PHYSICA

Physica A 243 (1997) 340-361

Fluctuation dynamics, thermodynamic analogies and
ergodic behavior for nonequilibrium-independent rate
processes with dynamical disorder

Marcel Ovidiu Vlad®®*, John Ross?, Michael C. Mackey®

2 Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
® Center of Maihematical Statistics, Casa Academiei, Calea 13 Septembrie 13,
76100 Bucuresti 5, Romania
¢ Departments of Physiology, Physics, and Mathematics, McGill University, 3655 Drummond Street,
Montreal Quebec Canada H3G 1Y6

Received 16 December 1996

Abstract

The stochastic properties of the sojourn times attached to a Markov process in continuous
time and with a finite number of states are described by using a statistical ensemble approach.
This approach is applied for investigating the large time behavior of independent rate processes
with dynamical disorder. The large time behavior of the system is described in terms of an
effective transport operator which can be expressed as a static average with respect to the
stochastic properties of the sojourn times. The method is illustrated by the generalization of the
Van den Broeck approach to the generalized Taylor diffusion. Explicit formulas for the effective
transport coefficients and for the fluctuations of the concentration fields are derived. The results
are used for extending the non-equilibrium generalized thermodynamic formalisms suggested
by Keizer and by Ross, Hunt and Hunt to systems with dynamical disorder. It is shown that the
logarithm of the probability density functional of concentration fluctuations is a Lyapunov
functional of the effective transport equation. This Lyapunov functional plays the role of
a generalized nonequilibrium thermodynamic potential which may serve as a basis for a ther-
modynamic description of the average behavior of the system. The existence and stability of
a steady state can be expressed as an extremum condition for the Lyapunov functional. For
Taylor diffusion in an external electric field different from zero the generalized potential has
a structure similar to the Helmholtz free energy rather than to the entropy. A generalized
chemical potential is derived as the functional derivative of the Lyapunov functional with
respect to the concentration field; the gradient of this generalized chemical potential is the
driving force which determines the structure of the effective transport equation.
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1. Introduction

In the preceding article, herein called 1 [1], we have developed a new method of
describing the dynamics of Markov processes in continuous time with a finite number
of states. This method is based on the use of the total sojourn times and of the
total number of transition events attached to the different states of the system as
additional stochastic variables. The stochastic properties of these random variables
can be computed in terms of the Green function attached to the master equation
of the process. In the limit of large times the sojourn times become Gaussian
random variables and their cumulants of first and second order increase linearly in
time. This linear increase of the cumulants ensures the ergodicity of the Markov
process.

In this article we use the general results developed in paper I for developing
a systematic approach for computing transport coefficients and effective rate coeffi-
cients for rate and transport processes in systems with dynamical disorder. The study
of dynamical disorder is of interest in connection with the analysis of line shape in
spectroscopy [2-9], of catastrophic earthquakes [10] of the Taylor problem is
hydrodynamics {11,12], of the transport processes with dynamical percolation [137] of
very fast chemical processes without activation barriers [14] the description of
fluorescence depolarization [15] of the collective orientational relaxation in liquids
[16] and of protein dynamics [ 17-19]. The evaluation of the time dependence of the
average state variables for these systems is a difficult problem which can be solved
only in a few particular cases. In this article we show that the formalism developed in
paper I is a useful tool is studying some rate processes with dynamical disorder.

The structure of the paper is as follows. In Section 2 the results derived in paper
I serve as a basis for constructing some thermodynamic analogies for nonequilibrium
systems. In Section 3 the analogies developed in Section 2 are used for developing
a general approach for investigating the large time behavior of Markov transport
processes with dynamical disorder. In Sections 4 and 5 the method of studying the rate
processes with dynamical disorder is illustrated in the particular case of Taylor
diffusion in an external force field. Finally, the main results of our approach are
summarized in Section 6.

2. Ensemble description for the statistics of sojourn times

In paper I [1], we have studied a Markov process in continuous time with
M discrete states. For such a system the probability P;(t) that at time ¢ the state of the
system is j is the solution of the master equation

dP(t .
—d’—(—)= Y PAOW;;— PQs jij=1,...M, @.1)
S
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with
J#i

where Wj; is the transition rate from the state j to the state j and ©; is the total
transition rate from the state j to other any other states and P(t) is the probability that
at time the state of the system is j. For a given time interval of length ¢ for each possible
state of the system, j = 1, ..., M, we have introduced two different random variables:
the total sojourn time 8; of the system in the state j and the total number g; of
transition events from the state j to other states in the time interval considered. We
have shown that for large times the cumulants of first and second order of these
random variables are proportional to the length of the time interval considered.

Moreover, we have shown that in this limit the sojourn times are Gaussian random
variables characterized by the probability distribution

R(0; 1) ~ (2nt)” M2 [det|bC + C*b|] ™12
x exp{ — 3(0 — tP*)[t(bC + C*b)] 1@ —tP*)*} ast— oo, (2.3)
where the matrices b and C are given by
0=[0] P*"=[P]], b=[P}é;], C=[Cyl; (24)

the steady-state probabilities P, j = 1, ..., M, are given by the stationary solution of
the master equation (2.1) and the matrix elements C;; are given by the nontrivial
solution of the linear equations

P;g - 6}1" = Z Cquuj' - ij'Qj'9 j:'j, =1,....M, (25)
u#j
7

The cumulants of first and second order of the distribution (2.3) are linear functions of
time:

B, () ~Pjt ast—c0, 2.7
(A6, (0)40,,(1)) ~ (Py Cyupu, + PyC,.)t ast— . (2.8)

This linear dependence of time ensures the ergodicity of the Markov process
considered.

