times in terms of the
non-scaled moments given by Egs. (3.28). By using Eqgs. (4.27) we obtain

ATT O }

(rul e leq> =(-1)*

H;fnzl (9,;,ﬁ>
(4.30)
where the star * shows that in the multiple sum over ay,...,o, all labels should be

distinct. Eq. (4.30) can be easily proven by the direct expansion of the product

q

110 -6.,,/0.,)] (4.31)

m=1

and by averaging the resulting expansion. We insert Egs. (3.28) for the moments of the
non-scaled sojourn times into Eq. (4.30) and evaluate the asymptotic behavior of the
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multiple convolution products by using the properties of the Green’s functions Gy (1)
derived in Appendix B. The calculations are cumbersome but standard; by keeping the
non-vanishing terms in the limit 1 — oo we obtain

<‘Eu, (t) T Tuz‘,(t»

D3 BB+ Cae R TE)

all partitions of 2¢

x [Cuy}u,‘l \/Pus,l]/Pui: + Cu14“13 sz/fﬁl] Ko

X UCuy i B2, B, Cun, (R IR, ] as 100, (432)
(Tu (8) -+ Tuy, (1)) ~0 as £ — o0, (4.33)

where the sum over the partitions of 2g means a division of the integer 2¢ into g pairs
(o, 22), (23,04, . .., (2291, 024 ); the total number of partitions is equal to

(29)!/12%g"] . (4.34)
In Appendix C we show that the moments (4.32), (4.33) correspond to:

R*(r; 1) =(2n) M [det| m + m*|]""2 exp[— Lr(m + m*) " 'e*] as 1 — o0,

(4.35)
C* (%) =exp[~io* (M +mT)o "] asi—oo, (4.36)
where the matrix m is given by
m=[Cu\/BY/F]. (4.37)

If we return to the non-scaled sojourn times 8, j=1,...,M we get a time-dependent
Gaussian law which includes as particular cases the other similar Gaussian laws derived
for the distribution of sojourn times in different physical and chemical contexts [1-3,9]

R(O; 1) ~ (211) " M?[det|bC + C*b|]"2
x exp{—1(8 — tP*)[¢((bC + C'b)] (0 — tP*)"} ast—oo0, (4.38)
where the matrices b and C are given by
b=[P"5;l, C=[Cy]. (4.39)

It is easy to check that the moments of first- and second-order corresponding to the
Gaussian law (4.39) are the same as the ones given by Eqs. (4.11) and (4.13). The
characteristic function

C(w; 1) = / / exp (izcojej)m(e;z)de (4.40)
J
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is also Gaussian,
) t
C(w; 1) = exp {irP“m+ ~ SobC+ C+b)m+} as t — oo (4.41)

Now we discuss the general relationship between the relation (4.19) and ergodicity.
Given a time interval of length ¢ we introduce the time average

AN A A

U= [ rriendr (4.42)
0

By observing that the sojourn time 8;(t) of the state ; corresponding to a time interval
of length ¢ can be expressed as the time average of a Kronecker symbol

t
0;(¢) = / i ndt’ (4.43)
(4]

the time average (4.42) can be expressed as the weighted sum of the sojourn times 0;
corresponding to the different states of the system

NNNNN M
FLUENO=1"D" 6 () - (4.44)
J=1

A A~

If a system is ergodic then in the limit t — oo the time average f[j(¢')] (oc) is
equal to the corresponding ensemble average

oA~

SLIE ()= (f (), (4.43)

where the statistical ensemble average (f(j))* is given by Eq. (4.20). In general, since

oA~

the sojourn times 8,(¢), j = 1,...,M are random the time average f[j(¢')](¢) is also
random and then we can introduce the statistical ensemble average of a time average

N~ M M
L) = <t-‘ 3 Gj(t)f(j)> = S GO (4.46)

Jj=1 j=1

where the average (---) is given by

(- :/.A.g{(e;,)dg. (4.47)

In particular, Eq. (4.19) can be expressed as

~ A

(LI (o0) = (FGNT - (4.43)

By comparing Eq. (4.45) with Eq. (4.48), we notice that for the ergodic property to
be valid it is necessary that

