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8.1 INTRODUCTION

The biological sciences offer an abundance of examples in which the
dynamics are dependent on the past history of the system being studied. In
the attempt to construct mathematical models for these processes, the dynamic
equations are often framed either as functional equations or, more specifically,
as differential delay equations. Often by studying the solution behavior of
these model systems one can begin to understand the normal biological re-
sponses noted in the laboratory.

Even more interesting are those clinical situations in which the normal
dynamics of a system are replaced, in disease situations, by dynamics with dif-
ferent characteristics. Sometimes these characteristics involve the destabiliza-
tion of a steady state in favor of periodic or aperiodic behavior, or the replace-
ment by a new periodic regime of the normal periodic one. Such diseases are
called “periodic diseases” (Glass and Mackey 1988; Mackey and Glass 1977;
Reimann 1963) and are quite interesting in that they can often give clues about
the nature of the underlying disease expressed as a shift in parameters giving
rise to a bifurcation.

Some of the most fascinating of these periodic diseases are the peri-
odic diseases of the blood (periodic hematological diseases). It has long been
suspected that periodic hematological diseases arise because of abnormalities
in the feedback mechanisms which regulate blood-cell number (Dunn 1983;
Kirk et al. 1968; Mackey 1978; Mackey 1979b; Mackey 1979a; Morley 1979;
Wichmann and Loeffler 1988). Indeed this observation has provided a major
impetus for mathematicians to determine the conditions for oscillation onset in
these mechanisms. There have been two surprising predictions of these stud-
ies (Glass and Mackey 1979; Mackey and Glass 1977): (1) qualitative changes
can occur in blood-cell dynamics as quantitative changes are made in feedback
control; and (2) under appropriate conditions, these feedback mechanisms can
produce aperiodic, irregular fluctuations (“chaotic” in the current vernacular)
which could easily be mistaken for noise and/or experimental error (Bai-Lin
1984; Degn et al. 1987; Glass and Mackey 1988). The clinical significance
is that it may be possible to develop new diagnostic and therapeutic strategies
based on manipulation of feedback (Glass and Mackey 1979; Glass and Mac-
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key 1988; Mackey and Glass 1977; Mackey and an der Heiden 1982; Mackey
and Milton 1987). In this chapter I examine some of these theoretical devel-
opments and discuss their clinical implications, using several different disease
entities as case studies.

8.2 CONTROL OF BLOOD-CELL PRODUCTION

The organization of normal hematopoiesis (the production and main-
tenance of circulating blood cell numbers) is shown in Figure 8.1. It is gen-
erally believed that there exists a self-maintaining population of undifferen-
tiated cells (pluripotential stem cells) capable of producing committed stem
cells specialized for the red blood (erythroid), white blood (myeloid) or blood-
clotting (thromboid) cell lines (Quesenberry 1990). The dynamics of pluri-
potential stem cells and the committed stem cells are regulated by two types
of feedback mechanisms: (1) long-range humoral mechanisms (Cebon and
Layton 1994; Sachs 1993; Sachs and Lotem 1994), e.g., renal erythropoietin
for the erythrocytes, the colony-stimulating factors (G-colony-stimulating fac-
tor and GM-colony-stimulating factor) for the leukocytes (white blood cells),
and thrombopoietin for the platelets; and (2) local environmental mechanisms,
such as stem-cell factor (SCF) which are as yet poorly characterized (labeled as
LR in Figure 8.1). An intrinsic property of these feedback mechanisms is the
presence of time delays which arise because of finite nonzero cell-maturation
times and cell-replication times. Thus many investigators have studied mod-
els of delayed feedback in order to investigate the periodic hematological dis-
eases (Dunn 1983; Kazarinoff and van den Driessche 1979; Kirk et al. 1968;
Glass and Mackey 1979; MacDonald 1978; Mackey and Glass 1977; Mac-
key 1978; Mackey 1979b; Mackey 1979a; Morley 1979; Nazarenko 1976; von
Schulthess and Mazer 1982; Wheldon et al. 1974; Wheldon 1975).

In order to appreciate how oscillations develop in blood-cell number
and their properties such as period and morphology, three steps are necessary:
(1) development of a simple, but physiologically realistic, model for the rele-
vant control mechanism; (2) investigation of the properties of the model, typi-
cally by the use of stability analysis and computer simulations; and (3) compar-
ison of the model’s predictions to experimental and/or clinical observations.

Current analytic and numerical work determine the time-dependent
changes in blood-cell number as certain quantities, referred to as control pa-
rameters, are varied. Control parameters are those quantities which in com-
parison to blood-cell number either do not change with time, or change very
little and hence are regarded by the investigator to be constant. Examples of
control parameters in the regulation of hematopoiesis are the maturation times
and the peripheral destruction rate(s).

8.3 RANDOM CELL LOSS FROM A COMPARTMENT

Let’s consider the simplest possible situation, in which we have cells
in a compartment that die randomly as time proceeds (Figure 8.2). We will
let X (t) be the number of cells (usually measured as a density, e.g., numbers
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Figure 8.1. Hematopoietic regulation architecture. A schematic representation of the
control of platelet (P), erythrocyte (RBC), and white blood cell (WBC) production
(adapted from Quesenberry (1990)), showing loops mediated by the various poietins,
as well as local regulatory (LR) loops within the various stem-cell compartments. CFU
refers to the various colony-forming units (M = megakaryocytic, E = erythroid, GM =
granulocyte/macrophage) which are the in vitro analogs of the in vivo committed stem-
cell (CSC) populations, all of which arise from the pluripotential stem cells (PPSCs).

per liter, numbers per unit body weight, etc.) at a given time t , and assume
that cells are arriving in the compartment (for example, the peripheral circu-
lation) with an input flux of I (t) and are being lost at a random rate γ , so the
efflux to death is D(t) = γ X (t). In hematology, a typical example of a process
whose dynamics are described by this situation is the kinetics of circulating
white blood cells.