In this section we study the statistical properties of the sojourn times in the limit
t — oo by using a statistical ensemble description. Instead of studying a single system,
we consider a large number .4 of identical replicas of it and investigate the statistical
behavior of their ensemble. We express the number 4" of systems as a sum (or rather
as an integral) of the densities #(8; ¢} attached to the different sets of sojourn times:

W= jn(ﬂ; 1)de. 29)
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Here n(0; t)d0 is the number of replicas with the sojourn times between 6, and

0,+db, u=1,..,M, corresponding to the total time interval of length t. We are

interested in the evaluation of the stochastic properties of the density of states #(8; ).
We introduce the characteristic functional

S[KO: 1] = <exp{i j K(®; 0n(0; 1) d6}> , 2.10)

where the average is taken over all possible random functions #(0; t). For evaluation of
the characteristic function Z[ K (0; t)], we express the density of states #(8; ¢) as a sum
of delta functions, each delta function corresponding to a different replica of the
system:

n(®; 1) = i 30—86,), (2.11)

/

where the statistics of the vector 8,/ = 1, ..., 4" of the sojourn times attached to the
different replicas are described by the Gaussian probability density #(0; ) given by
Eq. (2.3). Since by definition all replicas are independent, the vectors 8,/ =1, ..., A"
are independent random variables selected from the probability density #(8; t). It
follows that the characteristic functional Z[K(@8; t)] can be evaluated by inserting
Eq. (2.11) into Eq. (2.10) and by computing the average in terms of 4" probability
densities of the type (2.3), Z2(0y; t), ... ,#(8.,; t) attached to the different replicas of the
system:

E[K® )] = Jjn {A(®,; 1)} exp {i Y K8, t)} de, ...de .,

A"

- {1 + f (exp[iK(0; 1)] — 1}2(8; t)dﬂ} . 2.12)

The cumulants {{#(8; t) ... n(8,; 1)>>, m = 1,2, ... of the density of states are
defined by a functional Taylor expansion of the logarithm of the characteristic
functional Z[K(0; t)]

0

InEZ[KO; 0] = ¥ ‘inﬁ«”(e’; 1) .00, 0> K@y 0) ... K(®,; 1)d0; ... db,, .
m=1 :
(2.13)

By expanding the r.h.s of Eq. (2.12) in a functional Taylor series in K(@; t) and
comparing the coefficients of the resulting expansion with Eq. (2.13) we get the
following expressions for the cumulants:

K@ 1) ..nO@m > =3 ¥ - Y Ougpa ATV

n=1 g, =1 Bz 1

_lﬂfl ’
x%j..-](’?(eﬁ; B .. (8 1) ... dO ...dﬁ;ﬁa(el ey

X 5(0ﬁ1 — 9’1) e 5(9;}14, e H B 1 T 9;,) 5(8ﬂ1+ T 9;,) N (214)
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where
(0 1)y = N R(O; 1) (2.15)

is the average density of states.
By considering a limit of the thermodynamic type for which the number of replicas
tends to infinity but the average density of states remains constant

N = oc with (#(0; t)> = constant, (2.16)

the expressions (2.14) for the cumulants of the density of states take a form character-
istic for a Poissonian process

@4 1) .. (0 1)) = (01 1)>6(8;, — 8,) ... 60,1 —6,), (217)

and the characteristic functional Z[ K(®; t)] has a Poissonian form
ZE[K(0; 1)] = exp{.,/Vf{exp[iK(G; )] — 1} (6, t)dﬁ}. (2.18)

In particular, if we consider small but finite cells in the 8-space and denote by

AN (B, 1) with Y AA@,; 1) = A", (2.19)

the numbers of replicas attached to these cells, then the corresponding probability
distribution of 4.47(0,; t) is a multivariate Poissonian:

. 4.4(0,:1}
o1 {[<n(ew 0>40,]

P(Au’vﬂ(ol; t), A'/‘/'(OZ; t)’ . A /,‘/‘(9 . t)’

u

xexp[— <?1(9u;t)>419u]}, (2.20)

from which, by using Stirling’s formula we get

AN (8,
PN ©1; 0, 440 0), ..) =] {\/2n<n(l: : tt))ﬂ“’ }

u

x exp{— AN P[44 (®; )]}, (2.21)
where
AN O,; AN, ,
SLAN®; ] =T (4 D i { - (9‘,( t))z?ﬁ}’ | 2.22)

is a potential function which characterizes the strength of fluctuations of the density of
states. In the continuous limit 40, >0 the expression (2.22) for the potential
D{AAN(B; t)] becomes

PEO; 1] = J &(8; 1) In{£(8; 1)/2(8; 1)} 40, (2.23)
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where

0 1) = lim Jim 27 ® 9

i hm e Wit fff(ﬂ; 1)do = 1 (2.24)

is the relative frequency of states with sojourn times between 6, and 6, + db,,
u=1,...,M, respectively. Note that the fluctuation potential ®[£(8; t)] has the
structure of the information gain (Kullback information [20-22]) acquired when for
a Markov process charaterized by the theoretical probability density of the sojourn
times Z(0; t) we measure an observed frequency function £(0; ¢). The structure of the
stochastic potential ®[&(0; ¢)] given by Eq. (2.23) outlines the analogies with the
nonequilibrium thermodynamic theories of Keizer and of Ross et al. The fluctuation
formula (2.21) is the analogue of Einstein’s fluctuation formula from equilibrium
thermodynamics and is similar to its nonequilibrium analogs suggested by Keizer
[23] and by Ross et al. [24]. The stochastic potential @[£(6; t)] is analogous to
a generalized thermodynamic state function. In terms of the fluctuating potential
P[E(0; 1)], we can give the following variational formulation for the existence and
stability of the probability density Z(8; ).