A A ~ A

(LM (00) =fLj(E)] (o0), (4.49)
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i.e., for an ergodic process in the limit 7 — oo the ensemble average of a time average
should be equal to the time average itself. In other words for the ergodic property to

~ A A~

be valid it is necessary that in the limit t — co the time average f[j(t')](co) should be
non-random. The non-randomness condition can be expressed for instance by requiring

that all cumulants of the time average f][ j(Nt’ )T(oo) of order bigger than one vanish

N A A~

(fLIEMNE) =0 ast—o0, m=2, (4.50)

where ((---}) denotes the cumulant average. In general, it is very hard to check whether
all cumulants of order bigger than one vanish. That is why we use a non-randomness
condition in the mean square sense commonly used in the mathematical literature by
requiring that only the second cumulant of the time average vanishes

~ro Ao ~A A A A ~e A

~ o~

= {([/TENP) —0 as —oo. (4.51)

The cumulant of second order of the time average can be easily computed by combin-
ing Eqs. (4.44) and (4.51) with the expressions (4.11) and (4.13) for the asymptotic
behavior of the moments of the sojourn times 6;, j = 1,..., M. After some calculations
we come to

e~

(UL =D fw) f(u2){ 46, 46,,)()

Ui (233

~2t7 ! <f(u)ZCuu/f(u’)> —0 ast—o0, (4.52)

where the averages (---)* are computed in terms of the steady-state probability PS'.

A~ A

From Eq. (4.52) it follows that in the limit ¢ — oo the time average f[j(¢')] (¢) is
non-random in the mean square sense and thus the ergodic property (4.45) holds [13].

5. Conclusions

In this article, a new description of the evolution of Markov processes in continuous
time and with a finite number of states has been suggested by using the total sojourn
times and the numbers of jump events as random variables. In terms of these variables
the dynamics of the process can be described by using a stochastic Liouville equa-
tion. Two infinite-order perturbation approaches have been developed for evaluating
the stochastic properties of the sojourn times and of the total numbers of transition
events; these approaches lead to exact expressions for the moments and the cumulants
of the random variables. The asymptotic stochastic behavior has been investigated in
the limit of very large times. In this limit, the sojourn times become Gaussian ran-
dom variables and their cumulants of first- and second-order increase linearly in time.
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This linear time-dependence of the cumulants ensures the ergodicity of the Markov
process.

The computations presented in this article are more than a simple academic exer-
cise. They may serve as a basis for a systematic approach for computing transport
coefficients and effective rate constants for rate and transport processes in system:s
with dynamical disorder and for the study of fluctuation dynamics in reaction-diffusion
processes. Such an approach for computing rate coefficients is a direct generaliza-
tion of Van den Broeck’s approach to the problem of Taylor diffusion [3-9]. Pos-
sible applications include the study of exotic (dispersive or enhanced) diffusion, the
stochastic theory of line shape, the propagation of non-linear chemical waves in ran-
dom media, etc. Moreover, the theory can be used for making a connection between
the stochastic theories and the thermodynamic description of non-equilibrium steady
states. Other possibilities of application are related to the study of relative stability in
reaction—diffusion systems far from equilibrium. Work on these problems is in progress
and the results are going to be presented in other articles. In the next paper we
are going to discuss the connections between our approach and the thermodynamic
description of a non-equilibrium convection—diffusion process in an external force
field [13].
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Appendix A

We introduce the one-time mixed factorial moments

(qi(gir =) Aqy —mi + 1) qulgu — 1)+ (gyr —my + 1)6, - 6,)

:ZZ“'Z%(%—1)"'(QI—m1+1)"'
j

q1 qm

Xqulgy — 1) (gqu —mpyr + 1)

< [ [ am@and. (A1)
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From Eq. (3.1) we notice that the mixed factorial moments (A.1) can be computed
from B;(®;z;s) by repeated differentiation

(g =) (qr —mi+ 1) qugm — 1)+ (gar — mpyr + 1)0,, -+ 0,,)

om +~~+m,u+p§.(u)' Z, S)
— _ . py—l j : ,
(=) [ézf'l c aZ/'\',;M 60)141 T aw“ﬂ:‘ vz=1; @=0 ‘ -
We use the identity
m
s
Z aqg—1)(g-m+1), (AJ)
where
1) k"
e = Z o »

< ki(p — b)!

are the Stirling numbers of second kind. From Egs. (A.2)—(A.4) we can compute all
central moments (g7"' - - - g, ---0,,) and the corresponding cumulants. In particular,
for my., = 1;2 after some calculations we come to Egs. (3.34)—(3.36).