I(t)

Death

γ

X(t)

X(t)

Figure 8.2. A schematic representation of our considerations of random cell loss.
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Simple common sense concerning the conservation of cells tells us
that we should have

d X

dt
= I (t) − D(t) (8.1)

= I (t) − γ X (t) (8.2)

as the dynamical equation governing X (t). This is a simple first order differ-
ential equation, and to solve it we have to specify an initial condition

X (t = t0) = X0. (8.3)

The solution to (8.2) in conjunction with (8.3) is, of course, pretty easy to ob-
tain. One could do it using Laplace transforms, or alternately by multiplying
(8.2) by the integrating factor exp (γ t) to obtain

eγ t

[
d X (t)

dt
+ γ X

]
= d

dt

(
X (t)eγ t

) = I (t)eγ t (8.4)

Writing (8.4) in integral form and then integrating, using the initial condition,
(8.3) and rearranging, we have

X (t) = X0e−γ (t−t0) + e−γ t
∫ t

t0

I (z)eγ z dx . (8.5)

If the input of cells I is a constant, then the solution (8.4) of the original prob-
lem (8.2)-(8.3) is even simpler and can be written as

X (t) = X0e−γ (t−t0) + I

γ

[
1 − e−γ (t−t0)

]
. (8.6)

8.3.1 Example

To illustrate how hematologists can make use of such a formulation,
consider the real situation in which a radioactive tracer is given in what is
known as a flash-labeling mode, such that all of the circulating white blood
cells pick up some of the label, but none of their precursors has any. Then, al-
though unlabeled white blood cells will still be entering the circulation through
the flux I , their absence of label will distinguish them from their labeled older
sisters. If we denote the population of labeled white blood cells by X∗, then
their dynamics are going to be given by

X∗(t) = X ∗
0e−γ t . (8.7)

Now we can actually use (8.7) to determine the rate of peripheral cell
death γ in the following straightforward way. If we let the fraction of labeled
cells at a time t after the administration of the label be F(t), then we can rewrite
(8.7) in the more useful form

F(t) = X∗(t)
X∗

0
= e−γ t . (8.8)
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Chapter 8. Hematopoietic Cell Replication and Control 153

Equation (8.8) tells us that the fraction of labeled cells decreases exponentially
with time, and if we can measure what F is at a given time, then we can find
out what γ is. What is typically done is to find the time (denoted by t1/2) at
which the fraction F is 1

2 , i.e., F(t1/2) = 1
2 . Using this notation in conjunction

with (8.8), we have after a bit of algebra that

γ = ln 2
t1/2

. (8.9)

When this experiment is done with white blood cells from humans, the typical
result is that the semilogarithmic plot of F(t) versus time is a straight line, so
it really does decay exponentially, and t1/2 is approximately 6.9 hours, so that
for humans

γ = ln 2
6.9

hr−1 = 0.1hr−1. (8.10)

8.4 DYNAMICS OF CELLS THAT AGE

As a next step in building our toolbox of techniques for dealing with
cell-dynamics problems, let us consider a situation slightly more complicated
that the random-loss one of the previous section.

Now, we consider the case in which cells are in a compartment and
are lost by one of two means (Figure 8.3). First, as before, these cells are lost
at a random rate (again denoted by γ ), and second, they are lost because they
just become too old. In addition, cells arrive into the population with a certain
influx I (t).

I(t) x(t,A)

a=0

Input Deathx(t,a)

a=A

Death
γ x(t,a)

Figure 8.3. The situation in which we have cells living to a maximal age A, but also
dying at a random rate γ .

This sounds somewhat like the situation facing humans or any other
species — the birth rate is I , there are random deaths in the population as we
age, and we eventually die when we get too old if something doesn’t knock
us off randomly. Clearly, there is a certain arbitrary nature to the distinction
between death due to random events versus death due to senescence, but that
won’t bother us here.

We are going to let x(t, a) be the number of cells at a given time t
and age a. Further, we assume that cells can live to a maximum age A and
that cells that immigrate with the influx I (t) do so at an age a = 0. From a
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dynamic point of view, the equation that governs the evolution of x(t, a) is the
first-order partial differential equation (or conservation equation)

∂x(t, a)

∂t
+ ∂x(t, a)

∂a
= −γ x(t, a). (8.11)

To complete the specification of the problem, we will have to supple-
ment (8.11) with the initial condition

x(t = 0, a) = f (a) (8.12)

as well as the boundary condition

x(t, a = 0) = I (t). (8.13)

How to deal with the system (8.11) through (8.13)? Well, the first
thing to realize is that we can write the total number of cells of all ages be-
tween the minimum age a = 0 and the maximum age a = A as

X (t) =
∫ A

0
x(t, a) da. (8.14)

Thus, integrating (8.11) over the entire range of ages and using the definition
(8.14), we have

d X (t)

dt
+ x(t, A) − x(t, 0) = −γ X (t), (8.15)

or, using the boundary condition (8.13), this becomes

d X (t)

dt
= I (t) − γ X (t) − x(t, A). (8.16)

Its easy to understand what each term in (8.16) means, for it just says that the
total rate of change of all of the cells in the compartment is a balance between
the input I (t), the random loss −γ X (t), and the loss to death of those individ-
uals who made it to age A.

However, we can go even further by noting that, using the method of
characteristics, the general solution of (8.11) is given by

x(t, a) =

 x(0, a − t)e−γ t , 0 ≤ t < a,

x(t − a, 0)e−γ a, a ≤ t.
(8.17)

Further, making use of the initial condition (8.12) and the boundary
condition (8.13), we can write the general solution (8.17) in the more explicit
form

x(t, a) =

 f (a − t)e−γ t , 0 ≤ t < a

I (t − a)e−γ a, a ≤ t.
(8.18)
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Chapter 8. Hematopoietic Cell Replication and Control 155

Now (8.16) contains the term x(t, A), and we clearly have, from (8.18), that

x(t, A) =

 f (A − t)e−γ t , 0 ≤ t < A,

I (t − A)e−γ A, A ≤ t.
(8.19)

Thus we can finally write (8.16) in the final and useful form

d X (t)

dt
= I (t) − γ X (t) −


 f (A − t)e−γ t , 0 ≤ t < A,

I (t − A)e−γ A, A ≤ t. (8.20)

8.5 PERIODIC AUTOIMMUNE HEMOLYTIC
ANEMIA: CONTROL OF RED BLOOD CELL
PRODUCTION AND DELAYED NEGATIVE
FEEDBACK

Periodic autoimmune hemolytic anemia is a rare form of hemolytic
anemia in humans (Gordon and Varadi 1962; Ranlov and Videbaek 1963),
but it has been induced in rabbits (Figure 8.4) by using red blood cell auto-
antibodies (Orr et al. 1968). At certain levels of administration, these antibod-
ies oscillate in red blood cell (erythrocyte) precursors (reticulocytes) with a pe-
riod of 16 to 17 days. Rabbit autoimmune hemolytic anemia is one of the best
understood periodic hematological diseases and arises from increases in the
destruction rate of circulating erythrocytes.

The concept of delayed negative feedback can be introduced by con-
sidering the control of erythrocyte production as represented schematically in
Figures 8.1 and 8.5.