SOLE®; 1) = 20; )] =0, (2.25)
S*P[EO; 1] > 0, (2.26)

which corresponds to a minimum of the fluctuating potential @[£(0; t)] and to
a maximum of the probability P(4.47(0y; t), A4 (03; 1), ...) for £(0; t) = #(6; 1).
Eqs. (2.25) and (2.26) are similar to the conditions for the existence and stability of
nonequilibrium steady states in the thermodynamic theories of Keizer [23] and of
Ross et al. [24]. The analogies with these theories can be further developed by
noticing that we can write down an effective Fokker—Planck evolution equation for
the average frequency density &(8; ) of the sojourn times

0,E(8;1) = — ), P [0(8;0)/00,]

1 -
+5 Y Y [P Cup, + PiiCu, 1[6%E(8; 1)/00,,00,,] . (2.27)
This Fokker—Planck equation for the frequency density &(0; 1) has the normal
solution

EO; 1) =20 1), (2.28)

where #(0; t) is given by Eq. (2.1). However, not all solutions of Eq. (2.27) have this
form; for small to moderately large times the solutions of Eq. (2.27) are convolutions of
the initial condition for £(6; ¢) with the normal solution (2.28) which is also the Green
function of Eq. (2.27). For large times, however, all transient solutions of Eq. (2.27)
depending on different initial conditions tend towards the normal form (2.28) which is
independent of the initial conditions. An important difference in comparison with the
theories of Keizer [23] and the Ross et al. [24] is that these theories investigate the
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eventual emergence of a nonequilibrium steady state in the long run. In contrast, the
normal solution (2.28) is time-dependent and thus in our case the process is non-
stationary even in the limit ¢t —» oo

£(0; t) > 2£(0; t) time-independent as t — oC . (2.29)

Despite the time dependence of the probability £(8; t) the development of a thermo-
dynamic theory is still possible because for large time all information concerning the
initial state of the system has been lost. The asymptotic behavior (2.29) is ensured by
the fact that the fluctuation potential ®[&(0; t)] is a Lyapunov function of the
Fokker-Planck equation (2.27), that is, it fulfills the conditions:

PLE®; 1) # R(O; )] >0, P[EO; 1) =R(O; )] =0, (2.30)
LEO; 1) # RO 0] <0, BLEO: 1) =R(0: )] =0. (2.31)

The proof of Egs. (2.30)-(2.31) is lengthy but standard. For saving space and avoid-
ing repetition the detailed derivation is not given here; for similar proofs see
Refs. [25]-[27] and Section 5. The derivation is based on the fact that the probability
diffusion tensor in Eq. (2.27), P}/ C, ., + Pi,C.,.,. is given, up to a positive propor-
tionality factor, by a covariance matrix (see Egs. (2.8)) and it is therefore positive
definite for fluctuations different from zero. The Lyapunov property (2.30)—(2.31) of
the fluctuating potential @[£(0; 1)] is closely related to the variational conditions
(2.25)-(2.26) and may serve as a basis for the development of a thermodynamic
formalism similar to the formalisms suggested by Keizer [23] and by Ross, Hunt and
Hunt [24]. Some aspects of this formalism are presented in Section 5.

3. General approach to independent transport processes with dynamical disorder

A simple application of the ergodic property of Markov processes is the investiga-
tion of the large time behavior of rate or transport processes with dynamical disorder.
Our method of analysis is very simple: we express a realization of the random function
which describes the behavior of the system in terms of the total sojourn times attached
to the different states and then we evaluate the probability density functional of the
random function or the corresponding mean value by averaging a given realization
over all possible random variations of the sojourn times in the limit ¢ — co.

In this section we consider a general transport mechanism with dynamical disorder
which includes Van den Broeck’s approach to Taylor diffusion [11,12] as a particular
case. We investigate the spreading of a large number of noninteracting particles
initially placed in the vicinity of the origin of a coordinate system in d,-dimensional
space (d, = 1,2, 3). The particles may exist in different M states j=1,2, ..., M.
Throughout time the state of the particles change, the dynamics of this change being
described by a Markov process. For each different state the motion of the particle is
described by a different transport equation and by different transport coefficients. Our
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goal is to investigate the main features of the spreading process in the limit of
large times.

For a given state j of a particle we introduce the probability g;(r; t)dr that the
position of the particle at time ¢ is between dr and r + dr provided that at time t = O its
position was r = 0. This probability is the solution of a partial differential or integral
transport equation of the type

¢ig;(r; 1) = Tg,(r; t) with g(r; t = 0) = d(r), (3.1)

where T; is a translationally invariant linear differential or integral operator. For
example, T; can have the form of a master or of a Fokker—Planck operator

Tg;(r; t) = J‘Wj(r — g, H)dr — g,(r; t) J“Ilfj(r’ —r)dr, (3.2)
Tigir; t) = — V-[v;g;(r; )] + Z Z DY, [o%g;(x; t)/dr,or, ], (3.3)

where #(r —r’), v; and [D¥],j =1, ..., M are transition rates, drift velocity vectors
and diffusion tensors attached to the different states of a particle.