Appendix B

We express the matrix Greens function G(¢) of Eq. (2.1) as an inverse Laplace
transform

GH)=L ' As-W+Q) . (B.1)

From Eq. (B.1) it follows that the time dependence of G(t) is determined by the roots
of the secular equation

det|Is — W+ Q| =0. (B.2)

Since the matrix elements Gj;(¢) obey the normalization condition ¥ » Gp()=11it
follows that so =0 is a simple root of Eq. (B.2). The other roots si,s,,... are either
real and negative or complex with negative real parts. If the roots of Eq. (B.2) are so =

0,51,52,83,... with multiplicities mg = 1,m,my, m3, ..., then G(¢) can be expressed as
t*="exp(spt)
B.3

=22 E (=Dt — 1 ®2

where
dm—* Adj(Is — W + Q)
= — sg )" B.4
G ds™ { [ det|Is — W + Q] (5= 3) (B.4)

s=5
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By inserting Eq. (B.3) into Egs. (4.2) and (4.3) we obtain Eqs. (4.4) and (4.5) where
the constant terms C;; and A}g} come from the time-independent parts of the integrals:

1

t
/t"_'exp(—s,;t)dr and //tk_lexp(—s,;t)dtdt'. (B.5)
0 0

0

A possible way of computing the matrix elements C;;» would be to express Eq. (4.2)
for I"j(O j)(t) in terms of Eq. (B.3) for the matrix Green’s function G(¢) and to keep
the time-independent terms. This method is cumbersome because for applying it we
need to know the solutions sq = 0,5},53,53,... of the secular equation (B.2). A more
advantageous way of evaluating G, ; is to integrate term by term the evolution equation

for the Green’s function G(t)
dG(t)/dt = G(t)(W — Q), Gr=0)=1I, (B.6)

and the normalization conditions

S Gpny=1, j=1...M, (B.7)
7
resulting in
t
G(t)—I:/G(t)(W—Q)dt, (B.8)
0
t
Z/G,,,(:)dzzz, i=1..,M. (B.9)
U]

By inserting Eq. (4.4) into Egs. (B.8) and (B.9) and keeping the constant terms in the
limit £ — 0o, we come to Egs. (4.9) and (4.10).

By summing in Egs. (4.9) over j' we come to M identities 0 = 0 and thus of the M/ 2
equations only M(M — 1) are linearly independent. The M supplementary conditions
(4.19) provide the necessary additional information for the determination of the M2
unknown matrix elements Gy, Lil=1...,M.

Appendix C

We express the scaled characteristic function C*(w*;¢) in terms of a moment
expansion:

(f*(u)*;t)——-l+z(_1)qz Z (T (8) T, () (C.1)
pn

< (2g)!
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We insert the expressions (4.32) of the even moments (z,,(¢)-- -7, (¢)) into Eq. (C.1)
and evaluate the multiple sums in two steps. In a first step we use the expression
(4.34) of the total number of partitions in Eq. (4.32) and express the sum

Z Z Z Z Wy -+ gy (T () Tu (1) (C.2)

uyq all partitions of 2g

as a multinomial expansion. Eq. (C.1) becomes

=) M
—-1) )1
G*((})*, [) = Z ((q)3 5 Z (,U:] w;k:[cumg Puslt/Plfzt + Cuzul PSI/PSI
q=0 : uy,uz=1

(C.3)

The sum over g in Eq. (C.3) can be easily evaluated, resulting in Eq. (4.36). The
probability ER*(t; t)dt of the scaled sojourn times ty,...,7) can be evaluated from the
characteristic function (E*(m*;t) by means of an inverse Fourier transformation

R*(1:1) :(275)‘M/---/(£*(m*;t)exp ~iZ(oj*tj do™ . (C.4)
J

By inserting Eq. (4.36) into Eq. (C.4) and evaluating the integrals over @* we come
to Eq. (4.35).
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