To formulate this sequence of physiological processes in a mathemat-
ical model, we will make the following definitions (Mackey 1979b). Let:

E(t) (cells/kg) = circulating density of red blood cell as a function of
time

F (cells/kg-day) = cell influx from erythroid colony forming units, under
erythropoietin control

τ (days) = time required to pass through recognizable precursors

γ (days−1) = loss rate of red blood cells in the circulation

Using this notation, we can write a balance equation stating that the rate of
change of erythrocyte numbers is a balance between their production and their
destruction:

d E(t)

dt
= production − destruction

= F(E(t − τ)) − γ E(t). (8.21)

It is important to remember that once a pluripotential stem cell is committed
to the erythroid series, it undergoes a series of nuclear divisions and enters a

Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996



156 Michael C. Mackey

Figure 8.4. Laboratory-induced autoimmune hemolytic anemia. Oscillations in circu-
lating hemoglobin and reticulocyte counts in a rabbit during constant application of red
blood cell iso-antibody. (Redrawn from Kirk et al. (1968).)

Proliferating/
Maturing

Circulating
RBC’s, E(t)

Cell

Erythropoietin Feedback

Delay, τ Death

Stem

Influx, F

F(E( t −τ))

γ E

Figure 8.5. A fall in circulating erythrocyte numbers leads to a decrease in hemoglobin
levels and thus in arterial oxygen tension. This decrease in turn triggers the production
of renal erythropoietin, which increases the cellular production within the early com-
mitted erythrocyte series cells and thus the cellular efflux from the erythroid colony
forming units into the identifiable proliferating and nonproliferating erythroid precur-
sors, and ultimately augments circulating erythrocyte numbers (i.e., negative feedback)
after a delay τ .

maturational phase for a period of time (τ approximately 5.7 days) before re-
lease into circulation. The argument in the production function is E(t − τ),
and not E(t), because a change in the peripheral red blood cell numbers can
only augment or decrease the influx into the circulation after a period of time
τ has elapsed. Thus, changes that occur at time t were actually initiated at a
time t − τ in the past. To avoid the cumbersome notation E(t − τ), I will adopt
here the usual convention of Eτ (t) = E(t − τ), and I will not explicitly denote
the time unless necessary. Thus, we can write our simple model (8.21) for red
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Chapter 8. Hematopoietic Cell Replication and Control 157

blood cell dynamics in the alternate form

d E

dt
= F(Eτ ) − γ E . (8.22)

The next step in our model construction is to define some appropri-
ate form for the production function F . In vivo measurements of erythrocyte
production rates F in rats (Hodgson and Eskuche 1966) and other mammals
including humans indicate that the feedback function saturates at low erythro-
cyte numbers and is a decreasing function of increasing red blood cell levels
(i.e., negative feedback). A convenient function that captures this behavior,
and which has sufficient flexibility to be able to fit the data, as well as easily
handled analytic properties, is given by

F(Eτ ) = F0
θn

En
τ + θn

, (8.23)

where F0 (units of cells/kg-day) is the maximal red blood cell production rate
that the body can approach at very low circulating red blood cell numbers, n is
a positive exponent, and θ (units of cells/kg) is a shape parameter. These three
parameters have to be determined from experimental data related to red blood
cell production rates.

Combining (8.22) and (8.23), we have the final form for our model of
red blood cell control given in the form

d E

dt
= F0

θn

En
τ + θn

− γ E . (8.24)

Equation (8.24) is a differential delay equation (DDE). In contrast to ordinary
differential equations, for which we need only to specify an initial condition
as a particular point in the phase space for a given time, for DDEs we have to
specify an initial condition in the form of a function defined for a period of time
equal to the duration of the time delay. Thus we will select

E(t ′) = φ(t ′), −τ ≤ t ′ ≤ 0. (8.25)

Usually here we will only consider initial functions that are con-
stant, but it must be noted that differential delay equations (like their ordinary
cousins) can display multistable behavior in which two or more coexisting lo-
cally stable solutions result, depending on the initial function (an der Heiden
et al. 1981; an der Heiden and Mackey 1982; an der Heiden and Mackey 1987;
Campbell et al. 1995; Foss et al. 1996; Mackey and an der Heiden 1984; Los-
son et al. 1993).

8.5.1 Oscillations in differential delay equations

Based on what you have seen so far, it might seem somewhat strange
to claim that the apparently first-order differential delay equation (8.24) can
have oscillatory solutions. It is well established that under appropriate circum-
stances, delayed negative-feedback mechanisms as in (8.24) can produce os-
cillations, and one of the reasons is that (8.24) isn’t really a first-order equation

Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996Final printing: Wed Nov 27 17:19 1996



158 Michael C. Mackey

at all. Rather, it is an infinite-dimensional system; the reason is that the initial
function is infinite dimensional in the sense that it takes an infinite number of
points to specify it.

To illustrate the fact that differential delay equations can in fact oscil-
late, we continue our analysis of (8.24) by using an approximation system for
which we can actually derive the analytic solution.

To do this, we imagine that in the nonlinear Hill function (8.23) we let
n → ∞, so the nonlinearity becomes progressively closer to the step-function
nonlinearity illustrated in Figure 8.6. Under this circumstance, (8.24) becomes

d E(t)

dt
= −γ E(t) +


 F0, 0 ≤ Eτ < θ

0, θ ≤ Eτ .
(8.26)

In reality, the nonlinear differential delay equation (8.26) can be alternately
viewed as a pair of ordinary differential delay equations, and which one we
solve at any given time will depend on the value of the retarded variable Eτ

with respect to the parameter θ . This method of solution, which we are going
to carry out, is usually called the method of steps.

0
E

F(E   )

0

τ

τθ

F

Figure 8.6. A piecewise constant nonlinearity approximating the negative-feedback
function of (8.23) that is obtained in the limit as n → ∞.

In preparation, we must first specify an initial function for (8.26) of the
type in (8.25), and in point of fact it is almost immaterial what type of initial
function we pick. Here, for concreteness, we will pick one that satisfies φ(t ′) >
θ for −τ ≤ t ′ ≤ 0 and specify that φ(0) ≡ E0, a constant.

With this assumption (you could carry out the same analysis as here
with a different initial function, and should do so to convince yourself that the
ultimate conclusion we reach is independent of the initial function), we must
first solve the equation

d E

dt
= −γ E, θ < Eτ , E(t = 0) ≡ E0. (8.27)

The solution is this equation is, of course, almost trivial to write down and is
given by

E(t) = E0e−γ t (8.28)
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Chapter 8. Hematopoietic Cell Replication and Control 159

and this solution will be valid until a time t1 determined by the condition θ =
E(t1 − τ) or, more specifically,

E(t1 − τ) = θ ≡ E0e−γ (t1−τ ) (8.29)

from which we immediately deduce that

t1 = 1
γ

ln
{

E0eγ τ

θ

}
(8.30)

Having this value of t1, it is a simple matter to then show that the value of E
at t = t1 is given by

E(t = t1) ≡ E1 = θe−γ τ . (8.31)

Thus, for the particular form of the initial condition that we have cho-
sen we conclude that the solution is a decaying exponential given by (8.29),
and that this solution is valid until a time t1 given by (8.30), at which point the
solution has the value E1 given by (8.31).