The dynamics of the process can be described in terms of the joint probability
distribution

pr; )dr  with )’ Jpj(r; Hdr=1, (3.4)

that at time ¢ the state of the particle is j and that its position is between dr and r + dr.
The probability density pj(r; t) obeys a compound evolution equation

Ot t) = Tip(es ) + Y py(r; W, — pj(; )2, (3.5)

i
with the initial condition
pi(E; £ = 0) = 8(r) Pyt = 0). (3.6)

For studying the asymptotic behavior of p;(r; t) as t — o0 we take advantage of the
translational invariance of Eq. (3.5) and use the Fourier transformation technique.
Egs. (3.5) and (3.6) become

api(k; 1) = Ty(k)p,(k; 1) + Z Pk W5 — pik; 1Q;, (3.7)

pik; t =0) =Pt =0), (3.8)

where

plks ) = [ explik-r)py(e: ) dr

1s the Fourier transform of the joint probability density p;(r; t), k is the wave vector in
the Fourier space conjugate to the position vector r and T;(k) is the Fourier transform
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of the transport operator T, Usually, TTj(k) is no longer an operator but rather
a function of the wave vector k.

In Appendix A we show that Eqgs. (3.7) and (3.8) have exactly the same structure as
the evolution equations

ORj(0; 1) = io;Rj(@; 1) + Y Rj(w; )W;; — Ry(m; 1)Q;, (3.9

J#J
Ri(e; 1) =Pt = 0), (3.10)

for the Fourier transform of joint probability density R;(8; t) of the sojourn times and
the state of the particle

Rj(w; 1) = Jexp(i(-)-(o) R;(0; 1) do ,

where @ is the Fourier frequency vector conjugate to the vector 0 of sojourn times.
The isomorphism of Egs. (3.7) and (3.8) with Eqs. (3.9) and (3.10) allows us to express
the Fourier transform of the joint probability density p;(r; ) in terms of the Fourier
transform of the marginal probability density R(9; ¢):

pik; t) = Rj(iw, = Tk, u=1, ...,M; 1) = Jexp[z TT,,(k)H,,]R,—(G; t)do.
' (3.11)

The joint probability density p;(r; t) can be computed from Eq. (3.11) by means of an
inverse Fourier transformation

oy 1) = 2m)~% Jexp(——ik-r)ﬁj(k; ) dk

=Q2n) % Jexp(—ikor) dk jexp[z 'ﬁ'u(k)Bu}R,-(B; t)de. (3.12)

Now we take the Fourier transform of the individual evolution equations (3.1)
attached to the different states of the particle:

2:3;(k: 1) = T,(k)g;(k; £) with gi(k; t =0)=1, (3.13)

where
gik; t) = Jexp(ik -r)g;(r; t)dr. (3.14)

By integrating Egs. (3.13) we arrive at

g_J(kS )= exp(tﬂ}(k))s ]= L ....M, (315)
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and thus Eq. (3.12) for the joint probability density p ;(r; t) can be expressed as

py(Es 1) = f Ri(0; g, (r: 0,)® ga(K; 02)C - © gur(r: Opr) dO

M
= f f5<r - ru>g1(r1; 01)92(r2; 05) - grr(tar; Op) R;(8; £)dO dr, ... dryy,
u=1

(3.16)

where © denotes the space convolution product

fO© g = f ftr —)g(r) dr', (3.17)
and

g1(r; 0)©ga(r; 0,)© - ©gpylr; Oy)

M
= j J5(f - Z l'u>gx(l'1§ 01)g2(r2; 62) -+~ ga(tag; Opg) dry ... dry (3.18)
u=1

is the M-fold space convolution product of the probability densities g,(r; 6,),

g2(r; 02), ..., g (r; Oy). Here we have taken into account that the product of many

Fourier transforms corresponds to the multiple convolution product of the originals.
The physical significance of Eq. (3.16) is simple: the probability density p;(r; ¢) of the

state and position of a particle at time ¢ is the average of a delta function

5(r—— % ru>, (3.19)

which expresses the contributions of the total displacements ry, ...,ry of a given
particle corresponding to the different time intervals 6,, ..., 0, spent in the states
J=1, ..., M, respectively, the average being taken over all possible values of the
displacement vectors r, ...,ry and of the sojourn times j =1, ..., M.

Since we are not interested in the state of a particle but only on its position we
introduce the marginal probability density p(r; ¢) of the position of a particle,
irrespective of its state. We have

M M
p(r, )= Z pi(r; 1) = j Jé(r - Zl ru> [I_Il g1(r, 9u)]5?(9; t)dOdry ... dry .
(3.20)

From Eq. (3.20) we can derive an effective evolution equation for p(r; ). We write
down an effective transport equation similar to Eq. (3.5):

Op(r; 1) = Terp(r; 1), (3.21)
with the initial condition

p(r; t = 0) = o(r), (3.22)
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where Ty is a translationally invariant differential or integral effective transport
operator. For evaluating the Fourier transform T4 (k) we take the Fourier transforms
of Egs. (3.20)—(3.22), resulting in

ap(k; 1) = Te(k)p(k; ) with pk; t=0)=1, (3.23)
and

M M _
mhm=j~¢[[1mmwmq@wnme=jmpr[zGﬂnwﬂ@wnme
u=1 u=1

=Ciw, =T kL u=1,..,M)