Now to proceed for times longer than t1 we must solve the other dif-
ferential equation as given in (8.26), namely

d E

dt
= −γ E + F0, Eτ ≤ θ, E(t1) = E1. (8.32)

This is almost as easy as the first case, and the solution is given by the slightly
more complicated relation

E(t) = E1e−γ (t−t1) + F0

γ

[
1 − e−γ (t−t1)

]
. (8.33)

According to our assumptions, the solution (8.33) will be valid until a time t2
defined by θ = E(t2 − τ), or

E(t2 − τ) ≡ θ = E1e−γ (t2−t1) + F0

γ

[
1 − e−γ (t2−t1)

]
, (8.34)

from which we have, with a bit of algebra, that

t2 = 1
γ

ln
{(

E0

θ

)[
E1 − (F0/γ )

θ − (F0/γ )

]
e2γ τ

}
. (8.35)

We may then calculate the value of the solution at time t2 [E(t = t2) ≡ E2] to
obtain

E2 = F0

γ
+
(

θ − F0

γ

)
e−γ τ . (8.36)

Therefore, to summarize, for the period of time t ∈ [t1, t2] the solu-
tion to (8.26) is an exponentially increasing function that terminates at a time
t2 given by (8.35) with a value of E2 given in (8.36). These values then con-
stitute the initial conditions for our determination of the third portion of the
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solution and the method of steps is sufficiently clear that we need not write out
things quite so explicitly.

In the computation of this third portion we must once again solve
(8.27) subject to the end-point conditions just determined in the last compu-
tation. This then yields

E(t) = E2e−γ (t−t2), (8.37)

and from θ = E(t3 − τ) we find

t3 = 1
γ

ln
{(

E0 E2

θ2

)[
E1 − (F0/γ )

θ − (F0/γ )

]
e3γ τ

}
(8.38)

so E(t3) ≡ E3 is given by

E3 = θe−γ τ . (8.39)

Now comparison of (8.31) and (8.39) reveals that in point of fact E1 ≡
E3, and this in turn means that we have shown that (8.26) has a periodic solu-
tion! The argument that leads to this conclusion is as follows. Starting from
two different initial values, namely E0 and E2 we have found that we arrive at
precisely the same level E1 ≡ E3, and thus we know that proceeding further
from E3 at time t3 will lead to a value of E4 ≡ E2 at a time t4 ≡ t3 + (t2 − t1),
and that this repeated cycling of the solution between a minimum value of E1
and E2 will continue indefinitely. Furthermore, since E0 and E2 both lead to
the same minimum value of the exponentially decreasing portion of the solu-
tion, we could simply pick E0 ≡ E2 without any loss of generality, and thus t3
takes the slightly simpler form

t3 = 1
γ

ln

{(
E2

2

θ2

)[
E1 − (F0/γ )

θ − (F0/γ )

]
e3γ τ

}
. (8.40)

We can calculate the period of this periodic solution that we have derived by
using t3 − t1, but this should just be equivalent to t2 when we pick the special
initial condition E0 ≡ E2. Denoting the period by T we obtain

T = 1
γ

ln
{(

E2

θ

)[
E1 − (F0/γ )

θ − (F0/γ )

]
e2γ τ

}
, (8.41)

or after substituting the explicit value for E2 from (8.36) we have

T = 2τ + 1
γ

ln
{[

F0/(γ θ)

F0/(γ θ) − 1
− e−γ τ

] [
F0

(γ θ)
− e−γ τ

]}
(8.42)

8.5.2 Steady states

A steady state (Appendix B) for the model (8.24) is defined by the
requirement that the red blood cell number is not changing with time. This, in
turn, can be translated to mean that

E(t) = E(t − τ) = Eτ (t) = a constant, the steady state = E∗,
(8.43)
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and

d E

dt
= 0 so F(E∗) = F0

θn

E∗ + θn
= γ E∗. (8.44)

Now generally we can’t solve (8.44) to get an analytic form for E∗, but a simple
graphical argument shows that only one value of E∗ will satisfy (8.44). This
value of the steady state occurs at the intersection of the graph of γ E∗ with the
graph of F(E∗), as indicated in Figure 8.7.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6

F(E) × 10−11

(γ E) × 10−11

RBC density, E × 10−11 (cells/kg)

F(E)
γ E

Figure 8.7. Determination of steady-state red blood cell numbers in rabbits. The
unique steady state E∗ of the model defined by (8.24) is determined by the intersec-
tion of the steady-state production curve F(E) and the loss curve γ E . Values of the
parameters are selected to conform with the estimates of the normal parameter values
as detailed in Section 8.5.4 below.

8.5.3 Stability of the steady state

Knowing the steady state of a model like (8.25), and how it depends
on the various parameters of the problem, is certainly useful but is not of much
help in understanding the dynamics of the oscillations seen in autoimmune
hemolytic anemia as illustrated in Figure 8.4. To further our investigation, we
must examine the stability of the steady-state E∗ that we determined above.

What does stability mean? In words, it just means that if the body had
a steady-state value E∗ of red blood cell numbers and we perturbed this num-
ber (by, for example, blood donation or transfusion) to a value E less than or
greater than E∗, then over time we would find that

lim
t→∞ E(t) = E∗. (8.45)

We would like to know what conditions on the parameters of our model (de-
struction rate, maximal production rate, etc.) are required to make sure that the
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stability condition (8.45) holds, and even further we would like to know what
happens if the stability condition (8.45) is violated.

Unfortunately, because of the nature of model (8.24) that describes
this physiological process we cannot answer these questions in total generality.
Rather, we must be content with understanding what happens when we make
a small perturbation of E away from E∗. Our assumption that the perturbation
is small allows us to carry out a linear stability analysis of the steady state E∗,
which we now proceed to do.

The nonlinearity of (8.24) comes from the term involving the red
blood cell production function, which is highly nonlinear. What we want to do
is replace this nonlinear term by a linear function in the vicinity of the steady
state E∗. This involves writing out the expansion of F in the vicinity of E∗:

F(Eτ ) � F(E∗) + (Eτ − E∗)F ′(Eτ = E∗)
(8.46)

+1
2
(Eτ − E∗)2 F ′′(Eτ = E∗) + · · ·

remembering that we are assuming that Eτ − E∗ is pretty small, so (Eτ − E∗)2

is even smaller and therefore negligible, and finally writing the approximate
version of (8.24) in the vicinity of E∗ (with the notation that F ′(E∗) ≡ S, for
slope) as

d E

dt
� F(E∗) + (Eτ − E∗)S − γ E . (8.47)

Remember from (8.44) that the defining equation for the steady-state is
F(E∗) = γ E∗. Using this in (8.47), we can rewrite it as

d E

dt
� (Eτ − E∗)S − γ (E − E∗). (8.48)

If we further set z(t) = E(t) − E∗, so z is the deviation of the red blood cell
numbers from their steady-state value, then zτ (t) = Eτ (t) − E∗ and d E/dt =
dz/dt , so (8.48) can be rewritten as the linear differential delay equation

dz

dt
= Szτ − γ z. (8.49)

Now linear equations, with or without delays, are a lot easier to work
with than nonlinear ones. The usual procedure, loosely speaking, to find a so-
lution is to assume that the solution has the form z(t) � eλt and to find out the
requirements on the parameters of the equation such that there is an eigenvalue
λ allowing z to be written in this form. Usually the eigenvalue λ is a complex
number, λ = µ + iω, so the solution can actually be written in the alternative
form

z(t) � eλt = eµt {cos (ωt) + i sin (ωt)} . (8.50)

If µ = Re λ < 0, then the solution is a decaying oscillating function of time
that approaches zero, so we have a stable situation. If µ = Re λ > 0 on the
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other hand, then the solution diverges to infinity in an oscillatory fashion and
the solution is unstable. The boundary between these two situations, where
µ = Re λ = 0, defines a Hopf bifurcation, which is characterized by an eigen-
value pair crossing from the left-hand to the right-hand complex plane (Ap-
pendix B).

After that wordy digression, let’s assume that z(t) � eλt in (8.49). If
we make this substitution, and carry out the algebra, then we are left with the
equation

λ = Se−λτ − γ (8.51)

that λ must satisfy. In general, determining the criteria such that Re λ = µ < 0
involves a lot of messy algebra. However, determining the relation between the
parameters such that Reλ = µ = 0 is a lot easier, and so lets look at it.

Under this assumption, λ = iω, and substituting this into (8.51) gives

iω = S[cos (ωτ) − i sin (ωτ )] − γ, (8.52)

or after separating real and imaginary parts

ω = −S sin (ωτ) (8.53)
γ = S cos (ωτ) (8.54)

If |γ /S| < 1 then (8.54) can be solved for ωτ to give

ωτ = cos−1
(γ

S

)
. (8.55)

Further, squaring and adding the two equations (8.53 and 8.54) gives

ω =
√

S2 − γ 2. (8.56)

Combining (8.55) and (8.56), we find that the relation connecting τ , S, and γ
that must be satisfied in order for the eigenvalues to have real part identical to
zero is given by

τ = cos−1(γ /S)√
S2 − γ 2

, |γ /S| < 1. (8.57)

In general (Hayes 1950), the real parts of λ will be negative, and thus
the linear equation (8.49) will have a locally stable steady state, if and only if
|γ /S| > 1 or if |γ /S| < 1 and

τ <
cos−1(γ /S)√

S2 − γ 2
. (8.58)

When the parameters satisfy (8.57), then we say that there has been a
Hopf bifurcation. The period of the periodic solution that is guaranteed when
(8.57) is satisfied can be easily derived by noting that ω = 2π f = 2π/T , where
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f and T are the frequency and period of the solution, respectively, and thus
from (8.55) through (8.57)

T = 2πτ

cos−1(γ /S)
. (8.59)

Since the inverse cosine ranges from 0 to π , from (8.59) we know that at the
Hopf bifurcation the period of the periodic solution must satisfy

2τ ≤ T . (8.60)

In general, the period of an oscillation produced by a delayed negative-
feedback mechanism is at least twice the delay (Hayes 1950; Mackey 1978).
Moreover, for our model of erythrocyte production it can be shown that the pe-
riod of the oscillation should be no greater than four times the delay (Mackey
1979b), i.e.

2τ ≤ T ≤ 4τ. (8.61)

Since the maturational delay for erythrocyte production τ is approximately 6
days, we would expect to see oscillations in erythrocyte numbers with periods
ranging from 12 to 24 days. This is in agreement with the observed periods of
16 to 17 days in rabbit autoimmune hemolytic anemia (Orr et al. 1968). What is
surprising is the fact that these oscillations are so rarely observed. This paradox
is illuminated in the following sections.

8.5.4 Parameter estimation

Having extracted about as much information as is possible from the
linear analysis of our model for red blood cell production, we now need to turn
to numerical simulations to see the full behavior. This, by necessity, requires
that we have some estimation of the parameters in (8.24). Through a variety
of data, we finally conclude that in the normal situation (i.e., not autoimmune
hemolytic anemia):

γ = 2.31 × 10−2 day−1,

F0 = 7.62 × 1010 cells/kg-day,

n = 7.6,

θ = 2.47 × 1011 cells/kg,

τ = 5.7 days.

These parameters correspond to a steady-state circulating red blood cell mass
of E∗ = 3.3×1011 cells/kg, and from the linear analysis of the previous section
it is predicted that this steady state is stable.

8.5.5 Explaining laboratory-induced autoimmune
hemolytic anemia

The one fact we know about the induced autoimmune hemolytic ane-
mia shown in Figure 8.4 is that the red blood cell destruction rate γ is increased
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through the action of cell damage (lysis) by the injected iso-antibody. The lin-
ear analysis presented above predicts that the steady-state E∗ will be stable in
the face of increased γ until γ � 5.12 × 10−2 day−1, and when it becomes
unstable at this point there will be an oscillation about the steady state with a
period of T � 20.6 days, as given by (8.59). Our linear analysis tell us noth-
ing about what happens in the full nonlinear equation (8.24) after this stability
is lost, but it does predict that when γ is further elevated to γ � 2.70 × 10−1,
then another (reverse) Hopf bifurcation should occur and that the period of the
periodic solution will be T � 16.6 days. Further increases in γ such that
γ > 2.70 × 10−1 are predicted to result in a stabilization of E∗ about a low
value.

8.5.6 Numerical simulations

Numerical simulations of (8.24) with the parameters given above
show that the linear analysis results quoted above give a very accurate picture
of the full nonlinear behavior, including the values of γ at which stability of E∗
is lost and regained, and the period of the solutions at these stability boundaries
(Figure 8.8).