- exp{t[z Pitﬁ_u(k) + % Z Z (Pilcuu/ + Pit'Cu’u)Tu(k)Tu‘(k):'}

ast— oo. (3.24)

Here we have taken into account that for large time the multiple Fourier transform
M@0=wa&®%@0%

of the probability density 2(8; ) of the sojourn times is a Gaussian given by the
relationship

t
Clo; 1) = exp{itPs’mJr -3 o(bC + C+b)m+} ast— o

(see Eq. (4.41) from paper I). By integrating Eq. (3.23) and comparing the result with
Eq. (3.24)_we get the following asymptotic expression for the effective transport
operator T (k)

_ _ 1 .
Tee(k) = 3 Py T, (k) + 3 22 (PiCuw + PEC )T (KT, (k). (3.25)

The stochastic properties of the fluctuations of the numbers of particles can be
studied by using the statistical ensemble approach developed in the preceding section.
Since the particles are assumed to be non-interacting the fluctuating concentration
field c(r; ) at a position between r and r + dr at time ¢ can be expressed as a sum of
delta functions similar to Eq. (2.3):

=Y o),
u=1

where r,(f) are independent random variables selected from the probability density
p(r; t) of the position of a particle at time ¢ given by Eq. (3.20); the vectors r,(¢) describe
the positions of the 4" particles at time ¢, (u = 1, ..., .4"). Note that in this case the
replicas making up the statistical ensemble have a straightforward statistical signifi-
cance: they correspond to the .4” particles making up the system. The computation of
the stochastic properties of the concentration field ¢(r; t) follows exactly the same
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pattern as in Section 6. In the following we give the main results. The characteristic
functional of the concentration field and the corresponding cumulants are given by

A[K(r); 1] = <exp{i jK(r)c(r; t) dr}> = {1 + J [exp[iK(r)] — 1]p(r; t) d,}"y )
(3.26)
Lelry t) ... ety 1)) = Z Y - ¥ 5n(zuﬂu)m—(n—1)
Bz 1

n=1p8 21

__ln—l '
X%J.‘.f@(ra; 0 .. {c(Es 0 .. dry ...dr;ﬁ'ul‘ﬁa(rl ey

X 5([‘1;1 — rll) eee 5(["314. RREY IS r:‘) 6(l'pl+ B T l‘;,) N (327)
where
{e(e; 1)) = N p(r; 1) (3.28)

is the average concentration of particles at a position betweenr and r + dr at time ¢. In
a limit of the thermodynamic type similar to the limit (2.16):

N = oo with {c(r; t)) = constant , (3.29)

the fluctuations of the concentration field are Poissonian and the characteristic
functional A[K(r); t] and the cumulant {c(ry; t) ... ¢(r,,; t)>) become

A[K(); t] = exp{ﬂ” f |:exp [iK(r)] — l]p(r; t)dr}, (3.30)
Lelrg; ) oo ety 1)) = {erg )0(r; —1q) .. 0Ty — Tn—y). (3.31)
The probability density functional of the concentration fluctuations

Dc(r; t)]Z[c(r; )] with J‘ jb[c(r; ) Z[cr; )] =1, (3.32)

is given by an expression similar to Eq. (2.21):

Dlelr; )] 2[elr; )] ~ exp{ —F[c(r; )]} Z[c(x; 1], (3.33)

where F[c(r; t)] is an extensive fluctuating potential given by an expression of the
Kullback information type similar to Eq. (2.23):

Flelr 0] = JC(r; Hin[c(r; 0)/<c(r; t))] dr . (3.34)

4. Generalized Taylor diffusion

As an application of the general approach developed in Section 3 we study
a generalized version of Van den Broeck approach to the Taylor’s diffusion problem
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[11,12]. We assume that the individual transport operators T, are of the Fokker—
Planck type (3.3) and thus the corresponding Fourier transforms T,(k) are square
functions of the wave vector k:

.Wk(k):ik'v:_k'[mu'k+’ Du:[D?‘l)/z]a M=1,...,M, /b/Z:la“"d:m
4.1)

which corresponds to an anisotropic convection—diffusion process characterized by
the individual drift velocities v, and by the individual diffusion tensors D, attached to
the different states of a particle. Due to the random fluctuations of the drift velocity
generated by the random fluctuations of the state of a particle, for a model described
by Eqs. (4.1) a supplementary diffusion of the turbulent type emerges which can
outweigh the intrinsic (molecular) diffusion described by the individual diffusion
tensors attached to the different states of a particle. A variety of experimental
situations can be described by this type of model, for example, the turbulent diffusion
[28], the description of line shape in spectroscopy [5—8], the electrodiffusion [29-30].
Such a description has been used for the measurement of reaction rates in fast
chemical processes of the type

Xo+A,sX, +A4A, wiu =12, ... ,0,0=12,.., 4.2)

where X,, X, are species with different electric charges and variable concentrations
and the concentrations of the species A,, A, are kept constant by buffering [29,30].
A further application is the study of chromatographic separation processes [29,3(].