Figure 8.8 shows a computer simulation of the model as a function of
the peripheral destruction rate (γ ). As can be seen, when γ is low, as normally
occurs, oscillations in erythrocyte numbers do not occur. As γ increases, reg-
ular oscillations occur whose period increases as γ increases. However, for
high γ , no oscillation occurs. Interestingly, depending on the severity of the
hemolytic anemia induced in the rabbit model, reticulocyte levels were ob-
served to be either depressed at constant levels or to oscillate (Orr et al. 1968).
A much more comprehensive model for the control of red blood cell produc-
tion, and mathematically much more complicated, has properties (Bélair et al.
1995) similar to those of the simple model presented here. The observations
in Figure 8.8 indicate that whether or not a proposed mechanism for periodic
autoimmune hemolytic anemia produces an oscillation critically depends on
whether the value of the control parameter, i.e., the peripheral destruction rate
(γ ), lies in some crucial range. This may explain why oscillations in erythro-
cyte number are so rarely seen in patients with autoimmune hemolytic anemia.

It should be noted that the morphology of the oscillations shown in
Figure 8.8 are quite simple; i.e., there is only one maximum per period. All
studies to date of first-order delayed negative-feedback mechanisms have in-
dicated that only oscillations with this simple morphology can be produced
(an der Heiden and Mackey 1982; Glass and Mackey 1979; Longtin and Mil-
ton 1988; Mackey and Glass 1977), though second-order systems with delayed
negative-feedback can have more complicated solution behavior as well as dis-
playing multistability (an der Heiden et al. 1990; Campbell et al. 1995). More
complex waveforms (i.e., more than one maximum per period) are, however,
possible in first-order systems with multiple delayed negative-feedback loops
(Glass et al. 1988) and with multiple time delays (Bélair and Mackey 1989).
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Figure 8.8. Computer simulations of the model (8.24) for erythrocyte production for
four different peripheral destruction rates, γ , as indicated below each panel, all other
parameters being held at the estimated normal values as given in the text. In every case,
the plotted erythrocyte numbers are normalized to the normal steady state of E∗ = 3.3×
1011 cells/kg.

8.6 PERIODIC HEMATOPOIESIS AND
PLURIPOTENTIAL STEM-CELL POPULATION
STABILITY

The most common periodic hematological disease is periodic hemato-
poiesis. In humans, periodic hematopoiesis is a disease characterized by 17- to
28-day periodic oscillations in circulating white blood-cell numbers from ap-
proximately normal values to barely detectable numbers (Dale and Hammond
1988; Hoffman et al. 1974; Lange 1983; Wright et al. 1981). In addition to
white blood cells, oscillations are seen for all the formed elements of blood
with the same period. The oscillations for each of the blood-cell lines are out of
phase, and the phase differences between the cell lines are consistent with the
differences in the maturation times (Hoffman et al. 1974). These neutropenic
(low circulating neutrophil numbers) episodes place the patients at increased
risk for infective processes (e.g., abscesses, pneumonia, septicemia).

Experimental study of periodic hematopoiesis has been facilitated by
the availability of suitable animal models. All gray collies have periodic hema-
topoiesis (Dale et al. 1972a; Dale et al. 1972b; Dale and Hammond 1988; Jones
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et al. 1975; Jones and Lange 1983), and the only demonstrable quantitative dif-
ference between the human and canine form of periodic hematopoiesis is the
period — in dogs the period ranges from about 10 to 17 days.

An abnormality in the regulation of the pluripotential stem cells in pe-
riodic hematopoiesis is suggested by the observation that the disorder can be
transferred by bone-marrow transplantation (Jones et al. 1975; Krance et al.
1982; Quesenberry 1983). This is view is further supported by the observation
(Abkowitz et al. 1988) that in the grey collie 12- to 13-day-period oscillations
are found in marrow erythroid burst-forming units and that these are shifted in
phase by two days from the oscillations in the erythroid colony-forming units.
Furthermore, in the same study it was found that there were oscillations in the
granulocyte-macrophage colony-forming cells and that these have phase dif-
ferences of about five days preceding the neutrophils. These findings indicate
that the defect in periodic hematopoiesis is resident in a cell population more
primitive than these identifiable stem-cell populations.

Consequently most investigators have looked to abnormalities in
the regulation of the pluripotential stem cells and delayed negative-feedback
mechanisms as an explanation for periodic hematopoiesis (Dunn 1983; Mac-
key 1978; Mackey 1979a; Morley 1979; Wheldon et al. 1974; Wheldon 1975;
Nazarenko 1976; MacDonald 1978; Kazarinoff and van den Driessche 1979;
von Schulthess and Mazer 1982). A schematic representation of pluripotential
stem cell population regulation is shown in Figure 8.9.

Interestingly in (Abkowitz et al. 1988) it was also found that the frac-
tion of these progenitor cells in the DNA-synthesis phase is similar between
the grey collie and normal collies, and the fraction does not show any sign of
cyclic fluctuation.

A crucial clue to the potential origin of the defect in periodic hema-
topoiesis is the observation of the effect of continuous cyclophosphamide and
busulfan administration in normal dogs (Morley and Stohlman 1970; Morley
et al. 1970). Though in most animals these drugs led to a pancytopenia (gener-
alized depression of the numbers of all circulating blood cells) whose severity
was proportional to the drug dose, in some dogs low doses led to a mild pancy-
topenia, intermediate doses gave a periodic hematopoiesis-like behavior with
a period between 11 and 17 days, and high drug levels led to either death or
gross pancytopenia. When the periodic hematopoiesis-like behavior occurred,
it was at circulating white blood cell levels of one-half to one-third normal. To
this we must add the observation that patients undergoing hydroxurea therapy
sometimes develop periodic hematopoiesis-like symptoms (Kennedy 1970), as
do patients receiving cyclophosphamide (Dale et al. 1973).

Both cyclophosphamide and busulfan selectively kill cells within the
DNA-synthetic phase of the cell cycle, and the fact that both drugs are capa-
ble of inducing periodic hematopoiesis-like behavior strongly suggests that the
origin of periodic hematopoiesis as a disease is due to an abnormally large
death rate (apoptosis) in the proliferative phase of the cell cycle of a pop-
ulation of pluripotential stem cells, which is at a level more primitive than
the granulocyte-macrophage colony-forming cells and the marrow erythroid
burst-forming units.

Here we interpret the effects of an increase in the rate of irreversible
apoptotic loss from the proliferating phase of the pluripotential stem-cell pop-
ulation (γ in Figure 8.9) on blood-cell production (Mackey 1978).
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Figure 8.9. A schematic representation of the control of pluripotential stem-cell re-
generation. Proliferating phase cells (P) include those cells in G1, S (DNA synthesis),
G2, and M (mitosis) while, the resting-phase (N ) cells are in the G0 phase. Local reg-
ulatory influences are exerted via a cell-number dependent variation in the fraction of
circulating cells. δ is the normal rate of differentiation into all of the committed stem-
cell populations, while γ represents a loss of proliferating-phase cells due to apoptosis.
See Mackey (1978; 1979a) for further details.

The dynamics of this pluripotential stem-cell population is governed
(Mackey 1978; Mackey 1979a) by the pair of coupled differential delay equa-
tions (which can be derived using the techniques of (8.4)):

d P

dt
= −γ P + β(N)N − e−γ τβ(Nτ )Nτ , (8.62)

d N

dt
= −[β(N ) + δ]N + 2e−γ τβ(Nτ )Nτ , (8.63)

where τ is the time required for a cell to traverse the proliferative phase, and
the resting- to proliferative- phase feedback rate β is taken to be

β(N ) = β0θ
n

θn + N n
. (8.64)

An examination of (8.63) shows that this equation could be interpreted
as describing the control of a population with a delayed mixed-feedback-type
production term [2e−γ τβ(Nτ )Nτ ] and a destruction rate [β(N ) + δ] that is a
decreasing function of N .

For δ small enough relative to β0, this model has two possible steady
states. There is a steady state corresponding to no cells, (P∗

1 , N ∗
1 ) = (0, 0),

which is stable if it is the only steady state, and which becomes unstable when-
ever the second positive steady state (P∗

2 , N ∗
2 ) exists.

The stability of the nonzero steady state depends on the value of γ , and
this is illustrated schematically in Figure 8.10. When γ = 0, this steady state
cannot be destabilized to produce dynamics characteristic of periodic hema-
topoiesis. On the other hand, for γ > 0, increases in γ lead to a decrease in
the pluripotential stem-cell numbers and a consequent decrease in the cellular
efflux (given by δN ) into the differentiated cell lines. This diminished efflux
becomes unstable when a critical value of γ is reached, γ = γ1, at which a
supercritical Hopf bifurcation occurs (Appendix B). For all values of γ sat-
isfying γ1 < γ < γ2, there is a periodic solution of (8.63) whose period is in
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good agreement with that seen in periodic hematopoiesis. At γ = γ2, a reverse
bifurcation occurs and the greatly diminished pluripotential stem-cell numbers
as well as cellular efflux again become stable.
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Figure 8.10. Schematic representation of the combined analytic and numerically deter-
mined stability properties of the pluripotential stem-cell model. See the text for details.

Separate estimations of the parameter sets for human and grey collie
pluripotential stem cell populations give predictions of the period of the oscil-
lation at the Hopf bifurcation that are consistent with those observed clinically
and in the laboratory. These results are illustrated in Figures 8.11 and 8.12 for
humans and grey collies, respectively.

Numerical simulations of (8.62) and (8.63) confirm the results of the
local stability analyses displayed in Figures 8.11 and 8.12. As expected, an
increase in γ is accompanied by a decrease in the average number of circu-
lating cells. For certain values of γ an oscillation appears. Over the range of
γ in which an oscillation occurs, the period increases as γ increases. How-
ever, the amplitude of the oscillation first increases and then decreases. (Sim-
ilar observations hold for the model of autoimmune hemolytic anemia as the
control parameter γ is increased.) When all the parameters in the model are set
to the values estimated from laboratory and clinical data, no other types of bi-
furcations are found. Although these simulations also indicate the existence of
multiple bifurcations and chaotic behaviors, these more complex dynamics are
observed only for nonphysiological choices of the parameters. Thus, the ob-
served irregularities in the fluctuations in blood-cell numbers in periodic hem-
atopoiesis cannot be related to chaotic solutions of (8.63). These results sug-
gest that periodic hematopoiesis is likely related to defects, possibly genetic,
within the pluripotential stem-cell population that lead to an abnormal (γ > 0)
apoptotic loss of cells from the proliferative phase of the cell cycle.
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Figure 8.11. Variation of the total steady-state cellular-differentiation efflux (M∗ =
δN ) as a function of the apoptotic death rate γ from the proliferating cell population
in humans (n = 3). Parameters in the model were estimated assuming a proliferat-
ing fraction of 0.1 and an amplification of 16 in the recognizable erythroid, myeloid,
and megakaryocytic precursors populations. See Mackey (1978; 1979a) for details.
The pluripotential stem-cell parameters corresponding to each curve from the top down
are: (δ, β0, τ, θ × 10−8) = (0.09, 1.58, 1.23, 2.52), (0.08, 1.62, 1.39, 2.40), (0.07, 1.66,
1.59, 2.27), (0.06, 1.71, 1.85, 2.13), (0.05, 1.77, 2.22, 1.98), (0.04, 1.84, 2.78, 1.81),
and (0.03, 1.91, 3.70, 1.62) in units (days−1, days−1, days, cells/kg). The dashed solid
lines indicate the boundaries along which stability is lost in the linearized analysis, and
the numbers indicate the predicted (Hopf) period (in days) of the oscillation at the Hopf
bifurcation.

8.7 UNDERSTANDING LABORATORY-INDUCED
CYCLICAL ERYTHROPOIESIS

To illustrate the usefulness of the model presented in Section 8.6 with
a second example, we will compare these predictions to experimental observa-
tions obtained for 89Sr-induced cyclic erythropoiesis in two congenitally ane-
mic strains of mice, W/Wv and S1/S1d (Gibson et al. 1985; Gurney et al. 1981).
W/Wv mice suffer from a defect in the pluripotential stem-cells, and in S1/S1d

mice the hematopoietic microenvironment is defective. Let us assume that the
difference between W/Wv and S1/S1d mice is related solely to differences in
γ . The observation that S1/S1d mice are more refractory to erythropoietin than
W/Wv suggests that γ is higher in S1/S1d . The results of Section 8.6 predict
that a higher γ would increase the likelihood that an oscillation in erythrocyte
number occurs. Indeed, in contrast to W/Wv , approximately 40% of S1/S1d

mice have “spontaneous” oscillations in their hematocrit (Gibson et al. 1985).
In both strains of mice, a single dose of 89Sr is sufficient to increase γ into a
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Figure 8.12. As in the previous figure, but all calculations done with parameters ap-
propriate for dogs.

range associated with oscillations in erythrocyte number. Since the value of γ
for the S1/S1d mice is greater than that for W/Wv prior to 89Sr, it is reasonable
to expect that it will also be higher following administration of equal doses of
89Sr to both strains of mice, as shown in Figure 8.13. As predicted, experimen-
tally the period of the oscillation is longer, the amplitude larger, and the mean
hematocrit lower for S1/S1d mice than for W/Wv mice.

8.8 UNDERSTANDING
COLONY-STIMULATING-FACTOR EFFECTS IN
PERIODIC HEMATOPOIESIS

Recent clinical and experimental work has focused on the modifi-
cation of the symptoms of hematological disorders, including periodic hem-
atopoiesis, by the use of various synthetically produced cytokines (Cebon
and Layton 1994; Sachs 1993; Sachs and Lotem 1994), e.g., the recombi-
nant colony stimulating factors rG-colony-stimulating factor and rGM-colony-
stimulating factor, whose receptor biology is reviewed in Rapoport et al.
(1992), and interleukin-3 (IL-3). These cytokines are now known to interfere
with the process of apoptosis, or to lead to a decrease in γ within the context
of the pluripotential stem-cell model of Section 8.6.