By applying the general approach developed in Section 3 we get the following
expression for the Fourier transform g(k; ) of the marginal probability density p(r; t)
of the position of a particle:

pk;t)=C(w, =k-v, +ik-D,-k*5u=1,...,M;1). 4.3)

Now we use the asymptotic expression (4.41) from paper 1 for the characteristic
function €(w; t) and notice that g(k; t) is the characteristic function of the probability
density p(r; t). After lengthy calculations we can express p(k; ) in the standard form of
a cumulant expansion

pk; t) = CXP{ i %Z e ke kg, L () r/m(l)>>} ast—>o0, (44)

where the cumulants {{r, (t) --- r, (t)>) of the position vector are given by

Lr )y ~{vpt, >0, (4.5)

Lo (O, () ~ [2<Dm2> + Y (PYCuw + PiiCy) vﬁ‘?v‘,‘;')} ast— o0,
(4.6)
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SUAOGIAULALY

~ |:3 Z (PZICuu' + Pzt’cu'u) (U(/l:)D(/‘;23 + DSII/)Z l)(f';)):]t ast—coCc, (47)
((r,l(t)r,z(t)r/a(t}r,(‘(t)>> ~ [12 Z (P Cpy + P;%Cu,,,)D_ﬁ?;QZD;:Q4Jt as t— oo,
(4.8)
L @)ooy, D) ~0, m>4 ast— oo, 4.9)
where
vy =Y PioY, (D> = Y PYDY.. (4.10)

For large times all cumulants of the position vector of order higher than four tend
to zero. If the intrinsic molecular diffusion coefficients D) are different from zero then
the cumulants of the third and fourth order of the displacement vector are different
from zero and the probability distribution p(r; ¢) has the skewness and kurtosis
coeflicients different from zero. If however the process of intrinsic molecular diffusion
is negligible in comparison with the macroscopic diffusion due to the random
variations of the state of the particle, then from Egs. (4.7)~(4.9) we have

(O et (D) ~ 0, m>2 ast—a0, (4.11)

and as t — o0, p(r; t) is a Gaussian characterized by the cumulants of first and second
order given by Egs. (4.5) and (4.6).

Following Van den Broeck [11,12], in terms of the cumulants of the second order
{ry (0)r,,(t)>), we can introduce the effective diffusion tensor

!

Darr, = lim (<Cry, ()1, (0D426) = <) + 5

Y (PiCur + PECu)0l o
’ (4.12)

Eqgs. (4.3)-(4.12) for the cumulants of the position vector of the moving particle at
time ¢, r(t) and for the effective diffusion tensor are new. If the process of intrinsic
molecular diffusion is isotropic:

Dee. = [D/,0/,1,] 5 (4.13)
and if the jump rates W, are different from zero only if ' = u + 1
W =0 forv #u+1, (4.14)

then the stationary solution of the master equation Pj' as well as the solutions of
Egs. (2.5) and (2.6) for C,, can be evaluated explicitly. By inserting the resulting
expressions for P and C,, into Egs. (4.5)-(4.12) we recover, as a particular case of our
approach, the equations for the cumulants and for the effective diffusion coefficients
derived by Van den Broeck [11,12] by applying a different approach.
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5. Thermodynamic analogies for generalized Taylor diffusion in an external potential
field

Although the thermodynamic analogies can be analyzed in the case of the free-field
system for which a cloud of particles initially placed at r = 0 spread to infinity, the
corresponding results are rather trivial. In this section we try to apply the results
derived before for translationally invariant systems for the more complicated case of
the systems with a position-dependent weak potential field. For such a system the
equations are no longer translationally invariant. We consider a force field derived
from a scalar potential U(r) which generates an additional position-dependent velo-
city field which is dependent of the state u of the particle considered:

(Vaga)r = — Z b, [VU)],, (5.1)

where b = [b,,] is a mobility tensor independent of the state u of the particle.
The evolution equations (3.5) and (3.6) for the position-state joint probability density
p,(r; t) become

O,pi(r 1) = Tipi ) + TVpim ) + Y, pp(e OW;; — pi(: 0)Q;, (5.2)

s
py(r; t = 0) = 3(T)P(t = 0), (5.3)
where the additional transport operator T'! generated by the external field is given by
TO . — b (VU@)V ... +b:(VVU(®)...
=5 b 1@, U, - + (@2, U) 1. (5.4)

By using an interaction representation suggested by Van Kampen [28,31], we search
for a solution of Egs. (5.2) and (5.3) of the type:

pilr; 1) = o(r; )pV(r; 1), (5.5)
where ¢(r; t) is the solution of
dp(r; 1) = TV(r; 1) (5.6)

The solution (5.5) has the form

pilr; 1) = [exp(tT“’){EeXp {Jdt’ [o™'Fo + [@'ﬂf,”]]}}] o), (5.7

0 J

where E is Dyson’s time-ordering operator, F is a matrix differential operator defined
by writing the field-free evolution equation (3.5) in the matrix form

ap (s t)="Fpt(r; 1),
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that is
F=[06;T; + W+ 9,2, (5.8)
and T is the first-order differential part of the operator T

T =6 (VU@V ... =3 by [G, UM, .. +]. (5.9)

If the external field is weak the non-commutativity effects in Eq. (5.6) can be neglected
and we have

ps(r; 1) = exp(tTV) [exp(¢F)]0(r),

and therefore

p(s 1) =3 p,(r; 1) = exp(tT'") exp(iTers )J0(r) = exp[t(TV + Tere )], (5.10)

Eq. (5.10) is the solution of the effective transport equation
ap(r; 1) = (T + Tog)p(r; 1) (5.11)