Human colony-stimulating factors increase both the numbers and
proliferation rate of white blood cell precursors in a variety of situations
(Bronchud et al. 1987; Lord et al. 1989; Lord et al. 1991). Furthermore,
colony-stimulating factor in mice is able to stimulate replication in both stem
cells and early erythroid cells (Metcalf et al. 1980).
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Figure 8.13. Schematic representation of the effects of administering the same dose of
51Sr to W/Wv and S1/S1d mice. See the text for details.

It is known that in aplastic anemia and periodic hematopoiesis there is
an inverse relationship between plasma levels of G-colony stimulating factor
and white blood cell numbers (Watari et al. 1989). Further it has been shown
(Layton et al. 1989) that the t1/2 of G-colony-stimulating factor in the circu-
lation is short — of the order of 1.3 to 4.2 hours — so the dynamics of the
destruction of G-colony-stimulating factor are unlikely to have a major role in
the genesis of the dynamics of periodic hematopoiesis.

In the grey collie it has been shown that at relatively low doses of G-
colony-stimulating factor the mean white blood-cell count is elevated (by 10 to
20 times), as is the amplitude of the oscillations (Hammond et al. 1990), while
higher dosages (Hammond et al. 1990; Lothrop et al. 1988) lead to even higher
mean white blood cell numbers but eliminate the cycling. Another interesting
observation is that in the collie, G-colony-stimulating factor administration re-
sults in a decrease in the period of the peripheral oscillation. The elevation of
the mean white blood cell levels and the amplitude of the oscillations, as well as
an enhancement of the oscillations of platelets and reticulocytes, at low levels
of G-colony-stimulating factor has also been reported in humans (Hammond
et al. 1990; Migliaccio et al. 1990; Wright et al. 1994), and it has been also
noted that the fall in period observed in the collie after G-colony stimulating
factor administration occurs in humans with a fall in period from 21 to about 14
days. Finally it should be mentioned that treatment with G-colony stimulating
factor in patients with agranulocytosis has also lead to a significant increase
in the mean white blood cell counts and, in some patients, to the induction of
white blood cell oscillations with periods ranging from 7 to 16 days.

Our major clue to the nature of the effects of G-colony stimulating fac-
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tor comes from its prevention of apoptosis and from the work of Avalos et al.
(1994) who have shown in dogs that there is no demonstrable alteration in the
number, binding affinity, or size of the G-colony-stimulating-factor receptor on
periodic-hematopoiesis dogs as compared to normal dogs. They thus conclude
that periodic hematopoiesis “is caused by a defect in the G-colony-stimulating-
factor signal-transduction pathway at a point distal to G-colony-stimulating-
factor binding . . . .” The data of Avalos et al. (1994) can be used to estimate
that

γ P H
max � 7 × γ norm

max (8.65)

The results of Hammond et al. (1992) in humans are consistent with these re-
sults in dogs.

Less is known about the effect of GM-colony-stimulating factor, but it
is known that administration of GM-colony-stimulating factor in humans gives
an elevation of the mean white blood cell level but only by relatively modest
amounts–1.5 to 3.9 times (Wright et al. 1994), but either dampens the oscil-
lations of periodic hematopoiesis or eliminates them entirely. The same effect
has been shown (Hammond et al. 1990) in the grey collie. It is unclear if the pe-
riod of the peripheral cell oscillations has a concomitant decrease, as is found
with G-colony-stimulating factor. The abnormal responsiveness of precursors
to G-colony-stimulating factor in grey collies and humans with periodic hem-
atopoiesis (Hammond et al. 1992; Avalos et al. 1994) is mirrored in the human
response to GM-colony-stimulating factor (Hammond et al. 1992).

Thus, the available laboratory and clinical data on the effects of
colony-stimulating factors in periodic hematopoiesis indicate that: (1) there is
extensive intercommunication between all levels of stem cells; and (2) within
the language of nonlinear dynamics, colony-stimulating factors may be used
to titrate the dynamics of periodic hematopoiesis to the point of inducing a re-
verse Hopf bifurcation (disappearance of the oscillations). In the course of this
“titration” there may also be a shift in the period.

The behavior in periodic hematopoiesis when colony-stimulating fac-
tor is administered is qualitatively consistent with the pluripotential stem-cell
model discussed in Section 8.6, since it is known that colony-stimulating factor
interferes with apoptosis and, thus, administration of colony-stimulating factor
is equivalent to a decrease in the apoptotic death rate γ . This is a current active
area of research in conjunction with Profs. David Dale and William Hammond
of the University of Washington (Seattle). We hope this combined modeling
and data-analysis project may give greater insight into the fundamental nature
of the regulation of the mammalian cell cycle and, in the future, suggest more
rational therapies for patients with periodic hematopoiesis.

8.9 CONCLUDING REMARKS

Delayed feedback mechanisms are important for regulating blood-cell
numbers. Under certain conditions, delayed-feedback mechanisms can pro-
duce oscillations whose period typically ranges from 2 to 4 times the delay but
may be even longer. Thus it is not necessary to search for illusive and mystical
entities (Beresford 1988), such as ultradian rhythms, to explain the periodicity
of these disorders.
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The observations in this chapter emphasize that an intact control
mechanism for the regulation of blood-cell numbers is capable of producing
behaviors ranging from no oscillation to periodic oscillations to more complex
irregular fluctuations, i.e., chaos. The type of behavior produced depends on
the nature of the feedback, i.e. negative or mixed, and on the value of certain
underlying control parameters, e.g., peripheral destruction rates or maturation
times. Pathological alterations in these parameters can lead to periodic hema-
tological disorders.

As an extension to the concept of periodic diseases introduced by Rei-
mann (1963) in 1963, the term “dynamical disease” has been introduced (Glass
and Mackey 1979; Glass and Mackey 1988; Mackey and Glass 1977; Mackey
and an der Heiden 1982; Mackey and Milton 1987). A dynamical disease is
defined as a disease that occurs in an intact physiological control system oper-
ating in a range of control parameters that leads to abnormal dynamics. Clearly
the hope is that it may eventually be possible to identify these altered param-
eters and then readjust them to values associated with healthy behaviors. De-
velopments in biotechnology and the analysis of physiological control mech-
anisms are occurring at so rapid a pace that the feasibility of such an approach
may be just around the corner, as illustrated by the material described concern-
ing the effects of the colony-stimulating factors in periodic hematopoiesis.
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