For simplicity, we limit ourselves to the case where the intrinsic (molecular)
diffusion described by the diffusion tensors attached to the different states of a particle
is smaller than the turbulent diffusion generated by the random fluctuations of the
drift velocity. In this case the effective transport operator T is approximately of the
Fokker—Planck type and characterized by an average drift velocity {(v) given by the
first equation (4.10) and by an effective diffusion tensor Dy = [DI] given by
Eq. (4.12). The inertial component of the motion given by the average velocity field
{v) is non-dissipative and thus uninteresting from the thermodynamic point of view.
Without loss of generality, we consider that the fluctuating velocity field has an
average value zero

vy =0, (5.12)
and thus the effective transport equation (5.11) becomes
Gip(r; ) = T p(r; 1), (5.13)
where
Th o =Y {Dﬁffas,,,, b, Ka U(r))a,,, - (agl,w U(r)> ]}
” (5.14)

By analogy with equilibrium statistical mechanics we assume that, due to the
presence of the external field, a stationary solution of Eq. (5.13) eventually emerges
which is an exponential function of the potential U (r):

p™(r) ~ exp(—pU(r), (5.15)

where f is a positive constant. By requiring that Eq. (5.15) is a stationary solution of
the effective transport equation (5.14) we come to a fluctuation-dissipation relation of
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the Einstein type
b, = BDS . (5.16)

In particular, for equilibrium systems, f§ is proportional to the reciprocal value of the
absolute temperature of the system, T

B=ksT) ", (5.17)
and Eq. (5.16) reduces to the Einstein’s relation generalized to anisotropic diffusion
b, = D5 /(ksT) . (5.18)

For investigating the analogies with the nonequilibrium thermodynamic formal-
isms suggested by Keizer [23] and by Ross et al. [24] we write the effective evolution
equation (5.13) in terms of the concentration field c(r; t),

Ore(r; 1) = T c(r; 1), (5.19)

and try to make a connection between the asymptotic solutions of Eq. (5.19) and
fluctuation dynamics. We notice that the derivation of the expressions (3.26)—(3.35) for
the characteristic functional, the cumulants, the probability density functional of
concentration fluctuations and for the fluctuating potential is based on the assump-
tion that the particles are non-interacting and it is independent of the form of the
probability density p(r; t) of the position of a particle. Since in the presence of an
external field the particles do not interact with each other but only with the field
Egs. (3.26)—(3.35) remain valid. In particular, we can compute the fluctuating potential
F[c(r; t)] for the particular case when the reference concentration has the form

e(r))* = [N exp(—BUr)]/ U exp(—pU(r) dr:l ; (5.20)

which corresponds to the stationary probability density given by Eq. (5.15). From
Egs. (3.34) and (5.20) we arrive at

Fle(r: ] = @ Jc(r; f) dr + Jc(r; O[B! In ¢(r: 1) + U(®)] dr, (5.21)
where

/
i°=1In {[j exp(—pU(r) dr] ’/ A/’} ) (5.22)

The fluctuating potential (5.21) has a structure typical for a free energy functional
made up of an energetic contribution

E= Jc(r; HU() dr, (5.23)
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which gives the total potential energy of the external field and by an entropic
contribution

§=— Jc(r; t)ln c(r; t) dr. (5.24)
We have
F=i°4/+E—p'S. (5.25)

According to its definition (5.21), (5.22), the fluctuating potential F is an extensive state
function which is homogeneous function of the first order of the volume of the system.
By evaluating its functional derivative with respect to the concentration field c(r; t), we
get a zeroth-order homogeneous function which plays the role of a generalized
‘field-chemical potential’

Ale(r; )] = 6F [c(r; 6)}/dc(r; ) =U(r) + % + B ' lne(r; 1) (5.26)

ffc(r; t)] has a structure typical for a partial molar function in an external field which
is made up of the contribution of a function of the chemical potential type,
A° + B~ ! Inc(r; 1) and of the potential field U (r). The thermodynamic analogies can be
further developed by noticing that, if the fluctuation dissipation relation (5.16) holds,
then the effective transport equation (5.19) for the concentration field can be expressed
in the form of a continuity equation

dic; ) +V-J=0, (5.27)

where the components of the particle flux vector J are proportional to the compo-
nents of the gradient of the ‘field-chemical potential’ fi[c(r; t)]:

9] = —elr; 0) 3, D- [Vile( o). (5.28)

Eq. (5.28) has a form typical for an anisotropic force—flux relationship in nonequilib-
rium thermodynamics showing that the gradient of the ‘field—chemical potential’ is
the driving force of the transport process.

We can also prove that the fluctuating potential F[c(r; t)] given by Eq. (5.21) is
a Lyapunov function of the transport equations (5.27) and (5.28), corresponding to the
stationary solution <c(r)>¥, that is, it fulfills the conditions

Fle(m 1) #c(m))¥] >0, Flel 1) =<c(r)>*] =0, (5.29)
Flel ) # <c>™] <0, Fle 8 =<c@m)>*] =0. (5.30)

If Egs. (5.29) and (5.30) hold then in the long run all time-dependent transient
solutions c(r; t) of Egs. (5.27) and (5.28) tend towards the stationary solution {c(r)>*.

e(r; )= {e®))™ ast— 0. (5.31)
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The derivation of Eq. (5.29) is based on the conservation of the total number of
particles which leads to:

Jc(r; t)dr = {(c(r))s‘ dr = 4 = constant, (5.32)
which allows us to express Eqs. (3.34) and (5.21) is the form:

Flec(r; J{c(r Hnle(r; /{cE)>™] — e(x; t) + {c(r)>™} dr . (5.33)

By making use of the well-known identity
xInx+1—-x>0 forx#1, x>0, xlnx+1—-x=0 forx=1, (534)

Eq. (5.33) leads to the inequality (5.29).
The proof of Eq. (5.30) is based on the assumption that the effective diffusion tensor
Do = [D5H-] is positive definite, that is, on the assumption that the square form
attached to D¢ has the property

flyy>0fory#0 and f(y)=0 fory=0, (5.33)
where
J¥) =y Dy . (5.36)

Note that the property (5.36) is consistent with Eqgs. (4.6) and (4.12) which show that,
up to a proportionality factor (2t)~', the components of the diffusion tensor are
proportional to the components of a covariance matrix. By taking the time derivative
of Eq. (5.21) and using the evolution equations (5.27) and (5.28) we obtain

dF/dt = j[dc(r; t)/dt]1n [c(r; t)/<c(r)>™] dr

+ B! fc(r Z D In [e(r; £)/<em>™]@7, In[e(r; 1)/{c(r))™] dr,
(5.37)

from which, by assuming vanishing conditions and performing a partial integratior,
we arrive at

dF/dt = — B! '(c(r; ) Z Dg {0, In[e(t; 1)/<cm)>*1}{d,, In[ec(r; £)/<c(r)> ]} dr .
(5.38)

From Egs. (5.35) and (5.38) we get the second inequality (5.30).
The Lyapunov properties (5.29) and (5.30) of the fluctuating potential F[c(r; 1)] are
closely related to the variational formulation of the conditions of existence and
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stability of the stationary solution {c(r)>™:
OF[e(r; 1) = c(r))*] =0, (5.39)
3*F[e(r; 1) >0, (5.40)

which correspond to a minimum of the fluctuating potential F[c(r; t)] and are
analogous to the similar stationarity and stability conditions suggested by Keizer and
by Ross et al.

We emphasize that the Taylor diffusion in an external field is a typical nonequilib-
rium process and, thus, even though the stationary solutions (5.15) and (5.20) are
similar to an equilibrium solution, their properties may be very different from the ones
corresponding to an equilibrium solution. In particular, the condition of microscopic
reversibility is generally not fulfilled and thus the components of the effective diffusion
tensor D¢ do not satisfy a set of reciprocity conditions of the Onsager type.

6. Conclusions

In this article a statistical ensemble approach has been introduced for the study of
stochastic properties of sojourn times attached to the different states of a Markov
process. The suggested approach makes possible the systematic evaluation of the
effective transport equations and of the transport coeflicients for Markov rate and
transport processes with dynamical disorder. The technique has been illustrated by
the study of a generalization of the Van den Broeck model of Taylor diffusion [11,12].
For this problem explicit expressions for the transport operators and for the effective
diffusion tensors have been derived. It has been shown that for generalized Taylor
diffusion it is possible to construct a nonequilibrium thermodynamic formalism which
1s a generalization to a process with dynamical disorder of the theories suggested by
Keizer [23] and by Ross et al. [24]. The thermodynamic formalism has been
developed starting from a fluctuating potential which is proportional to the logarithm
of the probability density functional of concentration flactuations. This fluctuating
potential is a Lyapunov function of the effective transport equations. For Taylor
diffusion in an external potential force field the fluctuating potential has a structure
similar to that of a free energy functional and its functional derivative with respect to
the concentration field is a generalized ‘field-chemical potential’; its gradient is the
driving force of the diffusion process. Explicit conditions for the existence and stability
of a nonequilibrium concentration field have been given in terms of the fluctuating
potential; these conditions are similar to the conditions of equilibrium and stability
derived from the second law of thermodynamics.

The study of rate processes with dynamical disorder does not exhaust the possibili-
ties of application of the suggested approach. Other applications are related to the
stochastic description of the nonlinear reaction-diffusion systems far from equilib-
rium. In this field the theory leads to a stochastic measure for the relative stability of
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two different steady and makes possible to predict the behavior of propagating fronts.
Work on this problem is in progress.
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Appendix A

The reduced joint probability density R;(8; t) of the state j of the system and of the

total sojourn times 6;,j = 1, ... , M at time ¢ obeys the stochastic Liouville equation
o 0
—+ == R 0)= ) W;R;(01)— QB0 1), (A.1)
or 09, iy

with the initial and boundary conditions
R;(6; 1) =0) = P;(t = 0)6(9), (A.2)
R;(atleastone 0;<0or ) 6;>61t#0)=0, (A.3)

Egs. (A.1)~(A.3) can be derived from the evolution equations for the joint probability
density B;(, q; ¢) of the state of the system, of the sojourn times 6, j = 1, ..., M, and of
the numbers g;, j = 1, ..., M, of transition events at time t. (Egs. (2.12)+2.14) from
paper I). The relations between the probability densities R;(0, t) and B;(0, q; ) is given
by:

R;0,0)=3 B®,q:1). (A4)

By summing in Eqs. (2.12)—(2.14) from paper I over q and by using Eqs. (A.4) we arrive
at Egs. (A.1)-(A.3). By introducing the Fourier transform

mmm:fam&M&&gm, (A.5)
Egs. (A.1)-(A.3) lead to Egs. (3.9)—(3.10). By comparing Eqgs. (3.7) and (3.8) with

Egs. (3.9) and (3.10) we notice the complete isomorphism of these two sets of
equations.
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